Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Samankaltaiset tiedostot
Vektoreiden virittämä aliavaruus

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Vektorien virittämä aliavaruus

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Ominaisvektoreiden lineaarinen riippumattomuus

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Johdatus lineaarialgebraan

Kertausta: avaruuden R n vektoreiden pistetulo

7 Vapaus. 7.1 Vapauden määritelmä

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

Ortogonaalinen ja ortonormaali kanta

Lineaarialgebra ja matriisilaskenta I

Esimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = r 1 + r r 3 4r 1. LM1, Kesä /68

Ortogonaalisen kannan etsiminen

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta I

Kertausta: avaruuden R n vektoreiden pistetulo

Lineaarialgebra ja matriisilaskenta I

Johdatus lineaarialgebraan

Lineaarikuvauksen R n R m matriisi

Johdatus lineaarialgebraan

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

5 Lineaariset yhtälöryhmät

Johdatus lineaarialgebraan

Lineaariset yhtälöryhmät ja matriisit

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

802320A LINEAARIALGEBRA OSA II

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

JAKSO 2 KANTA JA KOORDINAATIT

1 Sisätulo- ja normiavaruudet

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

Ominaisarvo ja ominaisvektori

MS-C1340 Lineaarialgebra ja

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

Avaruuden R n aliavaruus

Insinöörimatematiikka D

Lineaarinen yhtälöryhmä

10 Matriisit ja yhtälöryhmät

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

Vastaavasti, jos vektori kerrotaan positiivisella reaaliluvulla λ, niin

1 Lineaariavaruus eli Vektoriavaruus

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

802320A LINEAARIALGEBRA OSA I

Ominaisarvo ja ominaisvektori

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Kuvaus. Määritelmä. LM2, Kesä /160

Johdatus lineaarialgebraan

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Johdatus lineaarialgebraan

Gaussin ja Jordanin eliminointimenetelmä

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Lineaarialgebra ja matriisilaskenta I

Vektorit, suorat ja tasot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Determinantti 1 / 30

9 Matriisit. 9.1 Matriisien laskutoimituksia

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

Oppimistavoitematriisi

Oppimistavoitematriisi

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

VEKTORIT paikkavektori OA

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo

2.5. Matriisin avaruudet ja tunnusluvut

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

Lineaarialgebra (muut ko)

Kanta ja dimensio 1 / 23

1 Ominaisarvot ja ominaisvektorit

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Determinantti. Määritelmä

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117

802118P Lineaarialgebra I (4 op)

Lineaarialgebra ja matriisilaskenta I

Pistetulo eli skalaaritulo

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )

3 Skalaari ja vektori

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.

Ennakkotehtävän ratkaisu

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

Talousmatematiikan perusteet: Luento 9

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.

Insinöörimatematiikka D

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

Transkriptio:

Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218

Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }. Avaruuden R 2 alkioita kutsutaan vektoreiksi. Jos c R ja d R, niin (c, d) on avaruuden R 2 vektori ja sanotaan, että c ja d ovat vektorin (c, d) komponentit. Huom. Jos ū R 2, niin ū = (u 1, u 2 ) joillakin u 1 R ja u 2 R. LM1, Kesä 2012 2/218

Havainnollistuksia: Avaruuden R 2 vektoria v = (v 1, v 2 ) voi ajatella tason pisteenä: (1,3) ( 3, 2) (3,1) ( 1, 2) v = (v 1, v 2 ) LM1, Kesä 2012 3/218

Avaruuden R 2 vektoria v = (v 1, v 2 ) voi ajatella sitä vastaavan tason pisteen paikkavektorina: ( 3, 2) (1,3) (3,1) v = (v 1, v 2 ) ( 1, 2) LM1, Kesä 2012 4/218

Avaruuden R 2 vektoria v = (v 1, v 2 ) voi ajatella lukiosta tuttuna tason vektorina: ( 3, 2) v = (v 1, v 2 ) (1, 3) ( 1, 2) (3,1) LM1, Kesä 2012 5/218

Yhteenlasku ja skalaarikertolasku Määritelmä Oletetaan, että v = (v 1, v 2 ) R 2, w = (w 1, w 2 ) R 2 ja c R. Vektoreiden v ja w summa on vektori v + w = (v 1 + w 1, v 2 + w 2 ). Skalaarikertolasku tarkoittaa vektorin kertomista reaaliluvulla. On sovittu, että c v = (cv 1, cv 2 ). LM1, Kesä 2012 6/218

Yhteenlasku ja skalaarikertolasku Esimerkki 1 Merkitään v = ( 5, 3) ja w = ( 2, 7). Lasketaan (a) v + w = ( 5, 3) + ( 2, 7) = ( 5 2, 3 7) = ( 7, 4) (b) 4 v = 4( 5, 3) = ( 20, 12) (c) 3 w = 3( 2, 7) = (6, 21) (d) 2 v + 6 w = ( 10, 6) + ( 12, 42) = ( 22, 36). LM1, Kesä 2012 7/218

Havainnollistuksia: Vektoreiden yhteenlasku: w v + w w v v LM1, Kesä 2012 8/218

Vektorin vastavektori ja vektoreiden erotus Määritelmä Vektorin v vastavektori on skalaarimonikerta ( 1) v. Sitä merkitään v. Vektoreiden v ja w erotus tarkoittaa summaa Sitä merkitään v w. v + ( w) = v + ( 1) w. LM1, Kesä 2012 9/218

Havainnollistuksia: Vektorin kertominen skalaarilla: ū 3ū ū 2ū LM1, Kesä 2012 10/218

Havainnollistuksia: Vektoreiden vähennyslasku: w v v w v w LM1, Kesä 2012 11/218

Havainnollistuksia: Yhteenlasku vs. vähennyslasku: w v + w w w v w v w v v v LM1, Kesä 2012 12/218

Avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja. Toisin sanottuna R n = { (v 1, v 2,..., v n ) v 1, v 2,..., v n R }. Avaruuden R n alkioita kutsutaan vektoreiksi. Jos u 1, u 2,..., u n R, niin ū = (u 1, u 2,..., u n ) on avaruuden R n vektori ja sanotaan, että u 1, u 2,..., u n ovat vektorin ū komponentit. LM1, Kesä 2012 13/218

Yhteenlasku ja skalaarikertolasku Määritelmä Oletetaan, että v = (v 1,..., v n ) R n, w = (w 1,..., w n ) R n ja c R. Vektoreiden v ja w summa on vektori v + w = (v 1 + w 1, v 2 + w 2,..., v n + w n ). Skalaarikertolasku tarkoittaa vektorin kertomista reaaliluvulla. On sovittu, että c v = (cv 1, cv 2,..., cv n ). LM1, Kesä 2012 14/218

Vektorin vastavektori ja vektoreiden erotus Määritelmä Vektorin v vastavektori on skalaarimonikerta ( 1) v. Sitä merkitään v. Vektoreiden v ja w erotus tarkoittaa summaa Sitä merkitään v w. v + ( w) = v + ( 1) w. LM1, Kesä 2012 15/218

Esimerkki 2 Merkitään v = ( 5, 3, 0, 1, 1) ja w = ( 2, 4, 2, 3, 5). Tällöin v ja w ovat avaruuden R 5 vektoreita. Lasketaan (a) 2 v 3 w = ( 10, 6, 0, 2, 2) ( 6, 12, 6, 9, 15) = ( 4, 18, 6, 7, 17) (b) 5 v w = (25, 15, 0, 5, 5) ( 2, 4, 2, 3, 5) = (27, 11, 2, 8, 0). LM1, Kesä 2012 16/218

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella todeksi nojautumalla määritelmiin ja aikaisemmin perusteltuihin väitteisiin. LM1, Kesä 2012 17/218

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Alla esiintyvä vektori 0 = (0, 0,..., 0) on nimeltään nollavektori. Lause 1 Oletetaan, että v, w, ū R n ja a, c R. Tällöin (a) v + w = w + v (vaihdannaisuus) (b) (ū + v) + w = ū + ( v + w) (liitännäisyys) (c) v + 0 = v (d) v + ( v) = 0 (e) c( v + w) = c v + c w (osittelulaki) (f) (a + c) v = a v + c v (osittelulaki) (g) a(c v) = (ac) v (h) 1 v = v LM1, Kesä 2012 18/218

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Perustellaan malliksi kohta (a). Oletus: v, w R n. Väite: v + w = w + v. Perustelu: Oletuksesta v, w R n seuraa, että v = (v 1,..., v n ) ja w = (w 1,..., w n ) joillakin v 1,..., v n, w 1,..., w n R. Voidaan päätellä v + w (1) = (v 1 + w 1, v 2 + w 2,..., v n + w n ) (2) = (w 1 + v 1, w 2 + v 2,..., w n + v n ) (1) = w + v Kohdissa (1) käytetään yhteenlaskun määritelmää ja kohdassa (2) reaalilukujen yhteenlaskun vaihdannaisuutta. Huomaa, että komponentit ovat tavallisia reaalilukuja! LM1, Kesä 2012 19/218

Yhdensuuntaisuus Määritelmä Oletetaan, että v R n ja w R n. Vektorit v ja w ovat yhdensuuntaiset, jos v = t w jollakin t R {0}. Tällöin merkitään v w. w w 2 w w Jos vektorit v ja w eivät ole yhdensuuntaiset, merkitään v w. LM1, Kesä 2012 20/218

Lineaarikombinaatiot Määritelmä Oletetaan, että w R n ja v 1, v 2,..., v k R n. Vektori w on vektoreiden v 1, v 2,..., v k lineaarikombinaatio, jos on olemassa sellaiset reaaliluvut a 1, a 2,..., a k, että w = a 1 v 1 + a 2 v 2 + + a k v k. LM1, Kesä 2012 21/218

Lineaarikombinaatiot Esimerkki 3 Merkitään v 1 = (1, 1), v 2 = ( 1, 2) ja w = (5, 1). Vektori w on vektoreiden v 1 ja v 2 lineaarikombinaatio, sillä 3 v 1 2 v 2 = 3(1, 1) 2( 1, 2) = (3, 3) ( 2, 4) = (5, 1) = w. v 1 v 2 3 v 1 2 v 2 w w LM1, Kesä 2012 22/218

Pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! Esimerkki 4 Merkitään ū = (1, 2, 3) ja w = ( 3, 5, 2). Lasketaan ū w: ū w = 1 ( 3) + 2 5 + ( 3) 2 = 3 + 10 6 = 1. LM1, Kesä 2012 23/218

Pistetulon ominaisuuksia Lause 2 Oletetaan, että v, w, ū R n ja c R. Tällöin (a) v w = w v (vaihdannaisuus) (b) v ( w + ū) = v w + v ū (osittelulaki) (c) (c v) w = c( v w) Huom. Muista, että lause tarkoittaa väitettä, joka voidaan perustella todeksi nojautumalla määritelmiin ja aikaisemmin perusteltuihin väitteisiin. LM1, Kesä 2012 24/218

Pistetulon ominaisuuksia; kohdan (b) perustelu Oletus: v, w, ū R n. Väite: v ( w + ū) = v w + v ū. Perustelu: Oletuksesta v, w, ū R n seuraa, että v = (v 1,..., v n ), w = (w 1,..., w n ) ja ū = (u 1,..., u n ), missä kaikki komponentit ovat reaalilukuja. Voidaan päätellä v ( w + ū) (1) = (v 1,..., v n ) (w 1 + u 1, w 2 + u 2,..., w n + u n ) (2) = (v 1 (w 1 + u 1 ), v 2 (w 2 + u 2 ),..., v n (w n + u n )) (3) = (v 1 w 1 + v 1 u 1, v 2 w 2 + v 2 u 2,..., v n w n + v n u n ) (1) = (v 1 w 1, v 2 w 2,..., v n w n ) + (v 1 u 1, v 2 u 2,..., v n u n ) (2) = v w + v ū LM1, Kesä 2012 25/218

Pistetulon ominaisuuksia; kohdan (b) perustelu Selityksiä: (1) vektorien yhteenlaskun määritelmä; (2) pistetulon määritelmä; (3) reaalilukujen laskusäännöt (osittelulaki). LM1, Kesä 2012 26/218

Vektorin pistetulo itsensä kanssa Lause 3 Oletetaan, että v R n. Tällöin (a) v v 0. (b) v v = 0, jos ja vain jos v = 0. Perustelun ideat: (a) v v = v1 2 + v 2 2 + + v n 2 0 + 0 + + 0 = 0. (b) Jos v v = 0, niin v1 2 + v 2 2 + + v n 2 = 0. Tästä seuraa, että v 1 = 0 ja v 2 = 0 ja... ja v n = 0 (huomaa, että jokainen yhteenlaskettava vi 2 0). Siten v = (0, 0,..., 0) = 0. Jos v = 0, niin v v = 0 2 + 0 2 + + 0 2 = 0. LM1, Kesä 2012 27/218

Määritelmä Vektorin v R n normi on Huom. Vektorin normi (eli pituus) v = v v. Jos v = (v 1, v 2,..., v n ), niin v = v 2 1 + v 2 2 + + v 2 n. Normin määritelmästä seuraa, että v 2 = v v. v v v LM1, Kesä 2012 28/218

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w = 5 3 2 v = 13 4 3 LM1, Kesä 2012 29/218

Normin ominaisuuksia I Lause 4 Oletetaan, että v R n. Tällöin v = 0, jos ja vain jos v = 0. Perustelun idea lausetta 3 hyödyntäen: v = 0 v 2 = 0 v v = 0 v = 0. LM1, Kesä 2012 30/218

Normin ominaisuuksia I Lause 5 Oletetaan, että v R n ja c R. Tällöin c v = c v. Perustelun idea lausetta 2 hyödyntäen: c v 2 = (c v) (c v) = c 2 ( v v) = c 2 v 2, joten c v = ±c v. Normit epänegatiivisia, joten c v = c v. LM1, Kesä 2012 31/218

Yksikkövektorit Määritelmä Vektori ū R n on yksikkövektori, jos sen normi (eli pituus) on 1; ts. ū = 1. Huom. Tuttuja yksikkövektoreita avaruuden R 2 vektorit ī = (1, 0) ja j = (0, 1); avaruuden R 3 vektorit ī = (1, 0, 0), j = (0, 1, 0) ja k = (0, 0, 1). j ī LM1, Kesä 2012 32/218

Yksikkövektorit Lause 6 Vektorin v R n { 0} suuntainen yksikkövektori on 1 v v. v v = 5 1 5 v 1 5 v = 1 Voit perustella tämän hyödyntäen lausetta 5. LM1, Kesä 2012 33/218

Vektoreiden välinen etäisyys Määritelmä Oletetaan, että v, w R n. Vektorien v ja w välinen etäisyys on d( v, w) = v w. Kaksi näkökulmaa: v v w v 2 w 2 v w v w v 1 w 1 w LM1, Kesä 2012 34/218

Lause 7 (Schwarzin epäyhtälö) Normin ominaisuuksia II Oletetaan, että v R n ja w R n. Tällöin v w v w. Lause 8 (Kolmioepäyhtälö) Oletetaan, että v R n ja w R n. Tällöin v + w v + w. v + w w v LM1, Kesä 2012 35/218

Vektorien välinen kulma Schwarzin epäyhtälöstä saadaan Lemma 9 Oletetaan, että v R n \ { 0} ja w R n \ { 0}. Tällöin 1 v w v w 1. LM1, Kesä 2012 36/218

Määritelmä Vektorien välinen kulma Vektorien v R n \ { 0} ja w R n \ { 0} välinen kulma on se kulma α, jolle pätee 0 α 180 ja cos α = v w v w. Vektorit v R n ja w R n ovat ortogonaaliset eli kohtisuorassa toisiaan vastaan, jos v w = 0. Tällöin merkitään v w. w v LM1, Kesä 2012 37/218

Havainnollistuksia: Kosinilauseen mukaan alla olevassa kolmiossa w v 2 = v 2 + w 2 2 v w cos α. w w v v Toisaalta normin määritelmän nojalla w v 2 = ( w v) ( w v) =... = v 2 + w 2 2( v w). Siten cos α = v w v w. LM1, Kesä 2012 38/218

Lause 10 (Pythagoraan lause) Oletetaan, että v R n ja w R n. Vektorit v ja w ovat ortogonaaliset (eli kohtisuorassa toisiaan vastaan), jos ja vain jos v + w 2 = v 2 + w 2. v + w w v LM1, Kesä 2012 39/218

Määritelmä Projektio Oletetaan, että n = 2 tai n = 3. Oletetaan, että v, w R n ja w 0. Vektorin v projektio vektorin w määräämälle suoralle on proj w ( v) = v w w w w. v proj w ( v) w LM1, Kesä 2012 40/218

Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1, Kesä 2012 41/218

Olkoon S avaruuden R n suora (n = 2). Tämä tarkoittaa, että missä p, v R n ja v 0. S = { p + t v t R}, Oletetaan, että a, b R. Jos (a, b) S, niin sanotaan, että piste (a, b) on suoralla S tai että suora S kulkee pisteen (a, b) kautta. t v (a, b) p Vastaavasti avaruudessa R 3. LM1, Kesä 2012 42/218

Huom. Sama suora voidaan kirjoittaa joukkona { p + t v t R} usealla eri tavalla: vektoriksi p voidaan valita suoran minkä tahansa pisteen paikkavektori; vektoriksi v voidaan valita mikä tahansa suoran suuntainen vektori. v v p p LM1, Kesä 2012 43/218

Esimerkki 5 (a) Määritä pisteiden A = (2, 3, 5) ja B = (4, 1, 7) kautta kulkeva suora S. (b) Määritä pisteen C = (4, 1, 9) etäisyys suorasta S. C B A LM1, Kesä 2012 44/218

(a) Suoran jonkin pisteen paikkavektori; esim. OA = (2, 3, 5). Jokin suoran suuntainen vektori; esim. Näin AB = OB OA = (2, 4, 2). S = { OA + t AB t R } = { (2, 3, 5) + t(2, 4, 2) t R }. LM1, Kesä 2012 45/218

Pisteen etäisyys suorasta Oletetaan, että n = 2 tai n = 3. Pisteen Q etäisyys suorasta S = { p + t v t R}, missä p, v R n ja v 0, saadaan projektion avulla: Q ā proj v (ā) v ā P proj v (ā) LM1, Kesä 2012 46/218

(b) Vektori jostakin suoran pisteestä tutkittavaan pisteeseen; esim. AC = OC OA = (2, 2, 4). Jokin suoran suuntainen vektori; esim. AB = (2, 4, 2). Vektorin AC projektio suoralle S: Erotus proj AB ( AC) = AC AB AB AB AB = 20 AB = 5 AB. 24 6 AC proj AB ( AC) = AC 5 AB = 6 6 6 (2, 2, 4) 5 (2, 4, 2) 6 Erotuksen normi = 1 6 (12 10, 12 20, 24 10) = 1 (1, 4, 7). 3 AC proj AB ( AC) = 1 3 (1, 4, 7) = 1 1 1 + 16 + 49 = 66. 3 3 LM1, Kesä 2012 47/218

Taso Määritelmä Avaruuden R 3 taso on joukko { p + s w + t v s, t R}, missä p, w, v R 3, w 0 v ja w v. Tässä p on tason jonkin pisteen paikkavektori ja v sekä w ovat kaksi tason suuntaista vektoria. w v p O LM1, Kesä 2012 48/218

Olkoon T avaruuden R 3 taso. Tämä tarkoittaa, että T = { p + s w + t v s, t R}, missä p, w, v R 3, w 0 v ja w v. Oletetaan, että a, b, c R. Jos (a, b, c) T, niin sanotaan, että piste (a, b, c) on tasossa T tai että taso T kulkee pisteen (a, b, c) kautta. t v s w (a, b, c) p O LM1, Kesä 2012 49/218

Huom. Sama taso voidaan kirjoittaa joukkona { p + s w + t v s, t R} usealla eri tavalla: vektoriksi p voidaan valita tason minkä tahansa pisteen paikkavektori; vektoreiksi w ja v voidaan valita mitkä tahansa tason suuntaisen vektorit, kunhan w v. w v w v p O p O LM1, Kesä 2012 50/218

Esimerkki 6 Määritä pisteiden A = (0, 1, 0), B = ( 1, 3, 2) ja C = ( 2, 0, 1) kautta kulkeva taso T. C A B LM1, Kesä 2012 51/218

Tason jonkin pisteen paikkavektori; esim. OA = (0, 1, 0). Jotkin tason suuntaiset vektorit; esim. AB = OB OA = ( 1, 2, 2) ja AC = OC OA = ( 2, 1, 1). Huomaa, että nämä eivät ole yhdensuuntaiset; ts. AB t AC kaikilla t R {0}. Näin T = { OA + s AB + t AC s, t R } = { (0, 1, 0) + s( 1, 2, 2) + t( 2, 1, 1) s, t R }. LM1, Kesä 2012 52/218

Määritelmä Ristitulo Oletetaan, että v, w R 3. Vektorien v = (v 1, v 2, v 3 ) ja w = (w 1, w 2, w 3 ) ristitulo on vektori v w = (v 2 w 3 v 3 w 2, v 3 w 1 v 1 w 3, v 1 w 2 v 2 w 1 ). Muistisääntö ristitulon laskemiseen: yhtenäisellä viivalla yhdistettyjen komponenttien tulosta vähennetään katkoviivalla yhdistettyjen komponenttien tulo. v 1 v 2 v 3 v 1 v 2 w 1 w 2 w 3 w 1 w 2 LM1, Kesä 2012 53/218

Ristitulo Esimerkki 7 Merkitään ā = (2, 1, 2) ja b = (3, 1, 3). Lasketaan ā b. ā b = ( 3 ( 2), 6 ( 6), 2 3) = ( 1, 12, 5). 2 1 2 2 1 3 1 3 3 1 LM1, Kesä 2012 54/218

Ristitulon ominaisuuksia Lause 11 Oletetaan, että ū, v, w R 3 ja c R. Tällöin (a) v w = ( w v) (antikommutointi) (b) ū ( v + w) = ū v + ū w (osittelulaki) (c) ( v + w) ū = v ū + w ū (osittelulaki) (d) c( v w) = (c v) w = v (c w) (e) v v = 0 (f) 0 v = 0 ja v 0 = 0 (g) ū ( v w) = (ū v) w Paina mieleesi erikoiset ominaisuudet (a), (e) ja (g)! v w w v LM1, Kesä 2012 55/218

Ristitulon ominaisuuksia Lause 12 Oletetaan, että ū, v, w R 3. Tällöin (h) (ū v) w = (ū w) v ( v w)ū (i) ū ( v w) = (ū w) v (ū v) w (j) v w 2 = v 2 w 2 ( v w) 2 (Lagrangen identiteetti) Lagrangen identiteetti voidaan perustella kohtien (g) ja (h) avulla. Muut kohdat lauseissa 11 ja 12 voidaan perustella ristitulon määritelmään nojautuen. LM1, Kesä 2012 56/218

Ristitulon ominaisuuksia Lause 13 Oletetaan, että v, w R 3. Tällöin (a) ( v w) v ja ( v w) w; v w (b) jos v 0 ja w 0, niin v w = v w sin α, missä α on vektorien v ja w välinen kulma. w v w sin Ristitulovektorin v w pituus on yhtä suuri kuin vektorien v ja w määräämän suunnikkaan ala! LM1, Kesä 2012 57/218

Suuntaissärmiön tilavuus Suuntaissärmiön tilavuus on pohjan pinta-alan v w ja korkeuden h tulo. cos β = cos(180 β), joten h = ū cos β. Siis tilavuus on v w ū cos β = v w ū cos β = ( v w) ū h ū v v w w Tilavuus on ns. skalaarikolmitulon itseisarvo! LM1, Kesä 2012 58/218

Pisteen etäisyys tasosta Pisteen Q etäisyys tasosta T saadaan ristitulon ja projektion avulla: v w P proj v w (ā) w ā v Q LM1, Kesä 2012 59/218

Tason normaalimuotoinen yhtälö Piste Q = (x, y, z) on tasossa T, jos ja vain jos n ( q p) = 0, missä n on jokin tasoa T vastaan kohtisuora vektori (ns. tason T normaali). n q p Q P p q Huom. jos T = { p + s w + t v s, t R}, voidaan valita n = v w. O LM1, Kesä 2012 60/218

Tason normaalimuotoinen yhtälö Esimerkki 8 Merkitään A = (0, 1, 0), B = ( 1, 3, 2) ja C = ( 2, 0, 1). Taso T kulkee pisteiden A, B ja C kautta. Määritä (a) tason T normaalimuotoinen yhtälö; (b) pisteen D = (1, 2, 3) etäisyys tasosta T. D C A B LM1, Kesä 2012 61/218

(a) Jokin tason normaali; esim. tason suuntaisten vektoreiden AB = ( 1, 2, 2) ja AC = ( 2, 1, 1) ristitulo AB AC = (4, 3, 5). Vektori jostakin tason pisteestä pisteeseen Q = (x, y, z); esim. AQ = OQ OA = (x, y 1, z). Tason normaalimuotoinen yhtälö on näin ( AB AC) AQ = 0 eli (4, 3, 5) (x, y 1, z) = 0 4x 3(y 1) + 5z = 0 4x 3y + 5z + 3 = 0. LM1, Kesä 2012 62/218

(b) Jokin tason normaali; esim. tason suuntaisten vektoreiden AB = ( 1, 2, 2) ja AC = ( 2, 1, 1) ristitulo AB AC = (4, 3, 5). Vektori jostakin tason pisteestä pisteeseen D = (1, 2, 3); esim. AD = OD OA = (1, 1, 3). Vektorin AD projektio normaalin n = AB AC määräämälle suoralle proj n ( AD n 16 8 AD) = n = (4, 3, 5) = (4, 3, 5). n n 50 25 Projektion normi eli pituus proj n ( AD) = 8 25 (4, 3, 5) = 8 8 16 + 9 + 25 = 50 25 25 = 8 5 2. LM1, Kesä 2012 63/218

Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden joukkoa; ts. span( v 1, v 2,... v k ) = { a 1 v 1 + a 2 v 2 + + a k v k a 1,..., a k R }. LM1, Kesä 2012 64/218

Yhden vektorin virittämä aliavaruus Oletetaan, että n = 2 tai n = 3 ja v R n. Jos v = 0, niin vektorin v virittämä aliavaruus on span( 0) = { t 0 t R } = { 0} eli joukko, johon kuuluu ainoastaan nollavektori (origo). span( 0) LM1, Kesä 2012 65/218

Yhden vektorin virittämä aliavaruus Jos v 0, niin vektorin v virittämä aliavaruus on span( v) = { t v t R } = { 0 + t v t R } eli origon kautta kulkeva suora. span( v) LM1, Kesä 2012 66/218

Kahden vektorin virittämä aliavaruus Oletetaan, että v, w R 3. Jos w 0 v ja w v, niin vektoreiden v ja w virittämä aliavaruus on span( v, w) = { s v + t w s, t R } = { 0 + s v + t w s, t R } eli origon kautta kulkeva taso. Huom. jos oletukset w 0 v ja w v eivät ole voimassa, niin span( v, w) on suora tai origon yksiö. LM1, Kesä 2012 67/218

Vektoreiden virittämän aliavaruuden ominaisuuksia Lause 14 Oletetaan, että v 1, v 2,..., v k R n. Tällöin (a) jos ū, w span( v 1,..., v k ), niin ū + w span( v 1,..., v k ). (b) jos w span( v 1,..., v k ) ja a R, niin a w span( v 1,..., v k ). (c) 0 span( v 1,..., v k ). LM1, Kesä 2012 68/218

Lauseen 14 perustelu: (a) Oletetaan, että ū, w span( v 1,..., v k ). Tällöin ū = a 1 v 1 + + a k v k ja w = c 1 v 1 + + c k v k joillakin reaaliluvuilla a 1,..., a k ja c 1,..., c k. Näin ū + w = (a 1 v 1 + + a k v k ) + (c 1 v 1 + + c k v k ) = (a 1 + c 1 ) v 1 + + (a k + c k ) v k, missä kertoimet a 1 + c 1,..., a k + c k R. Siis ū + w on vektoreiden v 1,..., v k lineaarikombinaatio; ts. ū + w span( v 1,..., v k ). (c) Nollavektori voidaan kirjoittaa muodossa Siis 0 span( v 1,..., v k ). 0 = 0 v 1 + 0 v 2 + + 0 v k. LM1, Kesä 2012 69/218

Vektoreiden virittämä aliavaruus Esimerkki 9 Selvitä, kuuluuko vektori w = (6, 3, 2, 1) vektoreiden v 1 = (0, 1, 2, 1), v 2 = (2, 0, 1, 1) ja v 3 = (4, 2, 2, 0) virittämään aliavaruuteen span( v 1, v 2, v 3 ). Toisin sanottuna selvitä, onko vektori w vektoreiden v 1, v 2 ja v 3 lineaarikombinaatio. Ts. selvitä, onko yhtälöllä x 1 v 1 + x 2 v 2 + x 3 v 3 = w eli yhtälöllä x 1 (0, 1, 2, 1) + x 2 (2, 0, 1, 1) + x 3 (4, 2, 2, 0) = ( 2, 3, 2, 1) ratkaisuja reaalilukujen joukossa. LM1, Kesä 2012 70/218

Päädytään lineaariseen yhtälöryhmään 2x 2 + 4x 3 = 6 x 1 + 2x 3 = 3 2x 1 + x 2 + 2x 3 = 2 x 1 x 2 = 1, joka voidaan ratkaista Gaussin-Jordanin eliminointimenetelmällä. LM1, Kesä 2012 71/218

Lineaarisen yhtälöryhmän ratkaiseminen Esimerkki 10 Muodostetaan lineaarisen yhtälöryhmän 2x 2 + 4x 3 = 6 x 1 + 2x 3 = 3 2x 1 + x 2 + 2x 3 = 2 x 1 x 2 = 1, täydennetty matriisi kokoamalla kaikki kertoimet ja vakiot taulukkoon: 0 2 4 6 1 0 2 3 2 1 2 2 1 1 0 1 LM1, Kesä 2012 72/218

Muunnetaan tämä matriisi alkeisrivitoimituksia käyttäen redusoiduksi porrasmatriisiksi. Teet alkeisrivitoimituksen, jos I. vaihdat matriisin kaksi riviä keskenään; II. kerrot rivin jollakin nollasta poikkeavalla reaaliluvulla; III. lisäät johonkin riviin jokin toisen rivin reaaliluvulla kerrottuna; 0 2 4 6 1 0 0 1/2 1 0 2 3 0 1 0 1/2 2 1 2 2 0 0 1 5/4 1 1 0 1 0 0 0 0 LM1, Kesä 2012 73/218

Redusoidusta porrasmatriisista ratkaisut on helppo lukea: matriisia 1 0 0 1/2 0 1 0 1/2 0 0 1 5/4 0 0 0 0 vastaa yhtälöryhmä x 1 = 1/2 x 2 = 1/2 x 3 = 5/4 0 = 0, jossa alin yhtälö on aina tosi. LM1, Kesä 2012 74/218

Miten tunnistan redusoidun porrasmatriisin? Ensinnäkin se on porrasmatriisi eli nollarivit ovat alimpina, jos niitä on; jokaisella rivillä ensimmäinen nollasta poikkeava alkio (eli johtava alkio) on ylemmän rivin johtavan alkion oikealla puolella. Esimerkki porrasmatriisista: 0 7 3 2 4 9 0 0 0 8 0 5 0 0 0 0 3 6 0 0 0 0 0 0 LM1, Kesä 2012 75/218

Miten tunnistan redusoidun porrasmatriisin? Se on porrasmatriisi. Jokaisen rivin johtava alkio on 1. Jokainen johtava alkio on sarakkeensa ainoa nollasta poikkeava alkio. Esimerkki redusoidusta porrasmatriisista: 0 1 3/7 0 0 63/4 0 0 0 1 0 5/8 0 0 0 0 1 2 0 0 0 0 0 0 LM1, Kesä 2012 76/218

Gaussin-Jordanin eliminointimenetelmän perusta Voidaan osoittaa, että jos lineaarisen yhtälöryhmän täydennettyä matriisia muokataan alkeisrivitoimituksilla, niin näin saatua uutta matriisia vastaavalla yhtälöryhmällä on täsmälleen samat ratkaisut kuin alkuperäisellä yhtälöryhmällä. a 11 a 12... a 1n b 1 a 21 a 22... a 2n b 2.. a m1 a m2... a mn b m alkeisrivi- toimituksia c 11 c 12... c 1n d 1 c 21 c 22... c 2n d 2.. c m1 c m2... c mn d m a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2. =.. a m1 x 1 + + a mnx n = b m samat ratkaisut c 11 x 1 + + c 1n x n = d 1 c 21 x 1 + + c 2n x n = d 2. =.. c m1 x 1 + + c mnx n = d m LM1, Kesä 2012 77/218

Gaussin-Jordanin eliminointimenetelmä Kirjoita yhtälöryhmän täydennetty matriisi. Muuta se alkeisrivitoimituksilla porrasmatriisiksi. Ohjeita: porrasmatriisia muodostetaan vasemmalta oikealle ja ylhäältä alaspäin; johtavat alkiot kannattaa useimmiten muuttaa ykkösiksi; johtavien alkioiden avulla muutetaan niiden alapuolella olevat alkiot nolliksi. Muuta porrasmatriisi redusoiduksi porrasmatriisiksi. Ohjeita: redusoitua porrasmatriisia muodostetaan oikealta vasemmalle ja alhaalta ylöspäin; johtavien alkioiden avulla muutetaan niiden yläpuolella olevat alkiot nolliksi. Lue ratkaisut redusoidusta porrasmatriisista. Tee alkeisrivitoimitukset yksi kerrallaan! LM1, Kesä 2012 78/218

Esimerkki 11 Ratkaise lineaarinen yhtälöryhmä 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3 3 4 4 4 8 32 1 3 10 0 13 26 4 8 32 r 3 4r 1 1 3 10 3 4 4 r 2 3r 1 4 8 32 1 3 10 0 13 26 r 2 /13 0 4 8 LM1, Kesä 2012 79/218

1 3 10 0 1 2 0 4 8 r 3 4r 2 1 0 4 0 1 2. 0 0 0 1 3 10 r 1 + 3r 2 0 1 2 0 0 0 Vastaava yhtälöryhmä on x = 4 y = 2 0 = 0. Alin yhtälö on aina tosi, joten yhtälöryhmän ratkaisu on x = 4 ja y = 2. LM1, Kesä 2012 80/218

Esimerkki 12 Ratkaise lineaarinen yhtälöryhmä { x + 2y + z = 8 3x 6y 3z = 21. [ ] 1 2 1 8 3 6 3 21 r 2 + 3r 1 [ 1 2 1 ] 8 0 0 0 3 Vastaava yhtälöryhmä on { x + 2y + z = 8 0 = 3. Alin yhtälö on aina epätosi, joten yhtälöryhmällä ei ole ratkaisua. LM1, Kesä 2012 81/218

Esimerkki 13 Ratkaise lineaarinen yhtälöryhmä 3x 1 + 3x 2 15x 3 = 9 x 1 2x 3 = 1 2x 1 x 2 x 3 = 0. 3 3 15 9 r 1 /3 1 0 2 1 2 1 1 0 1 1 5 3 0 1 3 2 2 1 1 0 r 3 2r 1 1 1 5 3 1 0 2 1 r 2 r 1 2 1 1 0 1 1 5 3 0 1 3 2 1 r 2 0 3 9 6 LM1, Kesä 2012 82/218

1 1 5 3 0 1 3 2 0 3 9 6 r 3 + 3r 2 1 0 2 1 0 1 1 2. 0 0 0 0 1 1 3 3 r 1 r 2 0 1 1 2 0 0 0 0 Alinta riviä vastaava yhtälö 0 = 0 on aina tosi. Tuntematonta x 3 vastaavassa sarakkeessa ei ole johtavaa alkiota, joten se on ns. vapaa muuttuja. Merkitään x 3 = t, missä t R. Ratkaistaan muut tuntemattomat: x 1 2t = 1 { x1 = 1 + 2t x 2 t = 2 t R. x 2 = 2 + t, 0 = 0 LM1, Kesä 2012 83/218

Esimerkki 14 Lineaarisen yhtälöryhmän täydennetty matriisi muutettiin alkeisrivitoimituksilla redusoiduksi porrasmatriisiksi: 1 3 0 4 0 0 0 0 0 1 2 0 0 0. 0 0 0 0 0 1 3 Mikä on yhtälöryhmän ratkaisu? Havaitaan, että johtavat alkiot (rivien ensimmäiset nollasta poikkeavat alkiot) ovat sarakkeissa 1, 3 ja 6. Muita sarakkeita vastaavat tuntemattomat x 2, x 4 ja x 5 ovat vapaita muuttujia. Merkitään x 2 = r, x 4 = s ja x 5 = t, missä r, s, t R. LM1, Kesä 2012 84/218

Yhtälöryhmä on tällöin x 1 + 3r + 4s = 0 x 3 + 2s = 0 x 6 = 3 x 1 = 3r 4s x 3 = 2s x 6 = 3. Ratkaisu on siis x 1 = 3r 4s x 2 = r x 3 = 2s x 4 = s x 5 = t x 6 = 3, r, s, t R. LM1, Kesä 2012 85/218

Esimerkki 15 Tarkastellaan yhtälöryhmää x + y + kz = 1 x + ky + z = 1 kx + y + z = 2. Määritä ne reaaliluvut k, joilla tällä yhtälöryhmällä (a) ei ole ratkaisua; (b) on tasan yksi ratkaisu; (c) on äärettömän paljon ratkaisuja. LM1, Kesä 2012 86/218

1 1 k 1 1 1 k 1 1 k 1 1 r 2 r 1 0 k 1 1 k 0 k 1 1 2 k 1 1 2 r 3 kr 1 1 1 k 1 0 k 1 1 k 0 0 1 k 1 k 2 2 k r 3 + r 2 1 1 k 1 0 k 1 1 k 0 r 2 /(k 1) 0 0 2 k k 2 2 k Oletus: k 1 0 1 1 k 1 0 1 1 0. 0 0 2 k k 2 2 k LM1, Kesä 2012 87/218

Oletus: k 1 0 eli k 1. Alimman rivin johtavassa alkiossa esiintyy k, joten tarkastellaan eri tapaukset. Jos kerroin 2 k k 2 = 0 eli k = 2 (tai k = 1) on periaatteessa kaksi mahdollisuutta: Jos myös vakio 2 k = 0 eli k = 2, niin yhtälöllä on äärettömän monta ratkaisua. Alinta riviä nimittäin vastaa yhtälö 0 = 0 ja x 3 on vapaa muuttuja. Jos vakio 2 k 0 eli k 2, ei nyt voida päätellä mitään, koska on mahdotonta, että yhtä aikaa k = 2 ja k 2. Jos kerroin 2 k k 2 0 eli k 2 ja k 1, niin saadaan ratkaistua x 3 = ( 2 k)/(2 k k 2 ) ja ylemmistä yhtälöistä saadaan muut tuntemattomat. Yhtälöryhmällä on tasan yksi ratkaisu. LM1, Kesä 2012 88/218

Tapaus k 1 = 0 eli k = 1. Yhtälöryhmä on tällöin x + y + z = 1 x + y + z = 1 x + y + z = 2. Ylin ja alin yhtälö ovat keskenään ristiriitaiset, joten yhtälöryhmällä ei ole ratkaisua. Yhteenveto: (a) ei ratkaisua, jos ja vain jos k = 1; (b) tasan yksi ratkaisu, jos ja vain jos k 2 ja k 1; (c) äärettömän monta ratkaisua, jos ja vain jos k = 2. LM1, Kesä 2012 89/218

Vektorien virittämä aliavaruus Esimerkki 16 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään aliavaruuteen span( v 1, v 2, v 3 )? Toisin sanottuna: Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w on vektoreiden v 1, v 2 ja v 3 lineaarikombinaatio? LM1, Kesä 2012 90/218

Tarkastellaan yhtälöä x 1 v 1 + x 2 v 2 + x 3 v 3 = w eli yhtälöä x 1 (3, 2, 1) + x 2 (2, 2, 6) + x 3 (3, 4, 5) = (w 1, w 2, w 3 ). Muokataan vastaavan yhtälöryhmän täydennetty matriisi porrasmatriisiksi: 3 2 3 w 1 ( 1) r 3 1 6 5 w 3 2 2 4 w 2 2 2 4 w 2 r 2 2r 1 1 6 5 w 3 3 2 3 w 1 1 6 5 w 3 0 10 6 w 2 + 2w 3 3 2 3 w 1 r 3 3r 1 1 6 5 w 3 0 10 6 w 2 + 2w 3 0 20 12 w 1 + 3w 3 r 3 2r 2 r 1 LM1, Kesä 2012 91/218

1 6 5 w 3 0 10 6 w 2 + 2w 3 r 2 /10 0 0 0 w 1 + 3w 3 2(w 2 + 2w 3 ) 1 6 5 w 3 0 1 3/5 (w 2 + 2w 3 )/10 0 0 0 w 1 2w 2 w 3 Havaitaan, että yhtälöryhmällä on ratkaisuja, jos ja vain jos w 1 2w 2 w 3 = 0. Siten span( v 1, v 2, v 3 ) = { w R 3 w 1 2w 2 w 3 = 0 } = { (x, y, z) R 3 x 2y z = 0 } eli origon kautta kulkeva taso, jonka yksi normaali on (1, 2, 1). LM1, Kesä 2012 92/218

Vektorien virittämä aliavaruus Esimerkki 17 Merkitään ī = (1, 0) ja j = (0, 1). Osoita, että span(ī, j) = R 2. Toisin sanottuna: osoita, että jokainen avaruuden R 2 vektori voidaan esittää vektoreiden ī ja j lineaarikombinaationa. j ī LM1, Kesä 2012 93/218

Oletetaan, että w R 2. Tällöin w = (w 1, w 2 ) joillakin reaaliluvuilla w 1 ja w 2. Huomataan, että w 1 ī + w 2 j = w 1 (1, 0) + w 2 (0, 1) = (w 1, 0) + (0, w 2 ) = (w 1, w 2 ) = w. Siis w voidaan kirjoittaa vektoreiden ī ja j lineaarikombinaationa eli w span(ī, j). Näin on osoitettu, että R 2 span(ī, j). Toinen suunta span(ī, j) R 2 on selvä, koska jokainen vektoreiden ī, j R 2 lineaarikombinaatio kuuluu avaruuteen R 2. LM1, Kesä 2012 94/218

Vektoreiden virittämä aliavaruus Esimerkki 18 Onko totta, että span( v 1, v 2, v 3, v 4 ) = R 3, jos (a) v 1 = (1, 1, 0), v 2 = (1, 0, 1), v 3 = (0, 1, 1) ja v 4 = ( 2, 1, 1)? (b) v 1 = (1, 1, 0), v 2 = ( 1, 0, 1), v 3 = (0, 1, 1) ja v 4 = (2, 1, 1)? Kielteisessä tapauksessa määritä span( v 1, v 2, v 3, v 4 ). Myönteisessä tapauksessa tutki, kuinka monella tavalla vektori w = (w 1, w 2, w 3 ) voidaan esittää vektoreiden v 1, v 2, v 3 ja v 4 lineaarikombinaationa. LM1, Kesä 2012 95/218

(a) Tarkastellaan yhtälöä x 1 v 1 + x 2 v 2 + x 3 v 3 + x 4 v 4 = w. Muokataan vastaavan yhtälöryhmän täydennetty matriisi joksikin porrasmatriisiksi: 1 1 0 2 w 1 1 0 1 1 w 2... 0 1 1 1 w 3 1 1 0 2 w 1 0 1 1 3 w 1 w 2. 0 0 1 2 (w 3 + w 2 w 1 )/2 Havaitaan, että yhtälöryhmällä on aina ratkaisu; itseasiassa niitä on äärettömän monta, koska x 4 on vapaa muuttuja. Siis span( v 1, v 2, v 3, v 4 ) = R 3 ja jokainen avaruuden R 3 vektori voidaan esittää äärettömän monella tavalla vektoreiden v 1, v 2, v 3 ja v 4 lineaarikombinaationa. LM1, Kesä 2012 96/218

(b) Tarkastellaan yhtälöä x 1 v 1 + x 2 v 2 + x 3 v 3 + x 4 v 4 = w. Muokataan vastaavan yhtälöryhmän täydennetty matriisi joksikin porrasmatriisiksi: 1 1 0 2 w 1 1 0 1 1 w 2... 0 1 1 1 w 3 1 1 0 2 w 1 0 1 1 1 w 1 w 2 0 0 0 0 w 1 + w 2 + w 3. Havaitaan, että yhtälöryhmällä on ratkaisu, jos ja vain jos w 1 + w 2 + w 3 = 0. Siten span( v 1, v 2, v 3, v 4 ) = { w R 3 w 1 + w 2 + w 3 = 0 } = { (x, y, z) R 3 x + y + z = 0 } eli origon kautta kulkeva taso, jonka yksi normaali on (1, 1, 1). LM1, Kesä 2012 97/218

Jos w 1 + w 2 + w 3 = 0, niin vektori w voidaan esittää vektoreiden v 1, v 2, v 3 ja v 4 lineaarikombinaationa äärettömän monella tavalla, sillä x 3 ja x 4 ovat vapaita muuttujia. Erityisesti voidaan valita x 3 = 0 ja x 4 = 0 ja saadaan esitys w = w 2 v 1 + ( w 1 w 2 ) v 2. Näin ollen span( v 1, v 2, v 3, v 4 ) = span( v 1, v 2 ). LM1, Kesä 2012 98/218

Havaintoja Edellisen esimerkin perusteella: Joskus osajono virittää saman aliavaruuden kuin alkuperäinen virittäjäjono ( v 1,..., v k ). Joskus aliavaruuden span( v 1,..., v k ) vektorit voidaan esittää usealla eri tavalla virittäjävektorien lineaarikombinaatioina. Miten löytää virittäjäjono, jossa ei ole turhia vektoreita? Miten löytää sellainen virittäjäjono, että kaikki aliavaruuden vektorit voidaan esittää tasan yhdellä tavalla virittäjävektorien lineaarikombinaatioina? LM1, Kesä 2012 99/218

Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 + + c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Jos jono ( v 1, v 2,..., v k ) on vapaa, sanotaa, että vektorit v 1, v 2,..., v k ovat lineaarisesti riippumattomia. Jos jono ei ole vapaa, sanotaan, että se on sidottu. LM1, Kesä 2012 100/218

Esimerkki 19 Merkitään v 1 = (1, 2) ja v 2 = ( 3, 1). Onko jono ( v 1, v 2 ) vapaa vai sidottu? v 1 v 2 LM1, Kesä 2012 101/218

Oletetaan, että c 1 v 1 + c 2 v 2 = 0 joillakin reaaliluvuilla c 1 ja c 2. Tällöin c 1 (1, 2) + c 2 ( 3, 1) = (0, 0) eli komponentteittain: { c1 3c 2 = 0 2c 1 c 2 = 0. Ratkaistaan tästä c 1 ja c 2 : [ ] [ ] 1 3 0 1 3 0 2 1 0 r 2 2r 1 0 5 0 r 2 /5 [ ] [ ] 1 3 0 r1 + 3r 2 1 0 0. 0 1 0 0 1 0 Ainoa ratkaisu on c 1 = 0 ja c 2 = 0. Jono ( v 1, v 2 ) on vapaa. LM1, Kesä 2012 102/218

Esimerkki 20 Merkitään v 1 = (1, 2), v 2 = ( 3, 1) ja v 3 = ( 1, 1). Onko jono ( v 1, v 2, v 3 ) vapaa vai sidottu? v 3 v 1 v 2 LM1, Kesä 2012 103/218

Oletetaan, että c 1 v 1 + c 2 v 2 + c 3 v 3 = 0 joillakin c 1, c 2, c 3 R. Tällöin c 1 (1, 2) + c 2 ( 3, 1) + c 3 ( 1, 1) = (0, 0) eli komponentteittain: { c1 3c 2 c 3 = 0 2c 1 c 2 + c 3 = 0. Ratkaistaan tästä c 1 ja c 2 : [ ] [ ] 1 3 1 0 1 3 1 0 2 1 1 0 r 2 2r 1 0 5 3 0 r 2 /5 [ ] [ ] 1 3 1 0 r1 + 3r 2 1 0 4/5 0. 0 1 3/5 0 0 1 3/5 0 Voidaan valita esimerkiksi c 3 = 5, jolloin c 2 = 3 ja c 1 = 4. Näin 4 v 1 3 v 2 + 5 v 3 = 0. Jono ( v 1, v 2, v 3 ) on sidottu. LM1, Kesä 2012 104/218

5 v 3 4 v 1 3 v 2 4 v 1 3 v 2 + 5 v 3 = 0 LM1, Kesä 2012 105/218

Esimerkki 21 Merkitään w 1 = (2, 1) ja w 2 = ( 4, 2). Onko jono ( w 1, w 2 ) vapaa vai sidottu? w 1 w 2 Esimerkiksi 2 w 1 + w 2 = 0, joten jono ( w 1, w 2 ) on sidottu. LM1, Kesä 2012 106/218

Vähintään kahdesta vektorista muodostuva vektorijono on sidottu, jos ja vain jos jokin sen vektoreista voidaan ilmaista toisten lineaarikombinaationa: Lause 15 Oletetaan, että v 1,..., v k R n, missä k 2 ja n {1, 2,...}. (a) Jono ( v 1 ) on sidottu, jos ja vain jos v = 0. (b) Jono ( v 1,..., v k ) on sidottu, jos ja vain jos v i span( v 1,..., v i 1, v i+1,..., v k ) jollakin i {1,..., k}. LM1, Kesä 2012 107/218

Perustelu: (a) Tarkastellaan eri mahdollisuudet: Jos v 1 = 0, niin esim. 8 v 1 = 8 0 = 0. Siis jono ( v 1 ) on sidottu. Jos v 1 0, niin t v 1 = 0 t = 0. Siis jono ( v 1 ) on vapaa. Havaitaan, että jono ( v 1 ) on sidottu, jos ja vain jos v 1 = 0. (b) : Oletetaan, että jono ( v 1,..., v k ) on sidottu. Tällöin c 1 v 1 + + c k v k = 0, missä ainakin yksi kertoimista c i 0. Oletetaan, että esim. c 2 0. Tällöin c 2 v 2 = c 1 v 1 c 3 v 3 c k v k ja v 2 = c 1 v 1 + c 3 c 2 c 2 v 3 + + c k c 2 v k. Tässä jokainen c i /c 2 R, joten v 2 span( v 1, v 3,..., v k ). LM1, Kesä 2012 108/218

: Oletetaan, että esimerkiksi v 3 span( v 1, v 2, v 4,..., v k ). Tällöin v 3 = a 1 v 1 + a 2 v 2 + a 4 v 4 + + a k v k joillakin reaaliluvuilla a 1, a 2, a 4,..., a k. Siten 0 = a 1 v 1 + a 2 v 2 v 3 + a 4 v 4 + + a k v k. Tässä ainakin vektorin v 3 kerroin 1 0, joten jono ( v 1,..., v k ) on sidottu. LM1, Kesä 2012 109/218

Esimerkki 22 Merkitään v 1 = (1, 1, 0), v 2 = (1, 1, 0), v 3 = (0, 0, 2) ja v 4 = (3, 1, 0). Tällöin esimerkiksi 2 v 1 + v 2 + 0 v 3 v 4 = 0, joten jono ( v 1, v 2, v 3, v 4 ) on sidottu. Lisäksi esimerkiksi v 2 = 2 v 1 + 0 v 3 + v 4 mutta v 3 a v 1 + b v 2 + c v 4 kaikilla a, b, c R. LM1, Kesä 2012 110/218

Lause 16 Vapaan jonon osajono on vapaa. Huom. Osajono tarkoittaa jonoa, joka saadaan jättämällä alkuperäisestä jonosta pois yksi tai useampia vektoreita. Myös alkuperäinen jono sellaisenaan on yksi osajono. Lauseista 16 ja 15 seuraa, että vapaassa jonossa ( v 1, v 2,..., v k ) ei ole nollavektoria; jokainen vektori esiintyy vain kerran; v i v j kaikilla i j. LM1, Kesä 2012 111/218

Lauseen 16 perustelun idea: Oletetaan, että v 1,..., v 5 R n ja jono ( v 1,..., v 5 ) on vapaa. Osoitetaan, että sen osajono ( v 2, v 4, v 5 ) on vapaa. Tarkastellaan yhtälöä x v 2 + y v 4 + z v 5 = 0: x v 2 + y v 4 + z v 5 = 0 0 v 1 + x v 2 + 0 v 3 + y v 4 + z v 5 = 0 Oletuksen mukaan jono ( v 1, v 2, v 3, v 4, v 5 ) on vapaa, joten oikeanpuoleinen yhtälö toteutuu vain, jos kaikki kertoimet ovat nollia. Tästä seuraa, että vasemmanpuoleisen yhtälön ainoa ratkaisu on x = 0, y = 0 ja z = 0. Siis jono ( v 2, v 4, v 5 ) on vapaa. LM1, Kesä 2012 112/218

Jos virittäjäjono on vapaa, niin kaikki aliavaruuden vektorit voidaan esittää tasan yhdellä tavalla virittäjävektorien lineaarikombinaatioina: Lause 17 Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,...}. Jono ( v 1, v 2,..., v k ) on vapaa, jos ja vain jos jokainen aliavaruuden span( v 1, v 2,..., v k ) alkio voidaan kirjoittaa täsmälleen yhdellä tavalla vektorien v 1, v 2,..., v k lineaarikombinaationa. LM1, Kesä 2012 113/218

Perustelu: : Oletetaan, että jono ( v 1, v 2,..., v k ) on vapaa. Oletetaan, että w span( v 1, v 2,..., v k ). Tämä tarkoittaa, että w voidaan kirjoittaa ainakin yhdellä tavalla vektoreiden v 1,..., v k lineaarikombinaationa. Oletetaan nyt, että w = a 1 v 1 + + a k v k ja w = b 1 v 1 + + b k v k joillakin a 1,..., a k, b 1,..., b k R. Tällöin a 1 v 1 + + a k v k = b 1 v 1 + + b k v k, joten a 1 v 1 + + a k v k (b 1 v 1 + + b k v k ) = 0 ja edelleen (a 1 b 1 ) v 1 + + (a k b k ) v k = 0. Jono ( v 1,..., v k ) on oletuksen mukaan vapaa, joten viimeisestä yhtälöstä seuraa, että a 1 b 1 = 0, a 2 b 2 = 0,..., a k b k = 0. Siten a 1 = b 1,..., a k = b k. Näin ollen vektoria w ei voida kirjoittaa lineaarikombinaationa usealla eri tavalla. LM1, Kesä 2012 114/218

: Oletetaan, että jokainen aliavaruuden span( v 1,..., v k ) alkio voidaan kirjoittaa täsmälleen yhdellä tavalla vektorien v 1,..., v k lineaarikombinaationa. Osoitetaan, että jono ( v 1,..., v k ) on vapaa. Sitä varten oletetaan, että luvut c 1,..., c k R ovat sellaisia, että c 1 v 1 + c 2 v 2 + + c k v k = 0. Koska vektori 0 on aliavaruuden span( v 1,..., v k ) alkio, se voidaan kirjoittaa vektorien lineaarikombinaationa täsmälleen yhdellä tavalla. Tiedetään, että 0 v 1 + 0 v 2 + + 0 v k = 0, joten täytyy päteä c 1 = 0, c 2 = 0,..., c k = 0. Siten jono ( v 1, v 2,..., v k ) on vapaa. LM1, Kesä 2012 115/218

Homogeeniset yhtälöryhmät Määritelmä Lineaarinen yhtälöryhmä, jonka kaikki vakiot ovat 0, on nimeltään homogeeninen yhtälöryhmä. a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0. =. a m1 x 1 + a m2 x 2 + + a mn x n = 0 Huom. Homogeenisella yhtälöryhmällä on aina ainakin yksi ratkaisu: x 1 = 0, x 2 = 0,..., x n = 0. LM1, Kesä 2012 116/218

Lause 18 Jos homogeenisessa yhtälöryhmässä tuntemattomien määrä n on suurempi kuin yhtälöiden määrä m, niin homogeenisella yhtälöryhmällä on äärettömän monta ratkaisua. Esim. n = 5 ja m = 3: a 11 x 1 + a 12 x 2 + a 13 x 3 + a 14 x 4 + a 15 x 5 = 0 a 21 x 1 + a 22 x 2 + a 23 x 3 + a 34 x 4 + a 25 x 5 = 0 a 31 x 1 + a 32 x 2 + a 33 x 3 + a 34 x 4 + a 35 x 5 = 0 Homogeenisella yhtälöryhmällä on ainakin yksi ratkaisu. Johtavia alkioita enintään yksi joka rivillä; siis enintään m kpl. Vapaita muuttujia on ainakin yksi, koska tuntemattomien määrä n > m; ts. yhtälöryhmän matriisissa on ainakin yksi sarake, jossa ei ole johtavaa alkiota! LM1, Kesä 2012 117/218

Lause 19 Oletetaan, että v 1, v 2,..., v m R n, missä n {1, 2,...}. Jos m > n, niin jono ( v 1, v 2,..., v m ) on sidottu. Huom. Merkitsemällä v k = (v 1k, v 2k,..., v nk ) kaikilla k {1,..., m} saadaan yhtälöä x 1 v 1 + x 2 v 2 + + x m v m = 0 vastaavaksi matriisiksi v 11 x 1 + v 12 x 2 + + v 1n x m = 0 v 21 x 1 + v 22 x 2 + + v 2n x m = 0. =. v n1 x 1 + v n2 x 2 + + v nm x m = 0. LM1, Kesä 2012 118/218

Huom. Jos homogeenisessa yhtälöryhmässä tuntemattomien määrä n on pienempi tai yhtä suuri kuin yhtälöiden määrä m, ei lausetta 18 voi käyttää. Ratkaisuja voi olla yksi (x 1 = 0,..., x n = 0) tai äärettömän monta. Esim. n = 2 ja m = 4: a 11 x 1 + a 12 x 2 = 0 a 21 x 1 + a 22 x 2 = 0 a 31 x 1 + a 32 x 2 = 0 a 41 x 1 + a 42 x 2 = 0 LM1, Kesä 2012 119/218

Esimerkki 23 Oletetaan, että v 1, v 2, v 3 R n, missä n {1, 2,... }. Oletetaan lisäksi, että jono ( v 1, v 2, v 3 ) on vapaa. Onko jono tällöin vapaa? ( v 1 + v 2 + v 3, 2 v 1 v 2 + v 3, v 3 4 v 1 5 v 2 ) Oletetaan, että c 1, c 2 ja c 3 ovat sellaisia reaalilukuja, että c 1 ( v 1 + v 2 + v 3 ) + c 2 (2 v 1 v 2 + v 3 ) + c 3 ( v 3 4 v 1 5 v 2 ) = 0. Muokataa yhtälöä kertomalla sulut auki: c 1 v 1 + c 1 v 2 + c 1 v 3 + 2c 2 v 1 c 2 v 2 + c 2 v 3 + c 3 v 3 4c 3 v 1 5c 3 v 2 = 0. LM1, Kesä 2012 120/218

Otetaan yhteisiksi tekijöiksi vektorit v 1, v 2 ja v 3 : (c 1 + 2c 2 4c 3 ) v 1 + (c 1 c 2 5c 3 ) v 2 + (c 1 + c 2 + c 3 ) v 3 = 0. Jono ( v 1, v 2, v 3 ) on oletuksen mukaan vapaa, joten saatu yhtälö toteutuu, jos ja vain jos sen kaikki kertoimet ovat nollia. Saadaan homogeeninen yhtälöryhmä c 1 + 2c 2 4c 3 = 0 c 1 c 2 5c 3 = 0 c 1 + c 2 + c 3 = 0. 1 2 4 0 1 0 0 0 1 1 5 0... 0 1 0 0. 1 1 1 0 0 0 1 0 Ainoa ratkaisu on c 1 = 0, c 2 = 0 ja c 3 = 0, joten alkuperäinen jono on vapaa. LM1, Kesä 2012 121/218

Kanta Oletetaan, että v 1,..., v j R n, missä n {1, 2,...}. Merkitään W = span( v 1,..., v j ); ts. W on vektoreiden v 1,..., v j virittämä aliavaruus. Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden W kanta, jos (a) W = span( w 1, w 2,..., w k ) (b) ( w 1, w 2,..., w k ) on vapaa. LM1, Kesä 2012 122/218

Kanta Esimerkki 24 Merkitään ē 1 = (1, 0) ja ē 2 = (0, 1). Osoitetaan, että jono (ē 1, ē 2 ) on avaruuden R 2 kanta. ē 2 ē 1 Huom. Lukion merkinnöillä kysymyksessä on jono (ī, j). Vastaavasti voidaan osoittaa, että jono (ē 1,..., ē n ) on avaruuden R n kanta. Vektorin ē i komponentit ovat nollia lukuunottamatta i:nnettä komponenttia, joka on 1. LM1, Kesä 2012 123/218

Esimerkin 24 ratkaisu Käytetään kannan määritelmää: (a) Oletetaan, että w R 2. Tällöin w = (w 1, w 2 ) joillakin reaaliluvuilla w 1 ja w 2. Havaitaan, että w = w 1 (1, 0) + w 2 (0, 1) = w 1 ī + w 2 j. Näin mikä tahansa avaruuden R 2 vektori voidaan esittää vektoreiden ī ja j lineaarikombinaationa. Siten span(ī, j) = R 2. (b) Oletetaan, että c 1 ī + c 2 j = 0 joillakin c 1, c 2 R. Tällöin c 1 (1, 0) + c 2 (0, 1) = (0, 0) eli (c 1, c 2 ) = (0, 0), mistä seuraa, että c 1 = 0 ja c 2 = 0. Siis jono (ī, j) on vapaa. LM1, Kesä 2012 124/218

Lause 20 Kanta ja koordinaatit Jono ( w 1,..., w k ) on aliavaruuden W kanta, jos ja vain jos jokainen aliavaruuden W vektori voidaan kirjoittaa täsmälleen yhdellä tavalla vektoreiden w 1,..., w k lineaarikombinaationa. Lause 20 mahdollistaa seuraavan määritelmän: Määritelmä Oletetaan, että B = ( w 1,..., w k ) on aliavaruuden W kanta. Oletetaan, että ū W. Vektorin ū koordinaateiksi kannan B suhteen kutsutaan reaalilukuja a 1,..., a k, joilla ū = a 1 w 1 + + a k w k. LM1, Kesä 2012 125/218

Lauseen 20 perustelu: : Oletetaan, että jono ( w 1,..., w k ) on aliavaruuden W kanta. Tällöin kannan määritelmän nojalla W = span( w 1,..., w k ) ja jono ( w 1,..., w k ) on vapaa. Lauseesta 17 seuraa, että jokainen aliavaruuden W = span( w 1,..., w k ) vektori voidaan kirjoittaa tasan yhdellä tavalla vektoreiden w 1,..., w k lineaarikombinaationa. : Oletetaan, että jokainen aliavaruuden W vektori voidaan kirjoittaa täsmälleen yhdellä tavalla vektoreiden w 1,..., w k lineaarikombinaationa. Tästä seuraa ensinnäkin, että W = span( w 1,..., w k ). Tämän jälkeen voidaan käyttää lausetta 17, jonka mukaan jono ( w 1,..., w k ) on tällöin vapaa. Näin kannan määritelmän molemmat ehdot täyttyvät. Siis ( w 1,..., w k ) on aliavaruuden W kanta. LM1, Kesä 2012 126/218

Kanta ja koordinaatit Esimerkki 25 Merkitään w 1 = (2, 1), w 2 = (1, 3) ja ū = (8, 3). (a) Osoita lauseen 20 avulla, että ( w 1, w 2 ) on avaruuden R 2 kanta. (b) Määritä vektorin ū koordinaatit avaruuden R 2 ns. luonnollisen kannan E 2 = (ē 1, ē 2 ) suhteen. (c) Määritä vektorin ū koordinaatit kannan B = ( w 1, w 2 ) suhteen. LM1, Kesä 2012 127/218

(a) Oletetaan, että v R 2. Ratkaistaan yhtälö x 1 w 1 + x 2 w 2 = v eli yhtälö x 1 (2, 1) + x 2 (1, 3) = (v 1, v 2 ). Komponenteittain: { 2x1 + x 2 = v 1 x 1 + 3x 2 = v 2. [ ] 2 1 v1... 1 3 v 2 [ ] 1 0 (3v1 v 2 )/7. 0 1 (v 1 + 2v 2 )/7 Tasan yksi ratkaisu riippumatta vektorista v R 2. Siis jono ( w 1, w 2 ) on avaruuden R 2 kanta lauseen 20 nojalla. LM1, Kesä 2012 128/218

Kanta ja koordinaatit (b) Vektorin ū = (8, 3) koordinaatit avaruuden R 2 luonnollisen kannan E 2 = (ē 1, ē 2 ) suhteen ovat 8 ja 3, sillä ū = 8(1, 0) + 3(0, 1) = 8ē 1 + 3ē 2. 3ē 2 ē 2 ū = 8ē 1 + 3ē 2 ē 1 8ē 1 LM1, Kesä 2012 129/218

(c) Vektorin ū = (8, 3) koordinaatit avaruuden R 2 kannan B = ( w 1, w 2 ) suhteen saadaan a-kohdan avulla. Sen mukaan x 1 w 1 +x 2 w 2 = ū, jos ja vain jos { x1 = (3u 1 u 2 )/7 = (24 3)/7 = 3 x 2 = (u 1 + 2u 2 )/7 = (8 + 6)/7 = 2. Siis ū = 3 w 1 + 2 w 2 eli kysytyt koordinaatit ovat 3 ja 2. LM1, Kesä 2012 130/218

Kanta ja koordinaatit 2 w 2 w 2 ū = 3 w 1 + 2 w 2 w 1 3 w 1 LM1, Kesä 2012 131/218

Kanta ja dimensio Lause 21 Aliavaruuden W jokaisessa kannassa on yhtä monta vektoria. Lause 21 mahdollistaa seuraavan määritelmän: Määritelmä Aliavaruuden W kannan vektorien lukumäärä on aliavaruuden W dimensio. Sitä merkitään dim(w ). Jos aliavaruuden dimensio on n, sanotaan, että aliavaruus on n-ulotteinen. LM1, Kesä 2012 132/218

Kanta ja dimensio Esimerkki 26 Esimerkin 24 mukaan vektorit ē 1 = (1, 0) ja ē 2 = (0, 1) muodostavat avaruuden R 2 kannan. Siten dim(r 2 ) = 2. ē 2 ē 1 Esimerkki 27 Merkitään v 1 = (3, 1, 5), v 2 = (2, 1, 3) ja v 3 = (0, 5, 1). Olkoon W = span( v 1, v 2, v 3 ). Määritä aliavaruuden W dimensio. LM1, Kesä 2012 133/218

Esimerkin 27 ratkaisu Oletetaan, että ū R 3. Ratkaistaan yhtälö x 1 v 1 + x 2 v 2 + x 3 v 3 = ū eli yhtälö x 1 (3, 1, 5) + x 2 (2, 1, 3) + x 3 (0, 5, 1) = (u 1, u 2, u 3 ). Komponentteittain 3x 1 + 2x 2 = u 1 x 1 + x 2 5x 3 = u 2 5x 1 + 3x 2 + x 3 = u 3. 3 2 0 u 1 1 1 5 u 2 1 1 5 u 2... 0 1 3 (u 1 + 3u 2 )/5. 5 3 1 u 3 0 0 0 (5u 3 + u 2 8u 1 )/5 LM1, Kesä 2012 134/218

Havaitaan, että yhtälöryhmällä on ratkaisu, jos ja vain jos 5u 3 + u 2 8u 1 = 0. Siten W = span( v 1, v 2, v 3 ) = { (x, y, z) 8x + y + 5z = 0 } on origon kautta kulkeva taso, jonka yksi normaali on ( 8, 1, 5). Jos 5u 3 + u 2 8u 1 = 0, niin x 3 on vapaa muuttuja ja voidaan valita x 3 = 0. Siten jokainen tason vektori voidaan ilmaista vektoreiden v 1 ja v 2 lineaarikombinaationa; ts. W = span( v 1, v 2, v 3 ) = span( v 1, v 2 ). Lisäksi v 1 v 2, joten lauseen 15 nojalla jono ( v 1, v 2 ) on vapaa. Näin jono ( v 1, v 2 ) on avaruuden W kanta ja siten dim(w ) = 2. LM1, Kesä 2012 135/218

Lauseen 21 perustelu: Oletetaan, että B = ( v 1,..., v j ) ja C = ( w 1,..., w k ) ovat aliavaruuden W kantoja. Pyritään osoittamaan, että j = k. Tehdään se osoittamalla, että muut vaihtoehdot j < k ja k < j johtavat ristiriitaan. Oletetaan, että j < k. Tarkastellaan yhtälöä x 1 w 1 + + x k w k = 0. (1) Koska B on W :n kanta, voidaan kaikki kannan C vektorit kirjoittaa kannan B vektorien lineaarikombinaatioina: w 1 = a 11 v 1 + a 12 v 2 + + a 1j v j w 2 = a 21 v 1 + a 22 v 2 + + a 2j v j. w k = a k1 v 1 + a k2 v 2 + + a kj v j LM1, Kesä 2012 136/218

Sijoittamalla nämä yhtälöön 1 saadaan yhtäpitävä yhtälö: x 1 (a 11 v 1 + a 12 v 2 + + a 1j v j ) + x 2 (a 21 v 1 + a 22 v 2 + + a 2j v j ) + + x k (a k1 v 1 + a k2 v 2 + + a kj v j ) = 0 ja edelleen ryhmittelemällä: (x 1 a 11 + x 2 a 21 + + x k a k1 ) v 1 + (x 1 a 12 + x 2 a 22 + + x k a k2 ) v 2 + + (x 1 a 1j + x 2 a 2j + + x k a kj ) v j = 0 LM1, Kesä 2012 137/218

Jono B = ( v 1,..., v j ) on kanta, joten se on vapaa. Siten edellinen yhtälö toteutuu, jos ja vain jos kaikki kertoimet ovat nollia: x 1 a 11 + x 2 a 21 + + x k a k1 = 0 x 1 a 12 + x 2 a 22 + + x k a k2 = 0. =. x 1 a 1j + x 2 a 2j + + x k a kj = 0 Kyseessä on homogeeninen yhtälöryhmä, jossa tuntemattomien määrä k on suurempi kuin yhtälöiden määrä j. Lauseen 18 mukaan yhtälöryhmällä on muitakin ratkaisuja kuin x 1 = 0,..., x k = 0. Siis jono C = ( w 1,..., w k ) on sidottu. Ristiriita! Tapaus j > k käsitellään vastaavasti. LM1, Kesä 2012 138/218

Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä i j. Kantaa ( w 1,..., w k ) kutsutaan ortonormaaliksi, jos se on ortogonaalinen ja lisäksi sen kaikkien vektorien normi on yksi eli w i = 1 kaikilla i {1, 2,..., k}. LM1, Kesä 2012 139/218

Ortogonaalinen ja ortonormaali kanta Huom. Oletetaan, että n {1, 2,...}. Avaruuden R n luonnollinen kanta E n = (ē 1,..., ē n ) on ortonormaali, sillä ē i ē j = 0, jos i j ja ē i = 1 kaikilla i. ē 2 ē 3 ē 1 LM1, Kesä 2012 140/218

Ortogonaalinen ja ortonormaali kanta Projektiota voidaan käyttää kannan ortogonalisoimiseen (tästä lisää jatkokurssilla): Esimerkki 28 Merkitään v 1 = ( 1, 2) ja v 2 = (3, 1). Tällöin jono ( v 1, v 2 ) on avaruuden R 2 kanta. v 1 (Voit osoittaa sen käyttämällä lausetta 20 tai kannan määritelmää.) v 2 LM1, Kesä 2012 141/218

Muodostetaan uusi jono ( w 1, w 2 ) seuraavasti: Valitaan w 1 = v 1. Valitaan w 2 = v 2 proj w1 ( v 2 ). w 1 = v 1 proj w1 ( v 2 ) v 2 w 2 = v 2 proj w1 ( v 2 ) LM1, Kesä 2012 142/218

Näin saatu jono ( w 1, w 2 ) on avaruuden R 2 ortogonaalinen kanta. w 1 w 2 Tässä siis w 1 = ( 1, 2) ja w 2 = v 2 v 2 w 1 w 1 w 1 w 1 = (3, 1) + ( 1, 2) = (2, 1). LM1, Kesä 2012 143/218

Vielä voidaan muodostaa uusi jono (ū 1, ū 2 ) seuraavasti: Valitaan ū 1 = 1 w 1 w 1. Valitaan ū 2 = 1 w 2 w 2. ū 1 ū 2 Jono (ū 1, ū 2 ) on avaruuden R 2 ortonormaali kanta. Tässä ū 1 = 1 5 ( 1, 2) ja ū 2 = 1 5 (2, 1). LM1, Kesä 2012 144/218

Ortonormaali kanta Vektorin koordinaatit ortonormaalin kannan suhteen on helppo määrittää: Lause 22 Oletetaan, että B = (ū 1,..., ū k ) on aliavaruuden W ortonormaali kanta. Oletetaan, että w W. Tällöin vektorin w koordinaatit kannan B suhteen ovat w ū 1, w ū 2,..., w ū k eli w = ( w ū 1 )ū 1 + ( w ū 2 )ū 2 + + ( w ū k )ū k. LM1, Kesä 2012 145/218

Lauseen 22 perustelu: Oletetaan, että B = (ū 1,..., ū k ) on aliavaruuden W ortonormaali kanta. Tutkitaan vektorin w W koordinaatteja kannan B suhteen. Merkitään koordinaatteja a 1,..., a k ; ts. Huomataan, että w = a 1 ū 1 + a 2 ū 2 + + a k ū k. w ū 1 = (a 1 ū 1 + a 2 ū 2 + + a k ū k ) ū 1 = a 1 (ū 1 ū 1 ) + a 2 (ū 2 ū 1 ) + + a k (ū k ū 1 ) = a 1 1 + a 2 0 + + a k 0 = a 1. Vastaavalla tavalla nähdään, että w ū i = a i kaikilla i {1, 2,..., k}. Vektorin w koordinaatit saadaan siis laskemalla kantavektorien pistetulo vektorin w kanssa. LM1, Kesä 2012 146/218

Esimerkki 29 Vektorin w = (2, 9, 7) koordinaantit ortonormaalin kannan E 3 = (ē 1, ē 2, ē 3 ) suhteen ovat lauseen 22 nojalla w ē 1 = (2, 9, 7) (1, 0, 0) = 2, w ē 2 = (2, 9, 7) (0, 1, 0) = 9, w ē 3 = (2, 9, 7) (0, 0, 1) = 7. Siis w = 2ē 1 + 9ē 2 7ē 3. LM1, Kesä 2012 147/218

Esimerkki 30 Ortonormaali kanta Tarkastellaan esimerkissä 28 muodostettua avaruuden R 2 ortonormaalia kantaa (ū 1, ū 2 ), jossa ū 1 = 1 5 ( 1, 2) ja ū 2 = 1 5 (2, 1). Vektorin v = (3, 4) koordinaatit tämän kannan suhteen ovat lauseen 22 nojalla v ū 1 = 1 ) ((3, 4) ( 1, 2) = 5 = 5, 5 5 v ū 2 = 1 ) ((3, 4) (2, 1) = 10 = 2 5. 5 5 LM1, Kesä 2012 148/218

v = 5ū 1 + 2 5 ū 2 5 ū1 ū 1 ū 2 2 5 ū2 LM1, Kesä 2012 149/218

Matriisit Määritelmä Reaalialkioinen m n -matriisi on reaalilukutaulukko, jossa on m riviä ja n saraketta. Esimerkiksi a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn on m n -matriisi. Sanotaan, että matriisin A tyyppi on m n. Matriisissa olevia lukuja kutsutaan matriisin alkioiksi, ja rivillä i sarakkeessa j olevaa alkiota merkitään A(i, j) tai a ij. Kaikkien reaalialkioisten m n -matriisien joukkoa merkitään R m n. LM1, Kesä 2012 150/218

Esimerkki 31 Merkitään 1 0 5 3 11 2 B = 4 0 2 0. 2 6 Tällöin B on reaalikertoiminen 4 3 -matriisi eli B R 4 3. Nähdään, että B(1, 3) = 5 ja B(2, 2) = 11. LM1, Kesä 2012 151/218

Määritelmä Matriisien yhteenlasku Oletetaan, että A, B R m n. Matriisien A ja B summa saadaan laskemalla yhteen samoissa kohdissa olevat alkiot. Tuloksena on m n -matriisi A + B, jolle pätee (A + B)(i, j) = A(i, j) + B(i, j). kaikilla i {1,..., m} ja j {1,..., n}. Esimerkiksi 1 2 2 1 1 + 2 2 + ( 1) 3 1 3 4 + 0 1 = 3 + 0 4 + 1 = 3 5. 5 6 3 2 5 + 3 6 + 2 8 8 Vain matriiseja, joilla on sama tyyppi, voidaan laskea yhteen. LM1, Kesä 2012 152/218