Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen.



Samankaltaiset tiedostot
Matematiikan pitkä oppimäärä

Matematiikan pitkä oppimäärä

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen

5.6.2 Matematiikan pitkä oppimäärä

MATEMATIIKKA. MAA Matematiikan pitkä oppimäärä

PITKÄ MATEMATIIKKA. Pakolliset kurssit

Matematiikan lyhyen oppimäärän opetuksen tavoitteena on, että opiskelija

Kurssit MAA1 MAA14 ja MAB1- MAB9 arvostellaan numeroarvosanalla Soveltava kurssi MAA 15 arvostellaan suoritettu / hylätty.

MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa.

3.6 Matematiikka. Esimerkkien ja sovellustehtävien avulla kestävän kehityksen näkökulma tulee esille kursseissa MAA6 ja MAA8 sekä MAB3 ja MAB5.

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat

3. Lausekkeet ja yhtälöt (ma3) Keskeiset sisällöt polynomin käsite, polynomien yhteen-, vähennys- ja kertolasku

5.6.3 Matematiikan lyhyt oppimäärä

Lyhyt matematematiikka. Matematiikan yhteinen opintokokonaisuus

6.4 Matematiikka. Arviointi

6.4 Matematiikka. Arviointi

Matematiikka. Matematiikan pitkä oppimäärä. Pakolliset kurssit

Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen.

Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS

5.6. Matematiikka Pitkä matematiikka

Matematiikka vuosiluokat 7 9

ÄIDINKIELI LAHDEN RUDOLF STEINER KOULUN LUKION KURSSISISÄLLÖT

5. Matematiikkalukio. 5.1 Opetus. Matematiikkalukion tarkoitus

Opiskelijan käsitys kielestä, teksteistä ja niiden tulkinnasta syvenee, ja hänen taitonsa lukea tekstejä

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla

MAS- linjan matematiikan kurssit

MATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet

Merkitys, arvot ja asenteet 7 Ei vaikuta arvosanan

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein:

Kommentteja Markku Halmetojan ops-ehdotuksesta

1. ja 2. kurssi (I-osa) Perusasiat kuntoon

KERAMIIKKA JA LIIKUNTAPAINOTTEINEN

ÄIDINKIELI JA KIRJALLISUUS PAKOLLISET KURSSIT

PORIN SUOMALAISEN YHTEISLYSEON LUKIO

KURSSISELOSTEET Päivitetty Päivitetty Päivitetty Päivitetty

KURSSIESITTEET LV

1. ja 2. kurssi (I-osa) Perusasiat kuntoon

LAHDEN RUDOLF STEINER KOULUN LUKION KURSSISISÄLLÖT

Päättöarvioinnin kriteerit arvosanalle hyvä (8)

MATEMATIIKKA. Oppiaineen tehtävä

OPS OPPIMISTAVOITTEET JA OPETUKSEN KESKEISET SISÄLLÖT MATEMATIIKKA

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

ÄIDINKIELI JA KIRJALLISUUS, SUOMI ÄIDINKIELENÄ. KLAUKKALAN AIKUISLUKIO lukuvuosi Kurssien kuvaukset ja oppikirjat. Klikkaa oppiainetta

(KU) KUVATAIDE. Arviointi Numeroarviointi Erityistä Materiaalimaksu, pakollisten kurssien jälkeen. KU 4 Taiteen kuvista omiin kuviin

5 Differentiaalilaskentaa

HYVÄ KALAJOEN LUKIOON AIKOVA

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

Johdatus reaalifunktioihin P, 5op

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA

ClassPad 330 plus ylioppilaskirjoituksissa apuna

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

LAHDEN RUDOLF STEINER KOULUN LUKION KURSSISISÄLLÖT

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi

Tornion yhteislyseon lukion opetussuunnitelma 2016

Perusopetuksen opetussuunnitelman perusteet 2014 matematiikassa vuosiluokilla 7 9

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)

KURSSIVALINTAOPAS (OPS

Matematiikan peruskurssi 2

YHTEYSTIETOJA...2 HYVÄ KALAJOEN LUKIOON AIKOVA...3 KALAJOEN LUKION KURSSIT...4 ÄIDINKIELI JA KIRJALLISUUS...4 RUOTSI A1-KIELI...5 RUOTSI B1-KIELI...

KURSSIVALINTAOPAS (UUSI OPS 2016)

Diskreetti derivaatta

KURSSIVALINTAOPAS (UUSI OPS 2016)

KURSSIVALINTAOPAS (UUSI OPS 2016)

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

KURSSIVALINTAOPAS (UUSI OPS 2016)

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

Verkkokurssien sisältö

Tervolan lukio. Opinto-opas 2016 SÄILYTETTÄVÄ LUKIO-OPINTOJEN AJAN

MATEMATIIKKA/Vuosiluokat 7-9

ClassPad 330 plus ylioppilaskirjoituksissa apuna

Luonnos pitkän matematiikan opetussuunnitelmaksi. Pitkän matematiikan pakollinen oppimäärä

Oppilas vahvistaa opittuja taitojaan, kiinnostuu oppimaan uutta ja saa tukea myönteisen minäkuvan kasvuun matematiikan oppijana.

MAT Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

KURSSISELOSTEET

KURSSISELOSTEET

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Testaa taitosi Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

Matematiikan tukikurssi

Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Matematiikka 7-9. Matematiikan tehtävä. Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

VIROLAHDEN LUKIO KURSSIESITE

Pyramidi 9 Trigonometriset funktiot ja lukujonot HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen?

TUKIMATERIAALI: Arvosanan kahdeksan alle jäävä osaaminen

S5-S9 L1, L2, L4, L5, L6, L7 havaintojensa pohjalta kannustaa oppilasta esittämään ratkaisujaan ja päätelmiään muille

Mika Setälä Lehtori Lempäälän lukio

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ (1 piste/kohta)

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

Transkriptio:

5.6. Matematiikka Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija matemaattisen ajattelun malleihin sekä matematiikan perusideoihin ja rakenteisiin, opettaa käyttämään puhuttua ja kirjoitettua matematiikan kieltä sekä kehittää laskemisen ja ongelmien ratkaisemisen taitoja. Matematiikan opetustilanteet järjestetään siten, että ne herättävät opiskelijan tekemään havaintojensa pohjalta kysymyksiä, oletuksia ja päätelmiä sekä perustelemaan niitä. Erityisesti opiskelijaa ohjataan hahmottamaan matemaattisten käsitteiden merkityksiä ja tunnistamaan, kuinka ne liittyvät laajempiin kokonaisuuksiin. Opiskelijaa myös kannustetaan kehittämään luovia ratkaisuja matemaattisiin ongelmiin. Opetuksessa tutkitaan matematiikan ja arkielämän välisiä yhteyksiä sekä tietoisesti käytetään eteen tulevia mahdollisuuksia opiskelijan persoonallisuuden kehittämiseen, mikä tarkoittaa muun muassa hänen kiinnostuksensa ohjaamista, kokeiluihin kannustamista sekä tiedonhankintaprosessien kehittämistä. Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen. Arviointi Matematiikan opetuksessa arvioinnin tulee kehittää opiskelijan kykyä esittää ratkaisuja, tukea opiskelijaa matemaattisten käsitteiden muodostamisprosessissa ja arvioida kirjallista esitystä sekä opettaa opiskelijalle oman työnsä arvioimista. Osaamisen arvioinnissa kiinnitetään huomio laskutaitoon, menetelmien valintaan ja päätelmien täsmälliseen ja johdonmukaiseen perustelemiseen. Oppimäärän vaihtaminen Matematiikan oppimäärää vaihdettaessa pitkästä lyhyeen pitkän matematiikan hyväksytysti suoritetut kurssit siirtyvät lyhyen matematiikan kursseiksi seuraavasti: MAA15 MAB15, MAA1 MAB1, MAA2 MAB10, MAA3 MAB2, MAA4 MAB11, MAA11 MAB13, MAA5 MAB12, MAA6 MAB5, MAA7 MAB4, MAA8 MAB3 ja MAA12 MAB14. 5.6.1 Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän matematiikan opinnoissa opiskelijalla on tilaisuus omaksua matemaattisia käsitteitä ja menetelmiä sekä oppia ymmärtämään matemaattisen tiedon luonnetta. Opetus pyrkii myös antamaan opiskelijalle selkeän käsityksen matematiikan merkityksestä yhteiskunnan kehityksessä sekä sen soveltamismahdollisuuksista arkielämässä, tieteessä ja tekniikassa. Opetuksen tavoitteet Matematiikan pitkän oppimäärän opetuksen tavoitteena on, että opiskelija tottuu pitkäjänteiseen työskentelyyn ja oppii sitä kautta luottamaan omiin matemaattisiin kykyihinsä, taitoihinsa ja ajatteluunsa rohkaistuu kokeilevaan ja tutkivaan toimintaan, ratkaisujen keksimiseen sekä niiden kriittiseen arviointiin

ymmärtää ja osaa käyttää matematiikan kieltä, kuten seuraamaan matemaattisen tiedon esittämistä, lukemaan matemaattista tekstiä, keskustelemaan matematiikasta, ja oppii arvostamaan esityksen täsmällisyyttä ja perustelujen selkeyttä oppii näkemään matemaattisen tiedon loogisena rakenteena kehittää lausekkeiden käsittely-, päättely- ja ongelmanratkaisutaitojaan harjaantuu käsittelemään tietoa matematiikalle ominaisella tavalla, tottuu tekemään otaksumia, tutkimaan niiden oikeellisuutta ja laatimaan perusteluja sekä arvioimaan perustelujen pätevyyttä ja tulosten yleistettävyyttä. harjaantuu mallintamaan käytännön ongelmatilanteita ja hyödyntämään erilaisia ratkaisustrategioita osaa käyttää tarkoituksenmukaisia matemaattisia menetelmiä, teknisiä apuvälineitä ja tietolähteitä. Itsenäinen suoritus Kursseja MAA14 ja MAA15 ei voi suorittaa itsenäisesti. Kurssien suoritusjärjestys Pakolliset kurssit numerojärjestyksessä. Kurssi MAA11 1. opiskeluvuonna, MAA12 2. opiskeluvuonna ja MAA13 3. opiskeluvuonna. Pakolliset kurssit 1. Funktiot ja yhtälöt (MAA1) vahvistaa yhtälön ratkaisemisen ja prosenttilaskennan taitojaan syventää verrannollisuuden, neliöjuuren ja potenssin käsitteiden ymmärtämistään tottuu käyttämään neliöjuuren ja potenssin laskusääntöjä syventää funktiokäsitteen ymmärtämistään tutkimalla potenssi- ja eksponenttifunktioita oppii ratkaisemaan potenssiyhtälöitä. potenssifunktio potenssiyhtälön ratkaiseminen juuret ja murtopotenssi eksponenttifunktio 2. Polynomifunktiot (MAA2) harjaantuu käsittelemään polynomifunktioita oppii ratkaisemaan toisen asteen polynomiyhtälöitä ja tutkimaan ratkaisujen lukumäärää oppii ratkaisemaan korkeamman asteen polynomiyhtälöitä, jotka voidaan ratkaista ilman polynomien jakolaskua oppii ratkaisemaan yksinkertaisia polynomiepäyhtälöitä. polynomien tulo ja binomikaavat polynomifunktio

toisen ja korkeamman asteen polynomiyhtälöitä toisen asteen yhtälön juurten lukumäärän tutkiminen toisen asteen polynomin jakaminen tekijöihin polynomiepäyhtälön ratkaiseminen 3. Geometria (MAA3) harjaantuu hahmottamaan ja kuvaamaan tilaa sekä muotoa koskevaa tietoa sekä kaksi- että kolmiulotteisissa tilanteissa harjaantuu muotoilemaan, perustelemaan ja käyttämään geometrista tietoa käsitteleviä lauseita ratkaisee geometrisia ongelmia käyttäen hyväksi kuvioiden ja kappaleiden ominaisuuksia, yhdenmuotoisuutta, Pythagoraan lausetta sekä suora- ja vinokulmaisen kolmion trigonometriaa. kuvioiden ja kappaleiden yhdenmuotoisuus sini- ja kosinilause ympyrän, sen osien ja siihen liittyvien suorien geometria kuvioihin ja kappaleisiin liittyvien pituuksien, kulmien, pinta-alojen ja tilavuuksien laskeminen 4. Analyyttinen geometria (MAA4) ymmärtää kuinka analyyttinen geometria luo yhteyksiä geometristen ja algebrallisten käsitteiden välille ymmärtää pistejoukon yhtälön käsitteen ja oppii tutkimaan yhtälöiden avulla pisteitä, suoria, ympyröitä ja paraabeleja syventää itseisarvokäsitteen ymmärtämystään ja oppii ratkaisemaan sellaisia itseisarvoyhtälöitä ja vastaavia epäyhtälöitä, jotka ovat tyyppiä f(x) = a tai f(x) = g(x) vahvistaa yhtälöryhmän ratkaisemisen taitojaan. pistejoukon yhtälö suoran, ympyrän ja paraabelin yhtälöt itseisarvoyhtälön ja epäyhtälön ratkaiseminen yhtälöryhmän ratkaiseminen pisteen etäisyys suorasta 5. Vektorit (MAA5) ymmärtää vektorikäsitteen ja perehtyy vektorilaskennan perusteisiin oppii tutkimaan kuvioiden ominaisuuksia vektoreiden avulla tutkii kaksi- ja kolmiulotteisen koordinaatiston pisteitä, etäisyyksiä ja kulmia vektoreiden avulla.

vektoreiden perusominaisuudet vektoreiden yhteen- ja vähennyslasku ja vektorin kertominen luvulla koordinaatiston vektoreiden skalaaritulo suorat ja tasot avaruudessa 6. Todennäköisyys ja tilastot (MAA6) oppii havainnollistamaan diskreettejä ja jatkuvia tilastollisia jakaumia sekä määrittämään ja tulkitsemaan jakaumien tunnuslukuja perehtyy kombinatorisiin menetelmiin perehtyy todennäköisyyden käsitteeseen ja todennäköisyyksien laskusääntöihin ymmärtää diskreetin todennäköisyysjakauman käsitteen ja oppii määrittämään jakauman odotusarvon ja soveltamaan sitä perehtyy jatkuvan todennäköisyysjakauman käsitteeseen ja oppii soveltamaan normaalijakaumaa. diskreetti ja jatkuva tilastollinen jakauma jakauman tunnusluvut klassinen ja tilastollinen todennäköisyys kombinatoriikka todennäköisyyksien laskusäännöt diskreetti ja jatkuva todennäköisyysjakauma diskreetin jakauman odotusarvo normaalijakauma 7. Derivaatta (MAA7) osaa määrittää rationaalifunktion nollakohdat ja ratkaista yksinkertaisia rationaaliepäyhtälöitä omaksuu havainnollisen käsityksen funktion raja-arvosta, jatkuvuudesta ja derivaatasta määrittää yksinkertaisten funktioiden derivaatat osaa tutkia derivaatan avulla polynomifunktion kulkua ja määrittää sen ääriarvot osaa määrittää rationaalifunktion suurimman ja pienimmän arvon sovellusongelmien yhteydessä. rationaaliyhtälö ja -epäyhtälö funktion raja-arvo, jatkuvuus ja derivaatta polynomifunktion, funktioiden tulon ja osamäärän derivoiminen polynomifunktion kulun tutkiminen ja ääriarvojen määrittäminen 8. Juuri- ja logaritmifunktiot (MAA8) tuntee juuri-, eksponentti- ja logaritmifunktioiden ominaisuudet ja osaa ratkaista niihin liittyviä yhtälöitä tutkii juuri-, eksponentti- ja logaritmifunktioita derivaatan avulla

oppii yhdistetyn funktion derivoimisen tutkii aidosti monotonisten funktioiden käänteisfunktioita. juurifunktiot ja -yhtälöt eksponenttifunktiot ja -yhtälöt logaritmifunktiot ja -yhtälöt yhdistetyn funktion derivaatta käänteisfunktio juuri-, eksponentti- ja logaritmifunktioiden derivaatat 9. Trigonometriset funktiot ja lukujonot (MAA9) oppii tutkimaan trigonometrisia funktioita yksikköympyrän symmetrioiden avulla oppii ratkaisemaan sellaisia trigonometrisia yhtälöitä, jotka ovat tyyppiä sin f(x) = a tai sin f(x) = sin g(x) osaa trigonometristen funktioiden yhteydet sin2x + cos2x = 1 ja tan x = sin x / cos x tutkii trigonometrisia funktioita derivaatan avulla ymmärtää lukujonon käsitteen oppii määrittelemään lukujonoja palautuskaavojen avulla osaa ratkaista käytännön ongelmia aritmeettisen ja geometrisen jonon ja niistä muodostettujen summien avulla. suunnattu kulma ja radiaani trigonometriset funktiot symmetria- ja jaksollisuusominaisuuksineen trigonometristen yhtälöiden ratkaiseminen trigonometristen funktioiden derivaatat lukujono rekursiivinen lukujono aritmeettinen jono ja summa geometrinen jono ja summa 10. Integraalilaskenta (MAA10) ymmärtää integraalifunktion käsitteen ja oppii määrittämään alkeisfunktioiden integraalifunktioita ymmärtää määrätyn integraalin käsitteen ja sen yhteyden pinta-alaan oppii määrittämään pinta-aloja ja tilavuuksia määrätyn integraalin avulla perehtyy integraalilaskennan sovelluksiin. integraalifunktio alkeisfunktioiden integraalifunktiot määrätty integraali pinta-alan ja tilavuuden laskeminen Syventävät kurssit

11. Lukuteoria ja logiikka (MAA11) oppii formalisoimaan väitelauseita ja tutkimaan niiden totuusarvoja totuustaulujen avulla ymmärtää avoimen lauseen käsitteen ja oppii käyttämään kvanttoreita oppii todistusperiaatteita ja harjoittelee todistamista oppii lukuteorian peruskäsitteet ja perehtyy alkulukujen ominaisuuksiin osaa tutkia kokonaislukujen jaollisuutta jakoyhtälön ja kokonaislukujen kongruenssin avulla osaa määrittää kokonaislukujen suurimman yhteisen tekijän Eukleideen algoritmilla. lauseen formalisoiminen lauseen totuusarvot avoin lause kvanttorit suora, käänteinen ja ristiriitatodistus kokonaislukujen jaollisuus ja jakoyhtälö Eukleideen algoritmi alkuluvut aritmetiikan peruslause kokonaislukujen kongruenssi 12. Numeerisia ja algebrallisia menetelmiä (MAA12) oppii ymmärtämään absoluuttisen ja suhteellisen virheen käsitteet ja niiden avulla likiarvolaskujen tarkkuutta koskevat säännöt peruslaskutoimitusten tapauksessa ymmärtää iteroinnin käsitteen ja oppii ratkaisemaan yhtälöitä numeerisesti oppii tutkimaan polynomien jaollisuutta ja määrittämään polynomin tekijät oppii algoritmista ajattelua harjaantuu käyttämään nykyaikaisia matemaattisia välineitä oppii määrittämään numeerisesti muutosnopeutta ja pinta-alaa. absoluuttinen ja suhteellinen virhe Newtonin menetelmä ja iterointi polynomien jakoalgoritmi polynomien jakoyhtälö muutosnopeus ja pinta-ala 13. Differentiaali- ja integraalilaskennan jatkokurssi (MAA13) syventää differentiaali- ja integraalilaskennan teoreettisten perusteiden tuntemustaan täydentää integraalilaskennan taitojaan ja soveltaa niitä muun muassa jatkuvien todennäköisyysjakaumien tutkimiseen tutkii lukujonon raja-arvoa, sarjoja ja niiden summia.

funktion jatkuvuuden ja derivoituvuuden tutkiminen jatkuvien ja derivoituvien funktioiden yleisiä ominaisuuksia funktioiden ja lukujonojen raja-arvot äärettömyydessä epäoleelliset integraalit Koulukohtaiset syventävät kurssit 14. Pitkän matematiikan kertauskurssi (MAA14) Kurssin tavoitteena on saada kokonaiskuva lukion matematiikan kursseista ja kerrata ja syventää jo opiskeltuja asioita (etenkin kurssit 1 10) sekä saada valmiuksia matematiikan ylioppilaskokeeseen. Arviointi Kurssi arvioidaan suoritusmerkinnällä, jolloin S= suoritettu ja H= hylätty. Jotta kurssi voidaan lukea mukaan lukion oppimäärään, se on suoritettava hyväksytysti. 15. Pitkän matematiikan orientoiva kurssi (MAA15) ½ kurssia Kurssin tavoitteena on auttaa ja tukea opiskelijaa pitkän matematiikan opiskelun alkuvaiheessa. Kurssilla kerrataan joitakin yläasteella opiskeltuja asioita sekä harjoitellaan ensimmäisenä lukuvuonna opiskeltavia tehtäviä. Arviointi Kurssi arvioidaan suoritusmerkinnällä, jolloin S= suoritettu ja H= hylätty. Jotta kurssi voidaan lukea mukaan lukion oppimäärään, se on suoritettava hyväksytysti. 16. Laskimen käyttökurssi (MAA16) ½ kurssia Kurssin tavoitteena on saada valmiuksia matematiikan ylioppilaskokeeseen.