MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

Samankaltaiset tiedostot
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö

1 Peruskäsitteet. Dierentiaaliyhtälöt

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

1 Johdanto. 1.1 Vakiokertoiminen differentiaaliyhtälö y = ay. Differentiaaliyhtälöt c Pekka Alestalo 2013

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.

MS-A0102 Differentiaali- ja integraalilaskenta 1

12. Differentiaaliyhtälöt

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Kompleksiluvun logaritmi: Jos nyt z = re iθ = re iθ e in2π, missä n Z, niin saadaan. ja siihen vaikuttava

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

Matemaattinen Analyysi

4 Korkeamman kertaluvun differentiaaliyhtälöt

6. Toisen ja korkeamman kertaluvun lineaariset

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

Dierentiaaliyhtälöistä

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

3 TOISEN KERTALUVUN LINEAARISET DY:T

Differentiaaliyhtälöt

Mat Matematiikan peruskurssi K2

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista

2 Funktion derivaatta

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

MATP153 Approbatur 1B Harjoitus 5 Maanantai

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3

SARJAT JA DIFFERENTIAALIYHTÄLÖT

y + 4y = 0 (1) λ = 0

Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva).

Matematiikka B3 - Avoin yliopisto

BM20A0900, Matematiikka KoTiB3

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Lineaarinen toisen kertaluvun yhtälö

Insinöörimatematiikka D

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

Matemaattinen Analyysi

Luento 2: Liikkeen kuvausta

Matematiikan tukikurssi

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt

Differentiaaliyhtälöt I Ratkaisuehdotuksia, 2. harjoitus, kevät Etsi seuraavien yhtälöiden yleiset ratkaisut (Tässä = d

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa

Poistumislause Kandidaatintutkielma

Johdatus reaalifunktioihin P, 5op

Dierentiaaliyhtälöistä

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)

Luku 4. Derivoituvien funktioiden ominaisuuksia.

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt

Dierentiaaliyhtälöistä

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Matemaattinen Analyysi

DYNAAMISET SYSTEEMIT 1998

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Numeeriset menetelmät

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

2 Funktion derivaatta

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

2. Tavallisen differentiaaliyhtälön yleisiä ratkaisumenetelmiä. y = 2xy, Piirrä muutama yleisen ratkaisun kuvaaja. Minkä nimisistä käyristä on kyse?

1. Määritä funktion f : [ 1, 3], f (x)= x 3 3x, suurin ja pienin arvo.

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) = = 21 tosi

Yleisiä integroimissääntöjä

Differentiaaliyhtälöt I, kevät 2017 Harjoitus 3

2 dy dx 1. x = y2 e x2 2 1 y 2 dy = e x2 xdx. 2 y 1 1. = ex2 2 +C 2 1. y =

800345A Differentiaaliyhtälöt I. Seppo Heikkilä, Martti Kumpulainen, Janne Oinas

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.

Derivaatan sovellukset (ääriarvotehtävät ym.)

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot

b) Määritä/Laske (ei tarvitse tehdä määritelmän kautta). (2p)

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Differentiaalilaskenta 1.

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Transkriptio:

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos October 11, 2017 Pekka Alestalo, Jarmo Malinen (Aalto-yliopisto, MS-A010{3,4,5} Matematiikan ja (ELEC*, systeemianalyysin ENG*) Differentiaali- laitos) ja integraalilaskenta October 11, 1 2017 Luento 10: 1 / Ensim 18

Radioaktiivinen hajoaminen Radioaktiivisen aineen ydinten lukumäärää hetkellä t kuvaa funktio y(t). Lyhyellä aikavälillä [t, t + t], t > 0, hajoavien ydinten lukumäärä y on likimain suoraan verrannollinen sekä aikavälin pituuteen että ydinten lukumäärään aikavälin alussa: y = y(t + t) y(t) k y(t) t. Vakio k > 0 on aineesta riippuva hajoamisvakio. Tästä saadaan y t ky(t), ja rajalla t 0 differentiaaliyhtälö y (t) = ky(t). Pekka Alestalo, Jarmo Malinen (Aalto-yliopisto, MS-A010{3,4,5} Matematiikan ja (ELEC*, systeemianalyysin ENG*) Differentiaali- laitos) ja integraalilaskenta October 11, 1 2017 Luento 10: 2 / Ensim 18

Hajoamislain differentiaaliyhtälö y = ky Lause Olkoon k R vakio. Kaikki differentiaaliyhtälön y (x) = ky(x), x R, toteuttavat funktiot y = y(x) ovat muotoa y(x) = Ce kx, jossa C on vakio. Jos funktion y arvo tunnetaan jossakin pisteessä x 0, niin vakiolle C saadaan yksikäsitteinen arvo. Perustelu: y (x) = ky(x) ( y (x) ky(x) ) e kx = 0 koska e kx > 0 x y (x)e kx ke kx y(x) = 0 d dx ( y(x)e kx ) = 0 y(x)e kx = C = vakio Väliarvolause! y(x) = Ce kx. Pekka Alestalo, Jarmo Malinen (Aalto-yliopisto, MS-A010{3,4,5} Matematiikan ja (ELEC*, systeemianalyysin ENG*) Differentiaali- laitos) ja integraalilaskenta October 11, 1 2017 Luento 10: 3 / Ensim 18

Differentiaaliyhtälö I Yleiskäsitteitä: Differentiaaliyhtälö (lyh. DY, engl. ODE) on yhtälö, joka sitoo toisiinsa funktion y = y(x) ja eräitä sen derivaattoja y (x), y (x),..., y (n) (x),... DY:n kertaluku on korkeimman yhtälössä esiintyvän derivaatan kertaluku n. Kertalukua n oleva differentiaaliyhtälö F (x, y(x), y (x),..., y (n) (x)) = 0 kun F on jokin (n + 2):sta muuttujasta riippuva lauseke. Funktio y on yhtälön ratkaisu. DY:n ratkaisun muuttujaa (tässä x) ei aina kirjoiteta näkyviin. Pekka Alestalo, Jarmo Malinen (Aalto-yliopisto, MS-A010{3,4,5} Matematiikan ja (ELEC*, systeemianalyysin ENG*) Differentiaali- laitos) ja integraalilaskenta October 11, 1 2017 Luento 10: 4 / Ensim 18

Differentiaaliyhtälö II Esimerkki (i) Differentiaaliyhtälön y + 3y = sin(x) kertaluku on 1. (ii) Differentiaaliyhtälön y + 5y 6y = e x kertaluku on 2. DY:illä mallinnetaan jatkuvalla tavalla muuttuvia ilmiöitä, jonka vuoksi muuttuja x on yleensä jollakin avoimella välillä I R. Lisäksi yhtälöön voi liittyä alku- tai reunaehtoja tämän välin päätepisteissä. Differentiaaliyhtälön F (x, y(x), y (x),..., y (n) (x)) = 0 eräs ratkaisu on mikä tahansa sellainen n kertaa derivoituva funktio y(x), jolle yhtälö toteutuu kaikilla x I. Huomaa kuitenkin: Eri ratkaisuilla voi olla erilainen määrittelyväli I. Pekka Alestalo, Jarmo Malinen (Aalto-yliopisto, MS-A010{3,4,5} Matematiikan ja (ELEC*, systeemianalyysin ENG*) Differentiaali- laitos) ja integraalilaskenta October 11, 1 2017 Luento 10: 5 / Ensim 18

Differentiaaliyhtälö III Esimerkki Differentiaaliyhtälön xy 2 + y = 0 ratkaisuja ovat mm. y 0 (x) = 0, x R; y 1 (x) = 2/x 2, x > 0; y 2 (x) = 2/x 2, x < 0; y 3 (x) = 2/(x 2 + 3), x R. Esimerkki Differentiaaliyhtälöllä sin(y + y) = 2 ei ole lainkaan ratkaisuja. Ratkaisujen tarkistamiseen riittää derivointi ja sijoitus yhtälöön. Ei ole olemassa mitään yleispätevää symbolista ratkaisumenetelmää edes 1. kertaluvun DY:ille, koska jo integraalifunktion löytäminenkin on erään sellaisen differentiaaliyhtälön ratkaisemista. Pekka Alestalo, Jarmo Malinen (Aalto-yliopisto, MS-A010{3,4,5} Matematiikan ja (ELEC*, systeemianalyysin ENG*) Differentiaali- laitos) ja integraalilaskenta October 11, 1 2017 Luento 10: 6 / Ensim 18

1. kertaluvun yhtälön suuntakenttä I Eräissä tapauksissa 1. kertaluvun yhtälöstä F (x, y, y ) = 0 voidaan ratkaista derivaatta yksikäsitteisesti muodossa y = f (x, y). Jos DY:n eräs ratkaisu y = y(x) kulkee pisteen (x, y) = (x 0, y 0 ) kautta, niin funktio f antaa tällöin sen ratkaisun tangentin kulmakertoimen eli ratkaisukäyrän etenemissuunnan tässä pisteessä. Siksi alkuehdon y(x 0 ) = y 0 toteuttavia ratkaisuja yhtälölle y = f (x, y) on täsmälleen yksi vaikkei ratkaisun lauseketta voida aina muodostaa. Yhtälöä voidaan siis havainnollistaa xy-tason vektorikentällä i + f (x k, y k )j, kun se piirretään sopiviin hilapisteisiin (x k, y k ). Suuntakenttä. Pekka Alestalo, Jarmo Malinen (Aalto-yliopisto, MS-A010{3,4,5} Matematiikan ja (ELEC*, systeemianalyysin ENG*) Differentiaali- laitos) ja integraalilaskenta October 11, 1 2017 Luento 10: 7 / Ensim 18

1. kertaluvun yhtälön suuntakenttä II Esimerkki Hahmotellaan differentiaaliyhtälön y = sin(xy) ratkaisukäyriä suuntakentän avulla. Esimerkiksi x 0 = 1, y 0 = π/2 y (1) = sin(1 π/2) = 1. Pekka Alestalo, Jarmo Malinen (Aalto-yliopisto, MS-A010{3,4,5} Matematiikan ja (ELEC*, systeemianalyysin ENG*) Differentiaali- laitos) ja integraalilaskenta October 11, 1 2017 Luento 10: 8 / Ensim 18

1. kertaluvun yhtälön suuntakenttä III Yhteenvetona: DY:n y = f (x, y) suuntakentän avulla saadaan halutun pisteen (x, y) = (x 0, y 0 ) kautta kulkevan ratkaisun likiarvoja ja kuvaaja selville. Numeerinen menetelmä! Ratkaisukäyrät ovat sellaisia käyriä, jotka mahdollisimman hyvin seuraavat suuntakenttää. Ratkaisukäyriä voi piirtää hyvin alkeellisilla välineillä. Monissa sovelluksissa ratkaisun eksplisiittinen lauseke ei ole edes tarpeen. Kuvaaja tai taulukoituja arvoja ratkaisusta riittävät. Pekka Alestalo, Jarmo Malinen (Aalto-yliopisto, MS-A010{3,4,5} Matematiikan ja (ELEC*, systeemianalyysin ENG*) Differentiaali- laitos) ja integraalilaskenta October 11, 1 2017 Luento 10: 9 / Ensim 18

Separoituva DY I Separoituvan differentiaaliyhtälön yleinen muoto on y = f (x)g(y), missä f ja g ovat jatkuvia yhden muuttujan funktioita. Separoituvuus-nimitys tulee siitä, että x ja y -riippuvuudet voidaan yhtälön oikealla puolella eristää erillisiin funktioihinsa. Hajoamislain differentiaaliyhtälö y = ky on toiseksi helpoin tapaus separoituvasta differentiaaliyhtälöstä. Mikä on helpoin tapaus? Separoituvalle differentiaaliyhtälölle on periaatteessa olemassa systemaattinen ratkaisumenetelmä, mutta välivaiheissa voi tulla ongelmia hankalien integraalifunktioiden tai käänteisfunktioiden takia. Pekka Alestalo, Jarmo Malinen (Aalto-yliopisto, MS-A010{3,4,5} Matematiikan ja (ELEC*, systeemianalyysin ENG*) Differentiaali- laitos) ja integraalilaskenta October 11, 12017 Luento 10: / Ensim 18

Separoituva DY II Separoituva differentiaaliyhtälö ratkaistaan seuraavalla muodollisella, infinitesimaaleja käyttävällä laskulla: dy dx = y = f (x)g(y) dy = f (x) dx g(y) Separointi! dy g(y) = f (x) dx H(y) = F (x) + C y = y(x) = H 1 (F (x) + C). Tässä on H on funktion h(s) = 1/g(s) integraalifunktio, jonka käänteisfunktiota merkitään H 1. Tuloksena saadaan DY:n yleinen ratkaisu eli ratkaisuparvi, jossa on mukana vakio vielä määräämätön integroimisvakio C R. Pekka Alestalo, Jarmo Malinen (Aalto-yliopisto, MS-A010{3,4,5} Matematiikan ja (ELEC*, systeemianalyysin ENG*) Differentiaali- laitos) ja integraalilaskenta October 11, 12017 Luento 10: 11 / Ensim 18

Separoituva DY III Jos mukana on alkuehto y(x 0 ) = y 0, niin voidaan oikaista vastaavaan yksityisratkaisuun ilman yleistä ratkaisua: dy dx = y = f (x)g(y) dy = f (x) dx g(y) y ds x g(s) = f (t) dt y 0 H(y) H(y 0 ) = F (x) F (x 0 ) x 0 y = y(x) = H 1( F (x) F (x 0 ) + H(y 0 ) ). Toinen tapa: Kiinnitetään yleisen ratkaisun vakio C alkuehdon y(x 0 ) = y 0 avulla. Pekka Alestalo, Jarmo Malinen (Aalto-yliopisto, MS-A010{3,4,5} Matematiikan ja (ELEC*, systeemianalyysin ENG*) Differentiaali- laitos) ja integraalilaskenta October 11, 12017 Luento 10: 12 / Ensim 18

Separoituva DY IV Esimerkki Etsi differentiaaliyhtälön y = x/y yleinen ratkaisu. Ratkaisu: DY on separoituva: f (x) = x ja g(y) = 1/y 0. Saadaan siis dy dx = y = x y y dy = x dx y dy = x dx + C 1 2 y 2 = 1 2 x 2 + C y = y(x) = ± x 2 + 2C. Pekka Alestalo, Jarmo Malinen (Aalto-yliopisto, MS-A010{3,4,5} Matematiikan ja (ELEC*, systeemianalyysin ENG*) Differentiaali- laitos) ja integraalilaskenta October 11, 12017 Luento 10: 13 / Ensim 18

Separoituva DY V Esimerkki Ratkaise differentiaaliyhtälö y = x/y alkuehdolla y(0) = 5. Ratkaisu: Jos yleistä ratkaisua ei tarvita, niin alkuehto voidaan ottaa huomioon jo integroinnissa. dy dx = y = x y y dy = x dx y 5 s ds = x 0 t dt 1 2 (y 2 25) = 1 2 (x 2 0) y = y(x) = ± x 2 + 25. Lopuksi täytyy vielä alkuehdon y(0) = 5 > 0 perusteella valita +-merkki. Pekka Alestalo, Jarmo Malinen (Aalto-yliopisto, MS-A010{3,4,5} Matematiikan ja (ELEC*, systeemianalyysin ENG*) Differentiaali- laitos) ja integraalilaskenta October 11, 12017 Luento 10: 14 / Ensim 18

Separoituvan DY:n erikoisratkaisut I Separoituvan DY:n yleisestä ratkaisusta jää yleensä pois sellaisia ratkaisuja, jotka liittyvät funktion g(y) nollakohtiin. Syy: Lausekkeella g(y(x)) jakaminen separoinnissa edellyttää, ettei se ole nolla. Jokaista funktion g nollakohtaa α vastaa DY:n y = f (x)g(y) vakioratkaisu y(x) α, koska tällöin y (x) 0 = g(α) g(y(x)). Näitä ratkaisuja kutsutaan yhtälön triviaali- tai erikoisratkaisuiksi. Pekka Alestalo, Jarmo Malinen (Aalto-yliopisto, MS-A010{3,4,5} Matematiikan ja (ELEC*, systeemianalyysin ENG*) Differentiaali- laitos) ja integraalilaskenta October 11, 12017 Luento 10: 15 / Ensim 18

Separoituvan DY:n erikoisratkaisut II Myös ei-separoituville 1. kertaluvun yhtälöille pätee ratkaisujen olemassaolo- ja yksikäsitteisyystulos. Lause (Picard Lindelöf) Olkoon f on jatkuva (kahden muuttujan) funktio. Alkuarvotehtävälle y = f (x, y), y(x 0 ) = y 0 pätee: (i) On olemassa vähintään yksi alkuehdon toteuttava ratkaisu y = y(x) jollakin pisteen x 0 sisältävällä välillä. (ii) Jos lisäksi f on jatkuvasti derivoituva muuttujan y suhteen, niin alkuehdon toteuttava ratkaisu on yksikäsitteinen. (iii) Yksikäsitteisyys on voimassa myös silloin, kun kohdan (i) lisäksi f on jatkuvasti derivoituva muuttujan x suhteen ja f (x 0, y 0 ) 0. Perustelu: Olisi aivan mahdollista ymmärtää, mutta ei nyt. Suomalainen matemaatikko Ernst Lindelöf (1870-1946). Pekka Alestalo, Jarmo Malinen (Aalto-yliopisto, MS-A010{3,4,5} Matematiikan ja (ELEC*, systeemianalyysin ENG*) Differentiaali- laitos) ja integraalilaskenta October 11, 12017 Luento 10: 16 / Ensim 18

Separoituvan DY:n erikoisratkaisut III Picard Lindelöfin lause tulkittuna separoituvan yhtälön erikoistapauksessa: Lause Tarkastellaan differentiaaliyhtälöä y = f (x)g(y), kun f on jatkuva ja g jatkuvasti derivoituva. (i) Jokaista funktion g nollakohtaa α vastaa triviaaliratkaisu y(x) α = vakio. (ii) Yhtälön kaikki muut ratkaisut (= yleinen ratkaisu) saadaan yllä esitetyllä tavalla separoimalla muuttujat ja integroimalla. Ensiksi havaitaan Picard Lindelöfin lauseesta, että lauseen oletuksilla yhtälöllä y = f (x)g(y) alkuehdolla y(x 0 ) = y 0 on aina yksikäsitteinen ratkaisu mille tahansa pisteparille (x 0, y 0 ) R 2. Pitää vielä tarkistaa, että jokainen tällainen ratkaisu on saavutettavissa joko separointimenettelyllä tai triviaaliratkaisuna. Pekka Alestalo, Jarmo Malinen (Aalto-yliopisto, MS-A010{3,4,5} Matematiikan ja (ELEC*, systeemianalyysin ENG*) Differentiaali- laitos) ja integraalilaskenta October 11, 12017 Luento 10: 17 / Ensim 18

Separoituvan DY:n erikoisratkaisut IV Perustelu jälkimmäiselle osalle: Yhtälön määrittelyalueen jokaisen pisteen (x 0, y 0 ) kautta kulkee yksikäsitteinen ratkaisukäyrä suuntakentän määräämässä suunnassa. Yhtälön ratkaisukäyrät (ratkaisujen kuvaajat) eivät koskaan pääty kesken, vaan ne joko törmäävät yhtälön määrittelyalueen reunaan tai katoavat suuntakentän saattelemana ± äärettömyyteen. Erityisesti: ratkaisukäyrät eivät voi leikata toisiaan eikä yksittäinen ratkaisukäyrä voi haarautua kahteen tai useampaan osaan. Miksi ei? Separoituvan DY:n muut ratkaisukäyrät eivät siis voi leikata triviaaliratkaisukäyriä y = α, joten kaikille muille ratkaisuille ehto g(y(x)) 0 on automaattisesti voimassa ja separoituvuus näin ollen luvallista! Pekka Alestalo, Jarmo Malinen (Aalto-yliopisto, MS-A010{3,4,5} Matematiikan ja (ELEC*, systeemianalyysin ENG*) Differentiaali- laitos) ja integraalilaskenta October 11, 12017 Luento 10: 18 / Ensim 18