Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka toteuttaa yllä mainitun ehdon kutsutaan ominaisarvoon λ liittyväksi ominaisvektoriksi. Huom. Edellinen määritelmä on sekä ominaisarvon että ominaisvektorin määritelmä. Ominaisarvoa ei voida määritellä ilman ominaisvektoria eikä ominaisvektoreista voida puhua mainitsematta ominaisarvoa. LM1, Kesä 2015 118/200
Ominaisarvo ja ominaisavaruus Jos kaikki matriisin A ominaisarvoa λ vastaavat ominaisvektorit sekä nollavektori kerätään yhteen, saadaan ominaisarvoa vastaava ominaisavaruus. Määritelmä Oletetaan, että matriisilla A M n n on ominaisarvo λ R. Ominaisarvoa λ vastaava ominaisavaruus on joukko V λ = { v R n A v = λ v }. LM1, Kesä 2015 122/200
Karakteristinen polynomi Lause 16 Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin A ominaisarvo, jos ja vain jos det(a λi) = 0. Todistus. : Oletetaan, että λ R on matriisin A ominaisarvo. Tällöin on olemassa v R n \ { 0}, jolle pätee A v = λ v. Matriisien laskusääntöjen nojalla tätä yhtälöä voidaan muokata: A v = λ v A v = λi v A v λi v = 0 (A λi) v = 0. Vektori v on siis yhtälöä (A λi) x = 0 vastaavan homogeenisen yhtälöryhmän epätriviaali (eli nollasta poikkeava) ratkaisu. Siten matriisi A λi ei ole kääntyvä. Näin ollen det(a λi) = 0. LM1, Kesä 2015 130/200
: Oletetaan, että det(a λi) = 0 jollakin λ R. Tällöin matriisi A λi ei ole kääntyvä. Tästä seuraa, että yhtälöllä (A λi) x = 0 on epätriviaali ratkaisu. Olkoon tuo ratkaisu v. Nyt siis v 0. Koska (A λi) v = 0, saadaan matriisien laskusääntöjen avulla yhtälö A v = λ v kuten edellä. Siten λ on matriisin A ominaisarvo. LM1, Kesä 2015 131/200
Karakteristinen polynomi Määritelmä Oletetaan, että A on n n -neliömatriisi. Muuttujan λ polynomi, joka saadaan kirjoittamalla auki determinantti det(a λi), on nimeltään matriisin A karakteristinen poynomi. Esimerkki 26 Matriisin A = [ 1 2 karakteristinen polynomi on λ 3 2 2 3λ 4, sillä 1 λ 2 det(a λi) = = (1 λ)(2 λ) 6 3 2 λ = 2 λ 2λ + λ 2 6 = λ 2 3λ 4. LM1, Kesä 2015 132/200
Ominaisarvojen lukumäärästä Huom. Voidaan osoittaa, että n n -matriisin karakteristisen polynomin aste on n eli se on muotoa c 0 + c 1 λ + + c n λ n, missä c 0,..., c n R ja c n 0. Algebran peruslauseen mukaan yhtälöllä c 0 + c 1 λ + + c n λ n = 0 on enintään n erilaista ratkaisua. Näin ollen n n -matriisilla on enintään n eri ominaisarvoa. LM1, Kesä 2015 140/200
Diagonalisointi Määritelmä Oletetaan, että A on n n - neliömatriisi. Matriisi A on diagonalisoituva, jos on olemassa kääntyvä matriisi P ja lävistäjämatriisi D, joille pätee P 1 AP = D. LM1, Kesä 2015 158/200
Ehto diagonalisoituvuudelle Lause 20 Oletetaan, että A on n n -neliömatriisi. Matriisi A on diagonalisoituva, jos ja vain jos matriisilla A on n lineaarisesti riippumatonta ominaisvektoria. LM1, Kesä 2015 166/200
Lauseen 20 todistus. : Oletetaan, että matriisi A on diagonalisoituva eli on olemassa kääntyvä matriisi P ja lävistäjämatriisi D, joille P 1 AP = D. Tällöin AP = PD. Merkitään matriisin P sarakkeita p 1,..., p n ja matriisin D lävistäjäalkioita λ 1,..., λ n. Ts. P = [ p 1... p n λ 1 0... 0 0 0 λ 2... 0 0 ja D =........ 0 0... λ n 1 0 0 0... 0 λ n LM1, Kesä 2015 167/200
Matriisituloa laskettaessa tulon AP jokainen sarake saadaan kertomalla matriisilla A vastaava sarake matriisista P: AP = A [ p 1 p n = [A p 1 A p n. Vastaavasti PD = P [λ 1 ē 1 λ n ē n = = [ P(λ 1 ē 1 ) P(λ n ē n ) [ λ 1 (Pē 1 ) λ n (Pē n ) = [λ 1 p 1 λ n p n. Koska AP = PD, saadaan A p i = λ i p i kaikilla i {1,..., n}.siis jokainen λ i on matriisin A ominaisarvo ja p i sitä vastaava ominaisvektori. LM1, Kesä 2015 168/200
Matriisi P on kääntyvä, joten yhtälöllä P x = 0 on täsmälleen yksi ratkaisu x = 0. Yhtälö P x = 0 voidaan kirjoittaa myös muotoon x 1 p 1 + x 2 p 2 + + x n p n = 0. Tämän yhtälön ainoa ratkaisu on siis x 1 = 0,..., x n = 0. Näin ollen matriisin A ominaisvektoreiden jono ( p 1,..., p n ) on vapaa. LM1, Kesä 2015 169/200
: Oletetaan, että matriisilla A on n lineaarisesti riippumatonta ominaisvektoria. Merkitään niitä p 1,..., p n ja vastaavia ominaisarvoja λ 1,..., λ n. Tällöin A p i = λ i p i kaikilla i {1,..., n}. Tästä seuraa, että [A p 1 A p n = [λ 1 p 1 λ n p n. Näin ollen AP = PD, missä on valittu λ 1 0... 0 0 0 λ 2... 0 0 P = [ p 1... p n ja D =........ 0 0... λ n 1 0 0 0... 0 λ n LM1, Kesä 2015 170/200
Oletuksen mukaan matriisin A ominaisvektorit p 1,..., p n ovat lineaarisesti riippumattomat, joten yhtälöstä x 1 p 1 + x 2 p 2 + + x n p n = 0 seuraa, että x 1 = 0, x 2 = 0,..., x n = 0. Koska p 1,..., p n ovat matriisin P sarakkeet, voidaan yllä oleva yhtälö kirjoittaa muodossa P x = 0. Näin ollen yhtälöllä P x = 0 on tasan yksi ratkaisu x = 0. Kurssilla Lineaarialgebra ja matriisilaskenta I osoitettiin, että tällöin matriisi P on kääntyvä. Yhtälö AP = PD saadaan siis muotoon P 1 AP = D. LM1, Kesä 2015 171/200
Diagonalisointi Oletetaan, että A on n n -neliömatriisi. Matriisin A diagonalisoiminen: 1. Etsi matriisin A ominaisarvot. 2. Määritä jokaista ominaisarvoa vastaava ominaisavaruus. 3. Tutki, onko matriisilla A n kappaletta lineaarisesti riippumattomia ominaisvektoreita. Jos lineaarisesti riippumattomia ominaisvektoreita on vähemmän kuin n kappaletta, matriisi A ei ole diagonalisoituva. LM1, Kesä 2015 172/200
4. Muodosta matriisi P laittamalla löytämäsi lineaarisesti riippumattomat ominaisvektorit sen sarakkeiksi. Tällöin P on lauseen 20 todistuksen nojalla kääntyvä (voit tarkistaa tämän esim. determinantin avulla). 5. Muodosta lävistäjämatriisi D laittamalla sen sarakkeisiin matriisin P sarakkeita vastaavat ominaisarvot. Tällöin P 1 AP = D lauseen 20 todistuksen nojalla (voit tarkistaa tämän laskemalla tulot AP ja PD). LM1, Kesä 2015 173/200
Diagonalisointi Esimerkki 35 Merkitään 1 0 1 A = 3 0 3. 1 0 1 Diagonalisoi matriisi A, jos mahdollista. LM1, Kesä 2015 183/200
1. Määritetään matriisin A ominaisarvot: Karakteristinen polynomi on 1 λ 0 1 det(a λi) = 3 λ 3 1 0 1 λ 1 λ 1 = λ 1 1 λ = = λ 2 (λ + 2). Siis det(a λi) = 0 λ 2 (λ + 2) = 0 λ = 0 λ = 2. LM1, Kesä 2015 184/200
2. Ominaisarvoja vastaavat ominaisavaruudet: Ominaisarvoa λ 1 = 0 vastaava ominaisavaruus on V 0 = { v R 3 A v = 0 v }. Ratkaistaan yhtälö A x = 0 x eli yhtälö A x = 0: 1 0 1 0 1 0 1 0 3 0 3 0... 0 0 0 0. 1 0 1 0 0 0 0 0 Havaitaan, että x 2 ja x 3 ovat vapaita muuttujia, merkitään x 2 = s, x 3 = t (s, t R). Tällöin ratkaisut ovat x = (t, s, t), missä s, t R. Siis V 0 = { t(1, 0, 1) + s(0, 1, 0) s, t R } = span ( (1, 0, 1), (0, 1, 0) ). LM1, Kesä 2015 185/200
Ominaisarvoa λ 2 = 2 vastaava ominaisavaruus on V 2 = { v R 3 A v = 2 v }. Ratkaistaan yhtälö A x = 2 x eli yhtälö (A + 2I) x = 0: 1 0 1 0 1 0 1 0 3 2 3 0... 0 1 3 0. 1 0 1 0 0 0 0 0 Havaitaan, että x 3 on vapaa muuttuja, merkitään x 3 = t R. Tällöin ratkaisut ovat x = ( t, 3t, t), missä t R. Siis V 2 = { t( 1, 3, 1) t R } = span ( ( 1, 3, 1) ). LM1, Kesä 2015 186/200
3. Onko 3 3 -matriisilla A kolme lineaarisesti riippumatonta ominaisvektoria? Edellä havaittiin, että matriisin A ominaisavaruudet ovat V 0 = span ( (1, 0, 1), (0, 1, 0) ) ja V 2 = span ( ( 1, 3, 1) ). Lisäksi vektorit (1, 0, 1) ja (0, 1, 0) ovat lineaarisesti riippumattomat, joten ne muodostavat ominaisavaruuden V 0 kannan.näin ollen matriisilla A on kolme lineaarisesti riippumatonta ominaisvektoria; esimerkiksi ominaisavaruuksen V 0 ja V 2 kantavektorit p 1 = (1, 0, 1), p 2 = (0, 1, 0) ja p 3 = ( 1, 3, 1). Siis A on diagonalisoituva lauseen 20 nojalla. LM1, Kesä 2015 187/200
4. 5. Merkitään P = [ p 1 0 1 0 0 0 1 p 2 p 3 = 0 1 3 ja D = 0 0 0. 1 0 1 0 0 2 Tällöin lauseen 20 todistuksen mukaan P on kääntyvä ja P 1 AP = D. Huom. On mahdollista tarkistaa, että todella det(p) 0 ja AP = PD. LM1, Kesä 2015 188/200