Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

Samankaltaiset tiedostot
The CCR Model and Production Correspondence

Alternative DEA Models

Capacity Utilization

16. Allocation Models

Returns to Scale Chapters

Capacity utilization

Other approaches to restrict multipliers

Mat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Efficiency change over time

Categorical Decision Making Units and Comparison of Efficiency between Different Systems

11. Models With Restricted Multipliers Assurance Region Method

DATA ENVELOPMENT ANALYSIS

Bounds on non-surjective cellular automata

Operatioanalyysi 2011, Harjoitus 4, viikko 40

Toppila/Kivistö Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä.

Alternatives to the DFT

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

19. Statistical Approaches to. Data Variations Tuomas Koivunen S ysteemianalyysin. Laboratorio. Optimointiopin seminaari - Syksy 2007

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ

Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

The Viking Battle - Part Version: Finnish

1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

Teknillinen tiedekunta, matematiikan jaos Numeeriset menetelmät

Choose Finland-Helsinki Valitse Finland-Helsinki

Exercise 1. (session: )

Topologies on pseudoinnite paths

Kvanttilaskenta - 2. tehtävät

812336A C++ -kielen perusteet,

Tietorakenteet ja algoritmit

HARJOITUS- PAKETTI A

LYTH-CONS CONSISTENCY TRANSMITTER

TIETEEN PÄIVÄT OULUSSA

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

Results on the new polydrug use questions in the Finnish TDI data

You can check above like this: Start->Control Panel->Programs->find if Microsoft Lync or Microsoft Lync Attendeed is listed

Rekisteröiminen - FAQ

Operatioanalyysi 2011, Harjoitus 2, viikko 38

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Sisällysluettelo Table of contents

Network to Get Work. Tehtäviä opiskelijoille Assignments for students.

Operatioanalyysi 2011, Harjoitus 3, viikko 39

Salasanan vaihto uuteen / How to change password

Statistical design. Tuomas Selander

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

SIMULINK S-funktiot. SIMULINK S-funktiot

A DEA Game I Chapters

21~--~--~r--1~~--~--~~r--1~

Tarua vai totta: sähkön vähittäismarkkina ei toimi? Satu Viljainen Professori, sähkömarkkinat

( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145

7.4 Variability management

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a

Travel Getting Around

PAINEILMALETKUKELA-AUTOMAATTI AUTOMATIC AIR HOSE REEL

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

Information on preparing Presentation

No Problem TARJOTTIMET

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

Metsälamminkankaan tuulivoimapuiston osayleiskaava

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

anna minun kertoa let me tell you

2_1----~--~r--1.~--~--~--,.~~

TM ETRS-TM35FIN-ETRS89 WTG

Use of Stochastic Compromise Programming to develop forest management alternatives for ecosystem services

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

Kaivostoiminnan eri vaiheiden kumulatiivisten vaikutusten huomioimisen kehittäminen suomalaisessa luonnonsuojelulainsäädännössä

TM ETRS-TM35FIN-ETRS89 WTG

Gap-filling methods for CH 4 data

WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result

make and make and make ThinkMath 2017

A DEA Game II. Juha Saloheimo S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

TM ETRS-TM35FIN-ETRS89 WTG

Esimerkkinä - ilmainen blogi-julkaisujärjestelmä. WordPress:stä on myös palvelimelle asennettava versio (WordPress.

Hankkeiden vaikuttavuus: Työkaluja hankesuunnittelun tueksi

TM ETRS-TM35FIN-ETRS89 WTG

( ,5 1 1,5 2 km

TM ETRS-TM35FIN-ETRS89 WTG

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

MRI-sovellukset. Ryhmän 6 LH:t (8.22 & 9.25)

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

Uusia kokeellisia töitä opiskelijoiden tutkimustaitojen kehittämiseen

SELL Student Games kansainvälinen opiskelijaurheilutapahtuma

Kvanttilaskenta - 1. tehtävät

Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition)

TM ETRS-TM35FIN-ETRS89 WTG

While we compile backlinks report, You can visit following handy links. Music download

AYYE 9/ HOUSING POLICY

Mat Optimointiopin seminaari

TM ETRS-TM35FIN-ETRS89 WTG

,0 Yes ,0 120, ,8

VBE2 Työpaketit Jiri Hietanen / TTY

Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

NAO- ja ENO-osaamisohjelmien loppuunsaattaminen ajatuksia ja visioita

TAMPEREEN TEKNILLINEN YLIOPISTO Teollisuustalous

Use of spatial data in the new production environment and in a data warehouse

Transkriptio:

Returns to Scale II

Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition

Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be found to be efficient with the corresponding BCC model and constant returns to scale prevail at DMU. 6 5 4 CCR frontier BCC Frontier C D E y 3 B A.5.5.5 3 3.5 4 4.5 x

Most Productive Scale Size A Necessary condition / Let (x, y ) be the coordinates of the point under evaluation and let α and β be positive scalars The point (x, y ) is transformed to (αx, βy ) to achieve MPSS α and β are solved with optimization max s. t. β / α βy αy = n j= n j= n j= λ j y x α, β, λ i j j λ λ j j

Most Productive Scale Size A Necessary condition / Theorem 5.6 A necessary condition for a DMU with output and input vectors y and x to be at MPSS is β*/α* = max β/α =, in which case β* = α* and returns to scale will be constant

Example point D Optimum : λ B *=, β*=/5, α*=3/8, β*/α*=6/5 Optimum : λ C *=, β*=4/5, α*=3/4, β*/α*=6/5 6 5 4 CCR frontier BCC Frontier C D E y 3 B A.5.5.5 3 3.5 4 4.5 x

Most Productive Scale Size Definition 5. For DMU to be MPSS both of the following conditions need to be satisfied: (i) β*/α*= and (ii) all slacks are zero (in all alternative optima) Step : Optimize β* and α*. Step : Fix β = β* and α = α*. Maximize slacks. If non-zero slacks are found, DMU is not MPSS MPSS point with coordinates y r *, y r * can be obtained with the following formulas: * β y * α x r i + s s + * r * i = = x y * r * i,, r =,..., s i =,..., m

Further considerations Theorem 5.7 In the BCC model a reference set to any BCC inefficient DMU does not include both increasing and decreasing returns-to-scale DMUs at the same time 6 y 5 4 3 BCC Frontier C CRS D E DRS A B CRS IRS.5.5.5 3 3.5 4 4.5 x

Characterization of Return to Scale Corollary 5. Let a reference set to a BCC-inefficient DMU (x, y ) be E. Then, E consists of one of the following combinations of BCC-efficient DMUs where IRS, CRS and DRS stand for increasing, constant and decreasing returns-to-scale, respectively.. All DMUs have IRS. Mixture of DMUs with IRS and CRS 3. All DMUs have CRS 4. Mixture of DMUs with CRS and DRS 5. All DMUs have DRS Theorem 5.8 Let the BCC-projected activity of a BCC-inefficient DMU (x, y ) be (x P, y P ) and a reference set to (x, y ) be E. Then (x P, y P ) belongs to. IRS if E consists of DMUs in categories or of Corollary 5., and. DRS, if E consists of DMUs in categories 4 or 5

Characterization of Return to Scale Case: E consists of DMUs in category 3 (all CRS) Step : Solve envelopment form of the BCC model for (x, y )

Characterization of Return to Scale If DMU is found to be efficient, find an optimal u * of the multiplier form as a value of an optimal dual variable associated with the envelopment model constraint eλ=. If u * = constant returns-to-scale prevails at (x, y ) by Theorem 5. If u * < (>) then solve the following LP max(min) u s. t. vx + uy u vx =, v, u e Let the optimal value be û *. By Theorem 5. we have: If û * (û * ) CRS prevails at (x, y ) If û * < (û * > ) IRS (DRS) prevails at (x, y ) uy If DMU is found to be inefficient Theorem 5.8 can be used to find out returns-toscale characteristics of its projected DMU (x P, y P ) u =

Relaxation of the Convexity Condition Convexity condition: eλ = New condition: L eλ U CCR model: L =, U = BCC model: L = U =

The Increasing Returns-to-Scale (IRS) Model IRS model: L =, U = 6 5 4 Efficient frontier C D E y 3 B A.5.5.5 3 3.5 4 4.5 x

The Decreasing Returns-to-Scale (DRS) Model DRS model: L =, U = 6 5 4 Efficient frontier C D E y 3 B A.5.5.5 3 3.5 4 4.5 x

The Generalized Returns-to-Scale (GRS) Model GRS model: L =.8, U =. 7 6 Efficient frontier 5 4 C D E y 3 B A.5.5.5 3 3.5 4 4.5 5 x

Summary MPSS is achieved when (i) β*/α*= and (ii) all slacks are zero Returns-to-Scale characteristics of a DMU can be solved with a stepwise method Convexity condition can be relaxed to allow up- and downscaling

Home Assignment Characterize returns-to-scale of the BCC-projected activity of the BCC-inefficient DMU E. Include all calculation steps in your answer DMU A B C D E x 5 You can also return the solution with email to timo.salminen@evli.com x 3 y 3

References Introduction to Data Envelopment Analysis and its uses, Cooper William W, 5