3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä



Samankaltaiset tiedostot
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

Matematiikka B2 - TUDI

Matematiikka B2 - Avoin yliopisto

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

Insinöörimatematiikka D

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

5 OMINAISARVOT JA OMINAISVEKTORIT

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

1 Matriisit ja lineaariset yhtälöryhmät

Lineaarialgebra (muut ko)

2.5. Matriisin avaruudet ja tunnusluvut

1 Ominaisarvot ja ominaisvektorit

Insinöörimatematiikka D

Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Jouni Sampo. 4. maaliskuuta 2013

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

7 Vapaus. 7.1 Vapauden määritelmä

Vektoreiden virittämä aliavaruus

5 Ominaisarvot ja ominaisvektorit

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa.

Ennakkotehtävän ratkaisu

Insinöörimatematiikka D

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Lineaarialgebra ja matriisilaskenta I

802118P Lineaarialgebra I (4 op)

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Lineaarialgebra ja matriisilaskenta I

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili

Aiheet. Kvadraattinen yhtälöryhmä. Kvadraattinen homogeeninen YR. Vapaa tai sidottu matriisi. Vapauden tutkiminen. Yhteenvetoa.

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Käänteismatriisi 1 / 14

Käänteismatriisin ominaisuuksia

Determinantti. Määritelmä

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.

Lineaarinen yhtälöryhmä

Determinantti. Määritelmä

2.8. Kannanvaihto R n :ssä

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

BM20A0700, Matematiikka KoTiB2

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

Determinantti 1 / 30

Lineaarikuvauksen R n R m matriisi

Lineaarialgebra ja matriisilaskenta I

Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

1.1. Määritelmiä ja nimityksiä

Matriisit ja vektorit Matriisin käsite Matriisialgebra. Olkoon A = , B = Laske A + B, , 1 3 3

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4

802120P Matriisilaskenta (5 op)

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

Insinöörimatematiikka D

Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms.

9 Matriisit. 9.1 Matriisien laskutoimituksia

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

1 Lineaariavaruus eli Vektoriavaruus

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Lineaariset yhtälöryhmät ja matriisit

802320A LINEAARIALGEBRA OSA I

5 Lineaariset yhtälöryhmät

Lineaarialgebra ja matriisilaskenta I

Ortogonaalinen ja ortonormaali kanta

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =

Gaussin ja Jordanin eliminointimenetelmä

Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45

Avaruuden R n aliavaruus

Lineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

Insinöörimatematiikka D

Insinöörimatematiikka D

Johdatus tekoälyn taustalla olevaan matematiikkaan

Numeeriset menetelmät

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.

Johdatus lineaarialgebraan

Ratkaisuehdotukset LH 3 / alkuvko 45

Talousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti

Insinöörimatematiikka D

Käänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

10 Matriisit ja yhtälöryhmät

Vektorien virittämä aliavaruus

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =

Ominaisarvo ja ominaisvektori

JAKSO 2 KANTA JA KOORDINAATIT

Transkriptio:

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 a m1 x 1 + + a mn x n = b m (1) Esim. Kahden yhtälön ja kolmen tuntemattoman yhtälöryhmä: a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 (2) a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 1

Esim. 5x 1 + 2x 2 x 3 = 4 x 1 4x 2 + 3x 3 = 6 (3) Lukuja a jk kutsutaan ryhmän kertoimiksi. Jos kaikki luvut b i ovat nollia, kyseessä on homogeeninen yhtälöryhmä; jos ainakin yksi b i on nollasta poikkeava, on kyseessä epähomogeeninen ryhmä. Yhtälöryhmän ratkaisu on lukujoukko x 1,, x n, joka toteuttaa kaikki m yhtälöä. Yhtälöryhmän ratkaisuvektori on vektori x, jonka komponentit muodostavat ryhmän ratkaisun. Jos yhtälöryhmä on homogeeninen, on olemassa ainakin triviaaliratkaisu x 1 = 0,, x n = 0. 2

m:n yhtälön ryhmä voidaan kirjoittaa vektoriyhtälönä Ax = b, (4) missä kerroinmatriisi A = [a jk ] on m n matriisi a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn (5) ja pystyvektorit x = x 1.. b = b 1.. (6) x n b m 3

Oletus: A 0 Matriisi à = a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2........ (7) a m1 a m2 a mn b m on yhtälöryhmän lisätty matriisi (augmented matrix). Matriisi à sisältää yhtälöryhmän kaikki annetut luvut ja määrittää siten yhtälöryhmän täydellisesti. Yhtälöryhmän ratkaisemiseksi tarvitsee näin ollen tarkastella ainoastaan lisättyä matriisia. Käytännön resepti: Gaussin eliminointi. 4

3.1 Gaussin eliminointi Yhtälöryhmän ratkaisut pysyvät samoina, jos tehdään perusoperaatiot yhtälöille: Yhtälöiden järjestys vaihdetaan Yksi tai useampi yhtälö kerrotaan nollasta poikkeavalla vakiolla Yhden tai useamman yhtälön kerrannainen lisätään muihin yhtälöihin Vastaavat perusoperaatiot lisätylle matriisille: Vaihdetaan kaksi riviä keskenään Yksi tai useampi rivi kerrotaan nollasta poikkeavalla vakiolla Lisätään vakiolla kerrottu rivi toiseen riviin Gaussin eliminointia voidaan soveltaa myös silloin, kun yhtälöiden ja tuntemattomien määrä ei ole sama. 5

3.2 Lineaarinen riippumattomuus, vektoriavaruus ja matriisin aste Vektorien a (1),,a (m) lineaarikombinaatio on muotoa c 1 a (1) + + c m a (m), (8) missä c 1,, c m ovat skalaareja (tässä tapauksessa reaalilukuja). Vektorit a (1),,a (m) ovat lineaarisesti riippumattomia, jos ja vain jos c 1 a (1) + c 2 a (2) + + c m a (m) = 0 c 1 = c 2 = = c m = 0 Jos lineaarikombinaatio on nolla siten, että jokin kertoimista on nollasta poikkeava, vektorit ovat lineaarisesti riippuvia. Tällöin ainakin jokin niistä voidaan ilmaista toisten lineaarikombinaationa. (9) 6

n komponenttisten vektorien a (1),,a (m) kaikkien lineaarikombinaatioiden joukko V on näiden vektorien virittämä vektoriavaruus. Avaruuden V vektorien a ja b summa a + b on myös avaruudessa V samoin kuin vektorin a ja skalaarin k tulo ka Vektoriavaruuden ominaisuuksia (oletetaan, että a, b ja c kuuluvat V :hen ja k ja l ovat reaalilukuja): a + b = b + a (a + b) + c = a + (b + c) a + 0 = a a + ( a) = 0 (10) 7

k(a + b) = ka + kb (k + l)a = ka + la k(la) = (kl)a 1a = a (11) Avaruuden V lineaarisesti riippumattomien vektorien maksimimäärä on V :n dimensio, merkitään dim V Sellainen lineaarisesti riippumaton joukko V :ssä, jossa on maksimimäärä V :hen kuulumattomia vektoreita, on V :n kanta. n ulotteinen vektoriavaruus R n on joukko, jonka alkioina ovat n:n reaaliluvun muodostamat jonot (x 1, x 2,, x n ) 8

Matriisin A = [a jk ] lineaarisesti riippumattomien rivien tai sarakkeiden maksimimäärä on matriisin A aste (rank), merkitään rank A. Matriisin A ja sen transpoosin A T aste on sama. Perusoperaatiot (rivien vaihto etc) eivät muuta matriisin astetta. Aste on siis = porrasmatriisin ei nollarivien lukumäärä. Asteen määritelmästä seuraa: p vektoria x (1),,x (p) ovat lineaarisesti riippumattomia, jos matriisin, jonka rivit ovat x (1),,x (p) aste on p; jos aste on pienempi kuin p, ne ovat lineaarisesti riippuvia. 9

3.3 Lineaariset yhtälöryhmät: Ratkaisujen yleisiä ominaisuuksia Lineaarisella yhtälöryhmällä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m (12) eli A m n x = b 1. on ratkaisuja jos ja vain jos r = rank A = rank à 2. on täsmälleen yksi ratkaisu, jos r = n 3. on ääretön määrä ratkaisuja, jos r < n 10

Homogeeninen lineaarinen yhtälöryhmä: a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a m2 x 2 + + a mn x n = 0 (13) Triviaaliratkaisu x = 0 aina olemassa Ei triviaaliratkaisuja olemassa jos ja vain jos r = rank A < n Jos r < n, triviaali ja ei triviaaliratkaisut yhdessä muodostavat ratkaisuavaruuden, jonka dimensio on n r (ei päde epähomogeenisille yhtälöryhmille) Ratkaisuavaruuden dimensio = A:n nulliteetti, merk. nullity A. Pätee siis ranka + nullitya = n (14) 11

4 Käänteismatriisi ja determinantti 4.1 Käänteismatriisi Tarkastellaan neliömatriiseja n n matriisin A = [a jk ] käänteismatriisi A 1 on matriisi, jolle pätee AA 1 = A 1 A = I (15) Jos A:lla on käänteismatriisi, se on ei singulaarinen, muussa tapauksessa se on singulaarinen. Käänteismatriisi on yksikäsitteinen. n n matriisilla A on käänteismatriisi jos ja vain jos rank A = n 12

Käänteismatriisi voidaan määrittää esim. Gauss Jordan eliminoinnilla. Idea: muodostetaan lisätty matriisi à = [A I] ja saatetaan se Gaussin eliminoinnilla muotoon [I K], jossa K = A 1. Myöhemmin esitetään menetelmä, jolla käänteismatriisin voi määrittää determinanttien avulla Käänteismatriisin käänteismatriisi: (A 1 ) 1 = A Tulon käänteismatriisi: (AC 1 ) = C 1 A 1 Jos A,B ja C ovat n n matriiseja, niin 1. Jos rank A = n ja AB = AC, niin B = C 2. Jos rank A = n, niin AB = 0 B = 0 3. Jos A on singulaarinen, niin ovat myös AB ja BA 13

4.2 Determinantit n n matriisin A = a 11 a 12 a 1n a 21 a 22 a 2n... a n1 a n2 a nn (16) determinantti määritellään tapauksessa n = 2 kaavalla a D = deta = 11 a 12 a 21 a 22 = a 11a 22 a 12 a 21 (17) 14

Determinanttia voidaan käyttää mm. yhtälöryhmien ratkaisuun (Cramerin sääntö, esitetään myöhemmin) ja käänteismatriisin määrittämiseen. tapauksessa n = 3 kaavalla a 11 a 12 a 13 a D = a 21 a 22 a 23 = a 11 22 a 23 a a 31 a 32 a 33 32 a 33 a a 12 a 13 21 a 32 a 33 +a a 12 a 13 31 a 22 a 23 (18) Huom. merkit: + - + Yhtälön oikealla puolella olevat alideterminantit saadaan poistamalla D:stä poistamalla ko. determinantin kerrointa vastaava rivi ja sarake, esim. a 11 :n tapauksessa ensimmäinen rivi ja sarake jne. 15

yleisessä tapauksessa rekursiokaavalla D = a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n. a 31 a 32 a 33 a nn = = n ( 1) j+k a jk M jk (j {1 n}) k=1 n ( 1) j+k a jk M jk (k {1 n}), missä alideterminantti M jk on n 1:en kertaluvun determinantti, joka saadaan poistamalla matriisista j:s rivi ja k:s sarake. a jk :n liittotekijä (cofactor) on C jk = ( 1) j+k M jk. j=1 Determinantti liittotekijöiden avulla: D = a j1 C j1 + a j2 C j2 + + a jn C jn D = a 1k C 1k + a 2k C 2k + + a nk C nk (19) 16

4.2.1 Determinanttien perusominaisuuksia Jos determinantin rivit ja sarakkeet vaihdetaan keskenään, determinantin arvo ei muutu. Jos determinantin jokin rivi tai sarake kerrotaan vakiolla k, determinantin arvo muuttuu k kertaiseksi. Jos jonkin rivin tai sarakkeen kaikki alkiot ovat nollia, on determinantin arvo = 0. Jos determinantin jokin rivi tai sarake on ilmaistu binomimuodossa, voidaan determinantti esittää kahden determinantin summana. Jos determinantin kaksi riviä tai saraketta vaihdetaan keskenään, vaihtuu determinantin merkki. Jos jokin rivi tai sarake saadaan toisesta vakiolla kertomalla, on determinantin arvo = 0. 17

Jos jokin rivi tai sarake lisätään toiseen vakiolla kerrottuna, determinantin arvo ei muutu. n n matriiseille A ja B, det(ab) = det(ba) = det(a)det(b) (20) Jos determinantin alkiot ovat funktioita, determinantin D derivaatta D on D = D (1) + D (2) + D (n), (21) missä D (j) saadaan derivoimalla j:nnen rivin alkiot. Transpoosin determinantti: deta T = deta (22) Käänteismatriisin determinantti: deta 1 = 1 deta (23) 18

4.2.2 Cramerin sääntö Jos n:n yhtälön ja n:n muuttujan yhtälöryhmällä a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 a n1 x 1 + + a nn x n = b n (24) on nollasta poikkeava determinantti D, ryhmällä on täsmälleen yksi ratkaisu, joka saadaan kaavasta x 1 = D 1 D, x 2 = D 2 D,, x n = D n D, (25) missä D k on determinantti, joka saadaan D:stä korvaamalla k:s sarake alkioilla b 1,, b n. 19

Jos em. yhtälöryhmä on homogeeninen, sillä on ei triviaaliratkaisuja vain, jos D = 0. Cramerin säännön seurauksena saadaan kääteismatriisin laskemiselle determinanttien avulla sääntö A 11 A 21 A n1 A 1 = 1 deta [A jk] T = 1 A 12 A 22 A n2 (26) deta... A 1n A 2n A nn, missä A jk on a jk :ta vastaava liittotekijä. Huom. Tämä kaava on kätevä käsin laskettaessa, mutta sitä ei kannata käyttää numeerisiin (tietokone ) laskuihin. 20