Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla i = 1,...,n det A = nx ( 1) i+k A ik det A ik = k=1 nx A ik (cof A) ik. k=1 47 / 63 Liittomatriisi Esimerkki 17 2 3 2 4 3 Olkoon A = 40 1 15. Tällöin 3 5 7 (cof A) 11 =( (cof A) 12 =( (cof A) 32 =( apple 1) 1+1 1 1 det 5 7 apple 1) 1+2 0 1 det 3 7 apple 1) 3+2 2 3 det 0 1 = 12, = 3, = 2, jne. Siten cof A = 2 4 12 3 3 3 13 5 2 5. 7 2 2 48 / 63
Liittomatriisi Lause 16 Olkoon A 2 M(n, n). Tällöin A(cof A) T = det A I. Erityisesti, jos A on kääntyvä, niin A 1 = 1 det A (cof A)T. Huomautus 9 Usein liittomatriisi määritellään vielä ottamalla transpoosi määrittelemästämme cof A:sta, jolloin yo. lausekkeesta poistuu transpoosi. 49 / 63 Cramerin sääntö Lause 17 (Cramerin sääntö) Olkoon A =[a ij ] 2 M(n, n) kääntyvä. Tällöin yhtälöryhmän Ax = b yksikäsitteinen ratkaisu on 8 >< >: x 1 = x 2 =. x n = det C(1) det A det C(2) det A det C(n) det A, missä C(i) = 2 3 a 11... b 1... a 1n a 21... b 2... a 2n 6 7 4. 5 a n1... b n... a nn " i:s sarake 2 M(n, n) (i = 1,...,n) 50 / 63
Mitä siis ollaan opittu... Lause 18 Matriisille A 2 M(n, n) seuraavat väitteet ovat yhtäpitäviä: (a) Yhtälöllä Ax = b on täsmälleen yksi ratkaisu kaikilla b 2 R n. (b) Homogeeniyhtälöllä Ax = 0 on vain triviaaliratkaisu x = 0. (c) Gaussin ja Jordanin menetelmä muuntaa A:n identtiseksi matriisiksi. (d) Kuvaus F A : R n! R n, F A (x) =Ax, on bijektio. (e) A on kääntyvä (ja A 1 = 1 det A (cof A)T ). (f) det A 6= 0. 51 / 63 Mitä siis ollaan opittu... Huomautus 10 Kuvaus F A : R n! R n, F A (x) =Ax, on esimerkki ns. lineaarikuvauksesta. Näille kuvauksille on ominaista se, että bijektiivisyys, injektiivisyys ja surjektiivisuus ovat yhtäpitäviä ominaisuuksia (ts. bijektiivisyys seuraa jo pelkästään esim. injektiivisyydestä). Hox. Näin ei tietenkään yleisesti kuvauksille ole. 52 / 63
VEKTORIAVARUUS R n 53 / 63 Lineaarinen riippumattomuus/riippuvuus Määritelmä 18 Vektori x 2 R n on vektorien v 1,...,v k 2 R n lineaarikombinaatio (lineaariyhdiste), jos on olemassa sellaiset 1,..., k 2 R, että x = kx i=1 iv i = 1 v 1 + 2 v2 +...+ k v k. Merkintä i:s # Merkitään e i = (0,...,0, 1, 0,...,0) 2 R n, i = 1,...,n. Vektoreita e 1,...,e n kutsutaan R n :n luonnollisiksi kantavektoreiksi. 54 / 63
Lineaarinen riippumattomuus/riippuvuus Määritelmä 19 Vektorit v 1,...,v k 2 R n ovat lineaarisesti riippuvia, jos on olemassa sellaiset 1,..., k 2 R, että i 6= 0 jollekin i = 1,...,k ja P k i=1 iv i = 0, ts. 1v 1 + 2 v 2 + + k v k = 0 missä ainakin yksi kertoimista i 6= 0. Muutoin vektorit v 1,...,v k ovat lineaarisesti riippumattomia, toisin sanoen ehdosta P k i=1 iv i = 0seuraa,että 1 = = k = 0. 55 / 63 Lineaarinen riippumattomuus/riippuvuus Huomautus 11 Sanotaan, että joukko {v 1,...,v k } on lineaarisesti riippuva/riippumaton, jos vektorit v 1,...,v k ovat lineaarisesti riippuvia/riippumattomia. 56 / 63
Lineaarinen riippumattomuus/riippuvuus Esimerkki 20 1 Vektorit v 1 =(1, 2, 0), v 2 =(3, 0, 4) ja v 3 =(2, 1, 2) ovat lineaarisesti riippuvia, sillä... 2 Joukko {(1, 0, 0), (0, 0, 1)} R 3 on lineaarisesti riippumaton, sillä... 3 Olkoot v 1,...,v k 2 R n. Jos v i = 0 jollakin i = 1,...,k, niin vektorit v 1,...,v k ovat lineaarisesti riippuvia. 4 Olkoon V = {v} R n. Tällöin V on lineaarisesti riippumaton täsmälleen silloin, kun v 6= 0. 5 Jos vektorit v 1,...,v k 2 R n ovat lineaarisesti riippuvia, niin vektorit v 1,..., v k, v 2 R n ovat lineaarisesti riippuvia olipa v 2 R n mikä tahansa. 6 Lineaarisesti riippumattoman joukon jokainen epätyhjä osajoukko on lineaarisesti riippumaton. 57 / 63 Lineaarinen riippumattomuus/riippuvuus Lause 19 Olkoon äärellisessä joukossa V R n vähintään kaksi alkiota. Tällöin V on lineaarisesti riippuva täsmälleen silloin, kun jokin V :n alkio v on joidenkin joukon V \{v} alkioiden lineaarikombinaatio. Huomautus 12 Lineaarisesti riippuvat vektorit v 1, v 2,...,v k voidaan esittää toisten lineaarisena yhdisteenä (lineaarikombinaationa). Esimerkiksi v 1 = 1 v 2 + 2 v 3 +... k 1 v k, missä jokin/jotkin kertoimista 1,..., k 1 on nollasta eroava. 58 / 63
Lineaarinen riippumattomuus/riippuvuus Lause 20 Olkoon A 2 M(n, k). Merkitään A = A 1 A k, missä A i 2 R n on A:n i:s sarakevektori kaikilla i = 1,...,k. Tällöin vektorit A 1,...,A k 2 R n ovat lineaarisesti riippumattomia, jos ja vain jos homogeeniyhtälöllä Ax = 0onvaintriviaaliratkaisux = 0. Huomautus 13 Aikaisempien lauseiden nojalla saadaan, että matriisin A = A 1 A k sarakkeet ovat lineaarisesti riippumattomia täsmälleen kun yhtälöllä Ax = 0onvaintriviaaliratkaisux = 0, eli täsmälleen silloin kun matriisi A on kääntyvä. 59 / 63 Lineaarinen riippumattomuus/riippuvuus Seuraus 1 Olkoot v 1,...,v n 2 R n. Määritellään matriisi A 2 M(n, n) asettamalla A = v 1 v n. Tällöin vektorit v1,...,v n ovat lineaarisesti riippumattomia, jos ja vain jos det A 6= 0. 60 / 63
Lineaarinen verho Määritelmä 21 Olkoon S = {v 1,...,v k } R n epätyhjä äärellinen joukko. Joukon S lineaarinen verho (peite) hsi = hv 1,...,v k i = { kx j=1 jv j j 2 R, j = 1,...,k} on vektorien v 1,...,v k kaikkien lineaarikombinaatioiden joukko. Huomautus 14 Aina pätee, että S hsi koska jokainen vektori v 2 S on muotoa v = 1 v + X w2s,w6=v 0 w. {z } Kaikki muut vektorit nollalla kerrottuna ja summattuna. 61 / 63 Lineaarinen verho ja lineaarinen riippuvuus/riippumattomuus Huomautus 15 Vektorijoukon S = {v 1,...,v k } R n lineaarinen verho siis on kaikkien lineaarikombinaatioiden joukko, eli kaikkien niiden vektoreiden joukko mitkä saadaan vektoreista v 1,...,v k vakiolla kertomalla ja summaamalla. Kysymys Miten vaikuttaa vektoreiden v 1,...,v k lineearinen riippuvuus näiden vektoreiden muodostamaan lineaariseen verhoon hv 1,...,v k i? 62 / 63
Lineaarinen verho ja lineaarinen riippuvuus/riippumattomuus Lause 21 Olkoon S = {v 1,...,v k } R n epätyhjä joukko ja x 2 R n. Tällöin (a) x 2hSi, hs [ {x}i = hsi. (b) Jos S on lineaarisesti riippumaton, niin x /2 hsi, v 1,...,v k, x ovat lineaarisesti riippumattomia. Huomautus 16 Siis jos vektorit v 1,...,v k, x 2 R n ovat lineaarisesti riippuvia, ts. vektori x voidaan esittää vektoreiden v 1,...,v k lineaarikombinaationa, niin hv 1,...,v k, xi = hv 1,...,v k i. Saadaan siis muodostettua (lineaarikombinaatioina) sama vektorijoukko käyttämällä vektoreita v 1,...,v k vektoreiden v 1,...,v k, x sijasta. 63 / 63