DEE-54030Kryogeniikka

Samankaltaiset tiedostot
Energian varastointi ja uudet energialähteet

Kryogeniikan termodynamiikkaa DEE Kryogeniikka Risto Mikkonen 1

Exercise 3. (session: )

DEE Kryogeniikka

DEE Polttokennot ja vetyteknologia

Exercise 1. (session: )

DEE Polttokennot ja vetyteknologia

LYTH-CONS CONSISTENCY TRANSMITTER

Capacity Utilization

FYSE301(Elektroniikka(1(A3osa,(kevät(2013(

TÄUBLER OY. Vuorimiehenkatu Helsinki Finland. Puh: Fax:

Pituuden lämpötilalaajeneminen ja -kutistuminen

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

Kaasutukseen perustuvat CHP-tekniikat. ForestEnergy2020 -tutkimus- ja innovaatio-ohjelman vuosiseminaari, Joensuu,

PHYS-A0120 Termodynamiikka syksy 2016

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

Yhtiön nimi: - Luotu: - Puhelin: - Fax: - Päiväys: -

sähköverkossa Yksikön toiminta, suprajohtavat materiaalit Suprajohtavuus sähköverkossa Risto Mikkonen

Gap-filling methods for CH 4 data

Keskittämisrenkaat. Meiltä löytyy ratkaisu jokaiseen putkikokoon, 25 mm ja siitä ylöspäin.

Helsinki Metropolitan Area Council

Sähköjärjestelmän käyttövarmuus & teknologia Käyttövarmuuspäivä

Yhtiön nimi: - Luotu: - Puhelin: - Fax: - Päiväys: -

Efficiency change over time

The CCR Model and Production Correspondence

VTT EXPERT SERVICES OY

ReFuel 70 % Emission Reduction Using Renewable High Cetane Number Paraffinic Diesel Fuel. Kalle Lehto, Aalto-yliopisto 5.5.

Katri Vala heating and cooling plant - Eco-efficient production of district heating and cooling

Reliable sensors for industrial internet

Voitelulaitteen kannessa olevalla säätöruuvilla voidaan ilmaan sekoittuvan öljyn määrä säätää helposti.

YLEISET OHJEET LÄMMINVESIVARAAJAN ASENNUKSEEN

Kryogeniikka. 1 DEE Suprajohtavuus Risto Mikkonen

PAINEILMAHYDRAULISET TUNKIT AIR HYDRAULIC JACK

Kuivajääpuhallus IB 7/40 Advanced

BRUTTO PINTA- ALA (M 2 ) KEHYKSEN MATERIAAL I. EA-HP-1500/47-18 Super heat ALUMIINI 1, , *1680*110 59

Jätevoimala on pääkaupunkiseudun merkittävin jätehuoltohanke. Jätevoimala on Vantaan Energialle tärkeä peruskuormalaitos sähkön ja lämmöntuotantoon.

Yhtiön nimi: - Luotu: - Puhelin: - Fax: - Päiväys: -

Wärtsilä Corporation. Interim Report January-September 2003 Ole Johansson President & CEO. 29 October Wärtsilä

ELEMET- MOCASTRO. Effect of grain size on A 3 temperatures in C-Mn and low alloyed steels - Gleeble tests and predictions. Period

DEE Sähkömagneettisten järjestelmien lämmönsiirto

DEE Kryogeniikka

FYSE301 Elektroniikka I osa A Loppukoe Vastaa kaikkiin viiteen kysymykseen

DEE Sähkömagneettisten järjestelmien lämmönsiirto

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY

FYSE301 Elektroniikka I osa A Loppukoe (Vastaa kaikkiin viiteen tehtävään)

Lausuntopyyntöluettelo HUOM. Komiteoiden ja seurantaryhmien kokoonpanot on esitetty SESKOn komitealuettelossa

16. Allocation Models

Kestävä ja älykäs energiajärjestelmä

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY RAMBOLL FINLAND OY, ILMANLAATU JA MELU RAMBOLL FINLAND LTD.

Tarua vai totta: sähkön vähittäismarkkina ei toimi? Satu Viljainen Professori, sähkömarkkinat

Särmäystyökalut kuvasto Press brake tools catalogue

Johdanto, suprajohtavat materiaalit. DEE Suprajohtavuus

The Viking Battle - Part Version: Finnish

Kryogeniikka. 1 DEE Suprajohtavuus Risto Mikkonen

Tilausvahvistus. Anttolan Urheilijat HENNA-RIIKKA HAIKONEN KUMMANNIEMENTIE 5 B RAHULA. Anttolan Urheilijat

300bar palaminen, uusia tutkimustuloksia. Ossi Kaario

VTT EXPERT SERVICES OY VTT EXPERT SERVICES LTD.

MITSUI SEIKI HU40A Vaakakoneistuskeskus

ABB Oy Domestic Sales Harri Liukku Aurinkosähköjärjestelmät Kytkennät

7.4 Variability management

Tekniset tiedot lyhyesti

Kuivajääpuhallus IB 15/120. Vakiovarusteet: Suutinlaatikko Suutinrasva Viuhkasuutin Viuhkasuuttimen irto-osa 8 mm Työkalu suuttimenvaihtoon 2 kpl

Lämmitysjärjestelmät

VTT EXPERT SERVICES OY VTT EXPERT SERVICES LTD.

Cold Air Containment

Kitchen Pendant 2/10/19

Suprajohtavuus sähköverkossa

Other approaches to restrict multipliers

Reliable diagnostic support Ultra-light design

Salasanan vaihto uuteen / How to change password

Innovative and responsible public procurement Urban Agenda kumppanuusryhmä. public-procurement

RAKENNUSTEN ENERGIANKÄYTÖN OPTIMOINTI. Kai Sirén Aalto yliopisto

TÄYTTÖAUTOMAATIT TÄYTTÖAUTOMAATIT COMPUTER INFLATORS

MOOTTORI / ENGINE KF6

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Thin Films Technology. Lecture 3: Physical Vapor Deposition PVD. Jari Koskinen. Aalto University. Page 1

( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145

Use of spatial data in the new production environment and in a data warehouse

3 9-VUOTIAIDEN LASTEN SUORIUTUMINEN BOSTONIN NIMENTÄTESTISTÄ

Preliminary thermodynamic design of a stirling cooler for mobile air conditioning systems. André Kaufmann & Hannu Ylinen.

SolarForum. An operation and business environment development project

järjestelmät Diskreettiaikaiset järjestelmät aikatason analyysi DEE Lineaariset järjestelmät Risto Mikkonen

Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a

Sähköntuotanto energialähteittäin Power generation by energy source

Uusien liikenteen biopolttoaineteknologioiden

TM ETRS-TM35FIN-ETRS89 WTG

Geoenergian tulevaisuuden visio. Jari Suominen

KAAPELIN SUOJAAMINEN SUOJAMATOLLA

TM ETRS-TM35FIN-ETRS89 WTG

Operatioanalyysi 2011, Harjoitus 2, viikko 38

Bounds on non-surjective cellular automata

Viral DNA as a model for coil to globule transition

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY GRANT4COM OY

TM ETRS-TM35FIN-ETRS89 WTG

Metsälamminkankaan tuulivoimapuiston osayleiskaava

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies

HITSAUKSEN TUOTTAVUUSRATKAISUT

Results on the new polydrug use questions in the Finnish TDI data

Olet vastuussa osaamisestasi

Transkriptio:

DEE-54030Kryogeniikka Nesteytys ja kryojäähdyttimet

hermodynamic Fundamentals SECOND LAW OF HERMODYNAMICS (Relation of work and heat) Kelvin Statement System Hot reservoir Q. Q. W. Q. Surrounding Clausius Statement Surrounding h 0 Of the heat supplied at a high temperature to a system not all can be converted to work; a fraction of it must be rejected as heat at a lower temperature. System c Cold reservoir No process is possible whose sole result is the removal of heat from a reservoir at one temperature and the rejection of an equal quantity of heat to a reservoir at a higher temperature. Refrig9c.cdr

Carnot n kiertoprosessi W Q 0 1 ts. W Q 0 c c 1 W Q Q W jäähdytyksen laatuluku (figure of merit, FOM) jäähdytyksen hyötykerroin (coefficient of performance, CO) Kun systeemi koostuu joukosta ideaalisia Carnot n kiertoja lämpötilojen h ja L välillä ja olettamalla ideaalikaasutilanne, jolloin Q = C p d

Carnot n kiertoprosessi (Cont.) W H C L 0 p 1 d Kaasun nesteytykseen tarvittava työ = kaasun jäähdyttäminen höyrystymislämpötilaan s + kaasun nesteytys vakiolämpötilassa Siis W R 0 0 s C p d H s s C 0 s0 sl h0 h L p d H

Ideal (Carnot) Specific ower Watts of input power per watt of refrigeration Carnots.cdr

Domestic / Cryogenic Refrigeration he Basis 1. Do work on a gas to compress it. Do this while the gas is thermally connected to a heat sink so that the gas is compressed isothermally. he gas is now compressed to the compressor outlet pressure and its original temperature. 2. Move the gas to a different location either in space or time. No change in temperature has occured. 3. Expand the gas while it is thermally isolated, causing it to cool. he gas temperature is now lower than when it started and its pressure is back to the starting pressure of the compressor inlet.

Domestic / Cryogenic Refrigeration he Basis (Cont.) 4. Move the gas to a different location is space or time. he gas remains at the new, lower temperature. 5. hermally connect the cold gas to the object to be refrigerated. It will inevitably absorb heat from the surrondings. 6. Move the warmed gas to a different location in space or time; specifically, remove it from the object being cooled. 7. Warm the gas to its original temperature and return it to the inlet of the compressor.

Isentalpinen laajeneminen Korkeapainepuolesta kompressoitu kaasu laajenee vapaasti matalampaan paineeseen venttiilin tai jonkin huokoisen materiaalin kautta. Kaasu ei tee laajetessaan työtä, prosessi on adiabaattinen ja palautumaton (entalpia ei muutu). Joule-homsonin kerroin J lim 0 H H

Nyt H = f (, ) d H d H dh rosessi isentalpinen; dh = 0 H J H H / / Nyt C H H Merkitään jolloin J C 1 Koska dh = ds + V d V S V S H Maxwell: V S

Siis V V C C p p J 1 1 Ideaalikaasulle V = R / V R V äten siis 0 1 V V C p J Ideaalikaasu ei siis lämpene eikä kylmene isentalpisessa laajenemisessa!

van der Waalsin tilayhtälö a V 2 V b R ideaalikaasulle siis a = b = 0 J- -kerroin J C 2a R 1 1 2a V b V 1 2 b V 2 b Inversiolämpötila ( J- = 0) inv 2a b R 1 b V 2

Inversion Curve Gas Max. Inversion emperature (K) Ammonia 1994 Carbon dioxide 1500 Methane 939 Oxygen 761 Argon 794 Nitrogen 621 Air 603 Neon 250 Hydrogen 205 Helium-4 40 300 K Inversion.jpg

Joule-homson (J) Cycle (hrottle Cycle) ADVANAGES No cold moving parts Steady flow (no vibration) ransport cold long distance Cold end can be miniaturized DISADVANAGES Relies on real-gas behavior Requires high pressures 200:1 (compr. wear) 25:1 with mixed gases ( > 70 K) Small orifice susceptible to clogging Low efficiency below 90 K Icec14c.cdr

Joule-homson (J) Cycle (hrottle Cycle) USES (Current and potential) Cooling IR sensors on missiles Cooling IR sensors for surveilance (10 K) Cooling semiconducting electronics Cryogenic catheter (heart arrhythmias) Liquefaction of natural gas RECEN DEVELOMENS Mixed refrigerants Sorption compressors Electrochemical compressors Icec15c.cd r

EMERAURE Joule-homson (J) Cycle (Linde-Hampson Cycle) Comparison with vapor-compression cycle W. Compres sor high b' b low a h 7 Q., 0 0 b b' a Aftercooler wo-phase boundary h 6 Heat exchanger c J orifice d c e h 5 Cycles12ca.cdr Q., c Evaporator c h 1 h h 2 2* ENROY d e h 4 Isenthalp h 3 Cycles2.cdr

Isentropinen laajeneminen Isentropinen laajeneminen on termodynaamisesti tehokkaampaa kuin isentalpinen laajeneminen, koska kaasu tekee työtä laajetessaan. rosessille voidaan määrittää Joule-homson kerrointa vastaava vakioentropian käyrä - avaruudessa. s S DEE-54030 Kryogeniikka Risto Mikkonen

ds Koska S = f (, ) d S S äten Koska S S d S C d V S d S d ja Maxwell d S 0 Joten C d Koska nyt ds = 0 C äten d 1 C S V V V d d S S

Ideaalikaasulle S C V V R V Verrataan kertoimia H ja S V C V C V V C S H 1 1 1 Näin ollen S H C R C V Isentropinen laajeneminen on siis tehokkaampaa kuin isentalpinen laajeneminen.

Claude Cycle W. 0 Compressor Q., 0 0 Aftercooler HX1 Steam engine W. e Expansion engine J valve HX2 HX3 Claude Expansion Engine Air liquefaction (1902) 2.5 Ma Q., c c Evaporator Claude2c.cdr G. Claude, Liquid Air, Oxygen, and Nitrogen (1913)

Claude Cycle Collins Helium Liquefier Collins He liq schematic.tif 4-8 L/hr Collins He liquefier-adl1.jpg

Claude Cycle Modern Helium Liquefier Sulze r Collins-claude.jpg 50 L/hr urboexpanders Heliquefier.cdr

Helium Liquefaction lant Linde HERA (DESY, Hamburg) 3 x 10,600 W @ 4.2 K heliumplant.cdr

otential Cryocooler roblems Reliability Efficiency Size and weight Vibration and noise emperature oscillation Electromagnetic Interference (EMI) Heat rejection Cost DEE-54030 Kryogeniikka Risto Mikkonen

Heat Exchangers wo ypes RECUERAIVE Separate channels with solid walls separatingthe continuously flowing hot and cold fluids. Fluids usually in counterflow. Hot Q Cold Heat transfer Siemens: 1857 REGENERAIVE A single flow channel filled with a matrix of finely divided material subject to alternating flows of hot and cold fluids. For continuous flow one must have two identical matrices with periodic switching or a disc rotating slowly (thermal wheel) and passing alternately through the hot and cold fluid ducts Stirling: 1816 Refrig7c.cdr Hot Hot Cold Cold

Recuperative Cryocoolers W. (Steady Flow) Ẇ 0 0 Q., 0 0 W. 0 Q., Q., 0 0 0 0 J valve Q., c c Ẇ c Q., c (a) Joule-homson (b) Brayton (c) Claude MCALC-III-introduction Heat exchanger c W. c J valve Q., c c csa3c.cdr

Stirling Cryocooler ADVANAGES High efficiency Moderate cost Small size and weight Over 140,000 made to date DISADVANAGES Dry or no lubrication Intrinsic vibration from displacer Long lifetime expensive (3-10 yrs) Icec21c.cd r

Stirling Cryocooler USES IR sensors High temperature superconductors Satellite experiments RECEN DEVELOMENS Flexure bearings Gas bearings Diaphragm compressor and expander wo-stage cold heads Icec22c.cd r

ime emperature ressure Ideal Stirling Cycle Compression space Regenerator a b 0 Expansion space Compression b c 0 a c Regenerative cooling c d d a c Expansion Regenerative heating 0 0 Volume b a a b c d a Displacement c Working fluid: Ideal gas (helium) DEE-54030 Kryogeniikka Risto Mikkonen c V d Entropy V 1 2 Stirling ideal 1c.cdr

Early hillips Stirling Air Liquefier First developed in 1953 DEE-54030 Kryogeniikka Risto Mikkonen Courtesy: G. Walker, Cryocoolers, lenum (1983)

Modern Stirling Air Liquefier 5 L/hr LN 2 1000 W @ 80 K 750 W @ 65 K 11 kw input 25% Carnot @ 80 K StirLIN_1_compact.jpg

Large Stirling Liquefier 4 cylinders 44 L/hr LN 2 4200 W @ 80 K 3100 W @ 65 K 44 kw input 26% Carnot @ 80 K StirlingLpc-4small.jpg

New Low-emperature Stirling Cryocooler Single stage cooler operating below 30K Based on existing AIM SL400 cooler 300 mw @ 29K / 100 W input Mass 3,5 kg AIM ingo.ruehlich@aim-ir.de

Gifford-McMahon Cryocoolers ADVANAGES High reliability (1-3 yrs) Moderate cost Good service Over 20,000/yr made DISADVANAGES Large and heavy Intrinsic vibration from displacer Low efficiency Icec28c.cd r

Gifford-McMahon Laitteisto koostuu suljetusta sylinteristä, jossa kaasun virtausta ohjataan männän avulla sekä virtauskanavan sisältämästä regeneraattorista.

Gifford-McMahon

Gifford-McMahon (GM) Cryocoolers USES Cryopumps (15 K) MRI magnets (4-12 K) Laboratory magnets R & D labs RECEN DEVELOMENS 4 K operation Rare earth regenerator materials Improved valve timing Icec29c.cd r

Gifford-McMahon (GM) Cryocooler System Used for cryopumps Used for MRI shield cooling

2-Stage Gifford-McMahon Cryocooler 2nd Stage 1st Stage Low pressure High pressure Electrical GM2stage.cdr

Range of Commercial GM Cryocoolers One-Stage Coolers

wo-stage 4 K GM Cryocoolers Sumitomo Heavy Industries (SHI) Model 1 st stage 2 nd stage @4.2 K Input power (kw) SRDK-415D 45 W@50 K 1.5 W 7.5 kw SRDK-408D2 44 W@40 K 1.0 W 7.5 kw SRDK-408D 37 W@40 K 1.0 W 7.5 kw SRDK-305D 20 W@40 K 0.4 W 4.5 kw SRDK-205D 4 W@50 K 0.5 W 3.4 kw SRDK-101D 5 W@60 K 0.1 W 1.3 kw

GM Cryocoolers for MRI Magnets Shield cooling 15 K GM Slide 05.tif

GM Cryocoolers for MRI Magnets Zero boil-off 4 K GM Slide 06.tif

Magnetic Resonance Imaging (MRI) 1.5 Superconducting magnets 1 W at 4 K Non-magnetic regenerators >7000 4 K cryocoolers since 1995 Cumulative number of MRI superconducting magnets sold umor

Desired 5 K Cryocooler Specifications 5 K Cryocoolers for Electronics Size Rack mountable (19 rack), < 24 inches (60 cm) high Weight <150 lb (70 kg) Cooling ower at 4.5 K 0.25 W Cool-Down ime < 2 hours Input ower < 1 kw (For U.S. Market) emperature Stability < 50 mk Reliability/Maintenance 5 years/1 to 3 years Ambient Magnetic Noise < 1 Gauss Cost < $10,000 in quantities Courtesy of Hypres From 1995 Workshop Hypresspec.cdr

GM Cryocoolers for LS Electronics Leybold Coolpower 4.2LAB Sumitomo SRDK-101D-A11C 400 mm 0.25 W @ 4.2 K 2.5 kw 1 phase 208/220 V Air or water cooled $20,000 0 0.10 W @ 4.2 K 1.3 kw 1 phase 120 V Air cooled

Brayton Cycle ADVANAGES Steady flow (low vibration, turbo-expander) Long lifetime (gas bearings, turbo system) ransport cold long distance Good efficiency except in small sizes DISADVANAGES Difficult to miniaturize Requires large heat exchanger Expensive to fabricate Ic ec19c.cdr

Joule-Brayton prosessi

Brayton Cycle USES (Current and potential) IR sensors for satellites RECEN DEVELOMENS Small turbo expanders and compressors 3.2 mm dia. expander rotor 5 W at 65 K with 43 W/W Heat exch.: 90 mm dia x 533 mm long Icec20c.cd r

700 mm NICMOS Brayton Cryocooler Hubble Space elescope Creare March 2002 installation 8.0% of Carnot 7.7 W @70 K 315 W input NICMOS2.cdr

Regenerator Volumetric Heat Capacity emperature (K) Heat Capacity03.tif

Regenerator Materials Sphere porosity = 0.38 Irregular particle porosity > 0.50 Er 3 Ni spheres developed by oshiba in 1989 Kuriyama, et al. reached 4.5 K in 1989 Ushered in development of 4 K GM and cryocoolers

rogress of Multilayer Regenerators Volumetric specific heat.jpg Multilayer regenerator.jpg

ulse ube Cryocoolers ADVANAGES Highest cryocooler efficiency for 40 K<<200 K No cold moving parts Higher reliability Lower vibration and EMI Lower cost DISADVANAGES Short history (OR since 1984) Gravity-induced convective instability Lower limit to size for efficient pulse tube Icec23ca.cdr

Reservoir NIS Mini ulse ube Experimental System Needle Valve (orifice) 3.4 W @ 80 K 4 cc compressor ulse ube Regenerator Mini pt 01.jpg

Mini ulse ube Cryocooler for Space Applications 0.62 W at 80 K 20 W input power Space applications 1.3 kg Lockheed Martin

Large GM-ype ulse ube Cryocooler Large capacity low frequency coaxial pulse tube cold head (left) Final integration on a 40 kva HS transformer demonstrator (right) Buffer volume Rotary valve Warm end ulse tube cold finger coaxial shape Cold tip Courtesy:. rollier Air Liquide 100W @ 80 K / 5 kw

Commercial 4 K ulse ube Cryocooler 0.5 W at 4 K 30 W at 65 K 5.5 kw input power 20,000 hr maintenance 1 Hz frequency (GM type) Cryomech pt405 Cryomechpt405.cdr

Head MRI with ulse ube Cryocooler Introduced in 2001 by GE Cryomech R 1 W @4 K ulse tube required for low vibration Conduction cooled Nbi GE GeheadMRI02.jpg

Integration: Cryocooler roblems Reliability Efficiency Size and weight Vibration emperature oscillation Electromagnetic Interference (EMI) Heat rejection Cost csa10ca.cdr

Efficiency Comparisons

Heavier Size and Weight Comparisons Density = 0.8 kg/l Mass (kg) = 0.0204 x in (W) General Rank (GM-type) (Stirling-type) (Mixed gas J) (LF) GM J Mixed gas) urbo Brayton (HF) Stirling For fixed cooling power From: H. J. M. ter Brake and G. F. M. Wiegerinck, Cryogenics, vol. 42, (2002) pp. 705-718

Conclusions Improved cryocoolers needed emperatures from 50 mk to 170 K Higher efficiencies, particularly for < 50 K Lower cost very important Cryocoolers used in many applications Enabling technology for such areas as superconductors Improves performance (such IR detectors)