LIFE06 ENV/FIN/000195 ELINKAARITARKASTELUT



Samankaltaiset tiedostot
Työkalu ympäristövaikutusten laskemiseen kasvualustan valmistajille ja viherrakentajille LCA in landscaping hanke

MASSASEMINAARI, HELSINGIN KAUPUNKI PUHTAIDEN KAIVUMAIDEN KÄSITTELYTEKNIIKAT

Elinkaariarvioinnin soveltaminen viherrakentamiseen

Ekoindikaattorit ohjaavat väylärakentamista. Tutkija Leena Korkiala-Tanttu VTT

Ilmastovaikutuksia vai vesistönsuojelua?

LCA in landscaping. Hanke-esitys Malmilla Frans Silvenius tutkija, MTT

Alueellinen uusiomateriaalien edistämishanke, UUMA2 TURKU

Elinkaariajattelu autoalalla

LCA-työkalun kehittäminen. Puoliväliseminaari

Ramboll. Knowledge taking people further --- Turun satama. Pernon väylän TBT-massojen kiinteyttäminen stabiloimalla, tekniset tutkimukset

Kuinka vihreä on viherkatto?

KeHa-hanke LCA-laskennan tulokset/

Life cycle assessment of light sources Case studies and review of the analyses Valonlähteiden elinkaariarviointi Esimerkkitapausten analysointia

Tievalaistuksen elinkaariarviointi. Seminaari , Light Energy -projekti Leena Tähkämö Valaistusyksikkö Sähkötekniikan ja automaation laitos

Elinkaariarvioinnin mahdollisuudet pkyrityksissä

Elinkaariklinikka: Maksuton, kevennetty arviointi pk-yrityksen tuotteiden tai palveluiden ympäristövaikutuksista ja kustannuksista

Liite 1 Taulukon 1 ohjeet Liite 2 Viitearvot Liite 3 Laskentaohjeet Liite 4 Biomassan sertifiointiohjeet Liite 5 Näytteenotto- ja

Ruoan elinkaariarviointi. Kaisa Manninen Juha Grönroos Suomen ympäristökeskus

Ohrasta olueksi -ketjun ympäristövaikutusten kehitys

Uusiomaarakentamisen mahdollisuudet

YMPÄRISTÖLUPAVIRASTO Nro 38/2007/2 Dnro LSY 2007 Y 251

Tutkittua tietoa mallasohran viljelystä ympäristövaikutusten näkökulmasta

Vuosaaren sataman melumäki, Pilaantuneen maan. MUTKU Jukka Tengvall

Hiilipihi valmistus- ja betoniteknologia

Mineraalisten luonnonvarojen kokonaiskäytön arviointi

JA MUITA MENETELMIÄ PILAANTUNEIDEN SEDIMENTTIEN KÄSITTELYYN. Päivi Seppänen, Golder Associates Oy

Prosessistabiloinnilla pilaantuneet ruoppausmassat hyötykäyttöön STABLE LIFE06 ENV/FIN/000195

Hiilijalanjälkien laskenta ja merkinnät

Metsästä tuotteeksi. Kestävän kehityksen arviointi. Helena Wessman KCL

ELINKAARIKUSTANNUSVERTAILU

Raaka-aineesta rakennetuksi ympäristöksi

Kansallisen laskentasuosituksen sisältö

EU-LIFE STABLE PROJEKTI. Ruoppausmassojen käsittely prosessistabiloimalla Pansion altaaseen

Ympäristötietoisuuden kehittäminen venealalla Sustainable boating. Tekesin Vene ohjelma. Hannele Tonteri

KeHa-hanke Elinkaariajattelu

ABSOILS EU LIFE -HANKE YLIJÄÄMÄSAVIEN HYÖTYKÄYTÖN PILOTOINTI

LIVI HANKESUUNNITTELUPÄIVÄ

KeHa-hanke LCA-laskennan alustavat tulokset/

UUSIOMATERIAALIT MAARAKENTAMISESSA OHJELMA

PUITESOPIMUSKILPAILUTUS PILAANTUNEEN MAAN YM. MATERIAALIN VASTAANOTOSTA JA LOPPUSIJOITUKSESTA

Taustatietoa ekotehokkaaseen katusuunnitteluun Ohjeistusta julkiselle tilaajalle

Biometaanin tuotannon ja käytön ympäristövaikutusten arviointi

KRISTIINANKAUPUNGIN KAUPUNKI. Lapväärtinjoen ruoppauksen kalataloudellinen tarkkailusuunnitelma

Vastaanottaja Turun Satama. Asiakirjatyyppi Laadunseurantaraportti. Päivämäärä Elokuu, 2010 LIFE06 ENV/FIN/ STABLE TURUN SATAMA

RESURSSITEHOKKUUTTA RAKENTAMISEEN JA YLEISTEN ALUEIDEN YLLÄPITOON. Riina Känkänen SKTY Turku

Helsingin kaupunki Pöytäkirja 9/ (5) Ympäristölautakunta Ysp/

NAKKILAN KUNTA TILAHANKKEIDEN JA TOIMINNALLISTEN HANKKEIDEN YLEISSUUNNITTELUOHJE

Ympäristövaikutukset Ratamopalveluverkon vaihtoehdoissa

Elinkaarilaskelma Artesaaniopisto

MIHIN PANOSTAA JÄTEHUOLLON PÄÄTÖKSENTEOSSA? Mari Hupponen Tutkija Lappeenrannan teknillinen yliopisto

Kestävä kaivostoiminta II

Siilinjärven kunta. Kalliokiviainesten ottotoiminta Vuorelan alue, Siilinjärvi. Ympäristövaikutusten arviointiohjelma

MS1E ja MS3E-ikkunoiden EN ympäristöselosteet

Infrarakentamisen ympäristöasiakirja - kokonaisuus Ympäristöjohtaminen hankkeissa. Kurkistus kehityshankkeeseen

UUSIOMATERIAALIT RAKENTAMISESSA UUMA 2 KAAKKOIS-SUOMEN ALUESEMINAARI UUSIORAKENTEET KOUVOLASSA REIJO KIUKAS

Hankinnan kohteen määrittely, vertailuperusteet

EKOLASKUREIDEN KEHITTÄMINEN: LUONNONVARAT, MONIMUOTOISUUS, ILMASTOVAIKUTUKSET

STANDARDI SFS-EN ISO 14006, YMPÄRISTÖNÄKÖKOHDAT HUOMIOON OTTAVAN SUUNNITTELUN SISÄLLYTTÄMINEN YMPÄRISTÖJÄRJESTELMÄÄN

Elinkaarilaskelma, Hirvialhon koulu

Puurakennusten hiilijalanjälki. Matti Kuittinen Lauri Linkosalmi

Renotech Oy / Logistiikkaprojekti loppuesitelmä

Hiilijalanjälki rakennusmääräyksiin. Julkiset vihreät rakennushankinnat. Kiertotalous ja materiaalitehokkuus

EU-LIFE ABSOILS, SAVET HYÖTYKÄYTTÖÖN

ENKAT hanke: Biokaasun tuotantoketjun energiatase ja kasvihuonekaasupäästöt. MMM Mari Seppälä Jyväskylän yliopisto Bio- ja ympäristötieteiden laitos

ENERGIA- JA METSÄTEOLLISUUDEN TUHKIEN YMPÄRISTÖKELPOISUUS

Näkökulmia biopolttoaineiden ilmastoneutraalisuuteen palaako kantojen myötä myös päreet?

Julia hanke TARTU TOSITOIMIIN! Ilmastonmuutos Helsingin seudulla hillintä ja sopeutuminen

Jätevesilietteen eri käsittelyvaihtoehtojen kasvihuonekaasupäästöt pohjoisissa olosuhteissa

YHDYSKUNTARAKENTEELLISEN TARKASTELUN TÄYDENNYS (maaliskuu 2008)

Öljyalan Palvelukeskus Oy Laskelma lämmityksen päästöistä. Loppuraportti 60K Q D

ELMAS 4 Laitteiden kriittisyysluokittelu /10. Ramentor Oy ELMAS 4. Laitteiden kriittisyysluokittelu. Versio 1.0

Ympäristöarvioinnin työkalut metsästä loppukäyttäjille (PEnA)

Keha-hanke Elinkaariajattelu

Kiviaineksen tekniset laatuominaisuudet. Pirjo Kuula TTY/Maa- ja pohjarakenteet

KeHa-hanke Karjalanpiirakan LCA

Skanskan väripaletti TM. Ympäristötehokkaasti!

Cargotecin ympäristö- ja turvallisuustunnusluvut 2012

LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 AS OY PUUTARHAKATU 11-13

Teollisuuden sivuvirrat ja niiden hyödyntäminen symbioosituotteina

Vesijalanjäljen laskenta ISO/DIS Helena Wessman-Jääskeläinen, VTT. ISO sarjan jalanjälkistandardit tutuiksi SFS 23.4.

Betonikuorma, joka kuormittaa vähemmän ympäristöä.

Östersundomin maa-aines-yva

Rauman kaupunki Yrityspalvelut

Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari

LCA IN LANDSCAPING. Kestävien, kierrätysmateriaaleja hyödyntävien viherrakennuskohteiden kustannus-hyöty-analyysi. Tiina Ruuskanen

Kainuun jätehuollon kuntayhtymä Eko-Kymppi. KAINUUN YMPÄRISTÖOHJELMA 2020 Ympäristöseminaari

Biohiilen käyttömahdollisuudet

Biopolttoaineiden ympäristövaikutuksista. Kaisa Manninen, Suomen ympäristökeskus Uusiutuvan energian ajankohtaispäivät

Betonikivien soveltuvuus ajoneuvoliikennealueille

BiKa-hanke Viitasaaren työpaja Uusiutuvan energian direktiivi REDII ehdotus

Metsätuotannon elinkaariarviointi

RAKENNUSTARVIKELAUSUNTO EPSCement EC350M/EC350P/EC200K

LUVAN HAKIJAN JA LAITOKSEN TIEDOT

LUVAN HAKIJAN JA LAITOKSEN TIEDOT

Energiantuotannon tuhkien hyödyntäminen. Eeva Lillman

Materiaalinäkökulma rakennusten ympäristöarvioinnissa

EU LIFE HANKE ABSOILS PÄÄKAUPUNKISEUDUN YLIJÄÄMÄSAVET HYÖTYKÄYTTÖÖN. Mediatiedote, julkaisuvapaa heti

JÄTEHUOLTOPÄIVÄT Kati Tuominen Tarpaper Recycling Finland Oy

Metsäenergian hankinnan kestävyys

EU:n elinkaariarviointia koskevat aloitteet tavoitteet ja jatkosuunnitelmat

Transkriptio:

LIFE06 ENV/FIN/000195 Cement manufacturing Production of Industrial Residues /by-products Transport of dredging equipment to the site Transports Atmospheric emissions Energy (fuel etc.) Dredging Storage of binder components and aggregates Releases to water / sea environment Natural resources - stone materials - other Transport of dredged material Stabilisation process Stabilisation lagoon Filling with stabilised material Solid waste Transport of stabilisation equipment to the site Transport of equipment for the lagoon filling to the

Päivämäärä Laatija Tarkastaja Maaliskuu 2009 (final) Aino Maijala Pentti Lahtinen Viite LIFE06 ENV/FIN/000195 Task 3

SISÄLTÖ Terminologiaa 5 1. Johdanto 7 2. Elinkaariarvioinnin menetelmät 10 2.1 Ympäristövaikutusten arviointi, LCA 10 2.2 Elinkaaritaloudellisuuden arvioiminen, LCC 12 3. Elinkaaritarkastelun kuvaus 14 3.1 Tavoitteet 14 3.2 Ympäristövaikutusten arviointi ja valitut vaikutusluokat 14 3.3 Skenaariot, tuotejärjestelmät ja toiminnallinen yksikkö 15 4. Elinkaarilaskennan tiedot 20 4.1.1 Materiaalit 20 4.1.2 Ruoppaus 22 4.1.3 Stabilointi 26 4.1.4 Kaatopaikkakäsittelyt 31 4.1.5 Kiviainestäyttö 31 4.1.6 Ominaispäästöt 32 4.1.7 Tarkastelun ulkopuolelle jätetyt prosessit ja järjestelmät 34 5. Elinkaarilaskennan tulokset 36 5.1 Ympäristövaikutukset 36 5.1.1 Materiaalien tuotanto 36 5.1.2 Materiaalien kuljetukset 38 5.1.3 Ruoppaus ja purku 41 5.1.4 Stabiloinnit ja satama-altaan täyttö 42 5.1.5 Koneiden ja laitteiden mobilisaatio 45 5.1.6 Yhteenveto ympäristövaikutuksista 46 5.2 Kustannusvaikutukset 51 5.3 Lähtötietojen muutoksen vaikutus tuloksiin 54 5.3.1 Ruoppauksen ja stabiloinnin kapasiteetin käyttöasteen paraneminen 54 5.3.2 Sementin korvaaminen lentotuhkalla sideaineseoksessa 56 3

6. Ympäristövaikutusten testaus ja seuranta 59 6.1 Materiaalien testaukset reseptoinnin yhteydessä 59 6.2 Pilottikohteessa tehty ympäristöseuranta 61 6.3 Pilottiin liittyvät samentumistutkimukset 66 7. Johtopäätöksiä elinkaaritarkasteluista 69 Kirjallisuus 71 4

TERMINOLOGIAA Seuraavassa on joitakin keskeisiä elinkaaritarkasteluihin liittyviä määritelmiä, joista osa on poimittu standardista SFS-EN ISO 14040 ja osa mm. RIL:in Elinkaaritekniikan sanastosta (RIL 242-2007) sekä Myllymaa ym. raportista Jätteiden kierrätyksen ja polton ympäristövaikutukset ja kustannukset (SY39/2008) Elinkaaren jakso Elinkaari Elinkaariarviointi on erikseen määritelty tuotteen elinkaaren osa; esimerkiksi tien käyttöikäjakso peruskorjausten välillä, ja tämä puolestaan koostuu kunnossapitojaksoista. Tuotteen l. tuotejärjestelmän elinkaarella tarkoitetaan sen peräkkäisiä ja vuorovaikutteisia vaiheita raaka-aineiden hankinnasta tai tuottamisesta luonnonvaroista loppusijoitukseen on ISO 14040 ja 14044 standardeissa määritelty, tuotejärjestelmän elinkaaren aikaisten syötteiden ja tuotosten sekä potentiaalisten ympäristövaikutusten arviointi. Elinkaareen sisällytetään kaikki vaiheet raakaaineiden hankinnasta loppusijoitukseen. Elinkaareen kuuluvat myös järjestelmän energian kulutus ja kuljetukset. Kustakin elinkaarivaiheesta kootaan tiedot käytetyistä materiaali- ja energiavirroista sekä ilmaan, veteen ja maaperään päätyvistä päästöistä, ns. inventaariovaiheessa. Inventaarioanalyysin tulokset luokitellaan eri ympäristövaikutusluokkiin. Elinkaariarvioinnissa arvioidut ympäristövaikutukset eivät pyri kuvaamaan todellisia vaikutuksia. Ympäristövaikutustuloksia verrataan aina johonkin, minkä takia erilaisten tuotejärjestelmien tai niiden osien suhteelliset erot ympäristövaikutusten aiheuttajana riittävät arviointien perustaksi. Elinkaarikustannus GWP Toiminnallinen yksikkö Tuote on tuotteen eli rakennetun kohteen tai sen osan kokonaiskustannukset koko tarkasteltavan elinkaarijakson ajalta Ilmaston lämpenemispotentiaali (global warming potential) 1 on indeksi, joka kertoo tarkasteltavan tuotejärjestelmän, tietyn yksikköprosessin, jonkin aineen ym. vaikutuksen ilmaston muutokseen / lämpenemiseen. Hiilidioksidin (CO 2 ) GWP-arvo on 1.0 ja muiden aineiden arvoja verrataan hiilidioksidiin. Tässä käytettyjä kertoimia ovat metaanille (CH 4 ) 23 ja typpioksiduulille (N 2 O) 310. Toisin sanoen metaani on ainakin 23 kertaa voimakkaammin vaikuttava kasvihuonekaasu kuin hiilidioksidi. Käytetyillä kertoimilla ilmastomuutokseen vaikuttavat päästöt siis muunnetaan ilmastovaikutuksiltaan yhteiseen yksikköön, CO 2 -ekvivalenteiksi. on tuotejärjestelmän määrällinen suorituskyky, jota käytetään referenssiyksikkönä elinkaariarvioinnissa. Toiminnallinen yksikkö on esimerkiksi 1000 kuivatonnia ruopattua, pilaantunutta sedimenttiä. on mikä tahansa tavara tai palvelu, myös esim. tietty tie, tieosuus, tieverkosto 1 GWP käsitteen esitti vuonna 1990 IPCC (Intergovernmental Panel on Climate Change); Finnveden et al., 1992, s. 190 5

Tuotejärjestelmä Vaikutusluokka on sarja yksikköprosesseja, joissa on perusvirtoja ja tuotevirtoja, jotka toteuttavat yhden tai useampia määriteltyjä toimintoja ja jotka kuvaavat tuotteen elinkaarta. Ympäristökysymyksiä nimitetään elinkaariarvioinnissa vaikutusluokiksi, jotka ilmentävät päästöjen erikseen sovittuja vaikutuksia. Näitä vaikutuksia syntyy määrätyn syy-seurausketjun perusteella. Vaikutusluokkia ovat esimerkiksi ilmastomuutos ja luonnonvarojen kulutus. Samoja vaikutuksia aiheuttavat päästöt karakterisoidaan eli muunnetaan vaikutusluokkaindikaattorin yhteiseen yksikköön l. indeksiin (kuten GWP) Yksikköprosessi on pienin inventaarioanalyysissa huomioon otettava osa, jonka suhteen syöte- ja tulostiedot määritellään. Yksikköprosesseja voivat olla esimerkiksi: sementin valmistus, ruoppaus, ruoppausmassan kuljetus, stabilointi jne. 6

1. JOHDANTO STABLE-projektin tarkoituksena on ollut esitellä ja testata pilottiprosessia pilaantuneen sedimentin ruoppaamiseksi ja stabiloimiseksi hyötykäyttöön. Testauksessa on haluttu osoittaa, että ympäristöruoppauksen ja prosessistabiloinnin yhdistelmä pilaantuneiden sedimenttien käsittelyssä toimii ympäristön kannalta turvallisella, taloudellisesti kannattavalla ja teknisesti hyväksyttävällä tavalla. Elinkaaritarkastelun tarkoituksena on tarkastella STABLE-projektissa toteutetun pilottiratkaisun ympäristövaikutuksia ja kustannuksia, ja vertailla pilottiratkaisua muutamiin vaihtoehtoihin käyttäen lähtökohtana elinkaarenaikaisten ympäristövaikutusten arviointia (Life Cycle Assessment, SFS-EN ISO 14040) ja elinkaarikustannusten arviointia (LCC, Life Cycle Cost assessment, ISO 15686-5). Elinkaaritarkastelut perustuvat STABLE-projektiryhmän urakoitsijoiden ja Turun Sataman asiantuntijoiden antamiin tietoihin sekä yleisesti käytettävissä oleviin tietoihin energian ja polttoaineiden ominaispäätöistä sekä sementin ja kiviainesten tuotannon ominaispäätöistä. Elinkaaritarkasteluissa on otettu huomioon myös stabiloinnin seurantatutkimusten tulokset (Seurantaraportti 2009). Ruopattavat sedimenttien on todettu sisältävän orgaanisia tinayhdisteitä sekä muita orgaanisia ja epäorgaanisia haitta-aineita sellaisia määriä, että ne ylittävät ohjearvot mereen sijoittamiselle (YO 117/2004 ; LSY-2007-Y-92/2008). Tällaiset pilaantuneet massat on käsiteltävä ympäristölle turvallisella tavalla ja sijoitettava kaatopaikalle, jollei niitä voi hyötykäyttää. Turun Sataman valintana oli hyödyntää Aurajoen suulta ruopattavat massat Pansion satama-alueen laajentamisessa eli konttivaraston perustuksessa (ao. Länsi-Suomen Ympäristölupaviraston lupapäätös LSY- 2007-Y-113/2008). Käytännössä massojen läjittäminen Turun alueella sijaitsevalle kaatopaikalle ei ollut mahdollisuutta, vaikka pilaantuneet massat olisivatkin täyttäneet tavanomaiselle kaatopaikalle sijoittamiselle asetetut kriteerit (Wahlström ym. 2006 "Jätteiden kaatopaikkakelpoisuuden toteaminen"; Valtioneuvoston päätös kaatopaikoista 861/1997 ja muutos 202/2006 sekä liite 2 jätteiden kaatopaikkaluokittelusta perustuen neuvoston päätökseen direktiivin 1999/31/EY 16 artiklan ja liitteen II mukaisista perusteista ja menettelyistä jätteen hyväksymiseksi kaatopaikoille). Täten stabiloinnin vaihtoehtona oli massojen kuljetus suhteellisen kauas, arviolta ainakin sadan kilometrin päähän Turun alueelta, mikä on kallis vaihtoehto. Lisäksi runsaasti vettä sisältävät massat olisi täytynyt kuljettaa mahdolliselle sijoituspaikalle säiliöautoilla, mikä on käytännössä vaikea järjestää. Ruoppaus toteutettiin ohuita sedimenttikerroksia kuorivalla ympäristökauhalla, jota käyttämällä vesiympäristön samentuminen kuten myös ruopatun massan vesipitoisuus saatiin mahdollisimman pieniksi. Elinkaaritarkastelussa ovat vaihtoehtoisina ruoppausmenetelmiä Terramaren ympäristökauha, Turun Sataman ympäristökauha ja normaalikauha. Stabilointi toteutettiin uudella prosessistabilointilaitteella, jonka prototyyppiä testattiin pienessä mittakaavassa jo vuonna 2007, ja jonka parannettu versio saatiin laajamittaisempaan testiin syksyllä 2008. Elinkaaritarkastelussa vaihtoehtona on jo vakiintunut massastabilointimenetelmä, jota myös käytettiin Turussa vuonna 2007. Stabiloinnin sideaineena käytettiin kaupallisen sideaineen ja teollisuuden sivutuotteisiin perustuvien sideaineiden seosta (sementti+masuunikuona+lentotuhka). Lentotuhka oli kostutettua ja 0 6 kk varastoitua kivihiilen polton lentotuhkaa Fortumin Naantalin voimalaitokselta. Sivutuotekomponenteista ainakin lentotuhka luokitellaan vielä jätteeksi, jonka sideainekäyttö pyritään hy- 7

väksyttämään ja tuotteistamaan. STABLE-projektin pilottikohteessa sideaineseoksessa käytettiin osittain kostutettuna varastoitua lentotuhkaa, joten projektissa on otettu huomioon lentotuhkan saatavuus vastaavaan käyttöön eri vuodenaikoina. Kuivavarastot ovat pieniä ja kalliita, ja niihin lämmityskaudella kertyvä tuhkamäärä ei riitä rakentamisen tarpeisiin, vaikka varastointitapa onkin ihanteellinen lentotuhkan ominaisuuksien säilyvyyden kannalta. Kasalla varastoitu lentotuhkaa on saatavissa runsaasti ympäri vuoden, ja sen ominaisuudet ovat kelvollisia, mikäli varastokasa on suojattu sään vaikutuksia vastaan. Tällainen lentotuhka vaatii kuitenkin enemmän aktivoivaa komponenttia kuten sementtiä sideaineseoksessa. Ruopatun massan stabiloinnin vaihtoehdoksi otettiin massan kuljettaminen kaatopaikalle (esimerkiksi läjitettäväksi tai peittomateriaaliksi), jolloin Pansion satama-altaan täyttöön käytettäisiin kiviaineksia, kuten louhetta. Osa tästä kiviaineesta olisi mahdollista saada muista Turun alueen rakentamisista syntyvistä ylijäämämassoista. Tällaiseen vaihtoehtoon liittyy oletus, että lentotuhkan jää hyödyntämättä ja läjitetään jätteenä. STABLE-projektin "elinkaaritarkastelut" on hieman harhaanjohtava termi, koska tarkasteltavana ei ole satama-altaan stabiloidun pohjarakenteen koko elinkaari tai edes käyttöikä stabiloinnista ensimmäiseen peruskorjaukseen. Stabiloidut ruoppausmassat ovat satama-altaan pohjarakennetta, jonka päällisrakenteet varastokenttää varten ovat vielä tämän raportin aikana toteuttamatta. Stabilointia ja satama-altaan päälle tehtävän konttivarastoalueen rakentamista seuraavien sadan vuoden aikana konttivarastoalueella ei oleteta olevan mitään pohjarakenteeseen ulottuvia kunnossapitotarpeita. Tulevat hoito- ja kunnossapidon toimenpiteet kohdistuvat päällisrakenteisiin. Laskelmiin sisältyvät vain ruoppauksen ja stabiloinnin eri vaihtoehtojen ympäristövaikutusten ja kustannusten tarkastelut ja vertailut. Ympäristövaikutuksista on tarkasteltu luonnonvarojen kulutusta sekä energian kulutusta ja siihen liittyviä vaikutuksia ilmastomuutokseen (ilmaston lämpenemispotentiaali, CO 2 ekv). Laskennan tulokset osoittavat, että stabiloinnissa merkittävin ilmastomuutokseen vaikuttava tekijä on sideaineessa käytetty sementti, koska sementin tuotannon energian kulutus on suuri. Sementin tuotannon energiatehokkuuden parantaminen parantaisi myös stabiloinnin ympäristövaikutuksia. Myös sementtiä korvaavien ja valmistuksessa sekä käytössä energiatehokkaiden sideainekomponenttien kehittäminen on toivottavaa. Jollei sideaineen käyttöön perustuvia ilmaan päästöjä oteta huomioon, ovat stabiloinnit ympäristövaikutusten kannalta ja taloudellisesti edullisempia kuin se tavanomainen vaihtoehto, jossa satama-alueen laajentamiseen ja konttivarastoalueen perustuksiin käytetään kiviaineksia (ja ruoppausmassoja ei hyödynnetä vaan ne läjitetään). Vertailussa on todettavissa, että stabilointiin liittyy: - merkittävästi vähemmän kuljetuksia, mikä nähdään pienempänä energian kulutuksena ja pienempinä kustannuksina - pienemmät riskit pilaantuneiden massojen aiheuttamalle maaympäristön ympäristökuormituksille, kun massoja ei siirretä minnekään satama-ympäristöstä - merkittävästi vähemmän uusiutumattomien luonnonvarojen kulutusta, mikä on ympäristövaikutusten kannalta edullista. Se saattaa usein olla myös taloudellisesti ja materiaalihuollon kannalta edullista, kun kustannusbudjetin puitteissa saatavasta kiviaineksesta on puutetta. Verrattaessa eri stabilointimenetelmiä voidaan osoittaa, että prosessistabilointi on massastabilointia edullisempi sekä ympäristön että kustannusten kannalta, mutta edellyttää hyvin tehokkaasti järjestettyä stabiloitavan massan syöttöä ja melko mittavaa hanketta täyttääkseen nämä odotukset. Prosessistabiloinnin etuja ovat mm. - pienempi sideainemäärä, koska stabiloinnin tulos on tasaisempi (homogeenisempi seos) - teknisesti parempi tulos (homogeenisempi seos; Seurantaraportti 2009) 8

- kustannustehokkaampi, etenkin jos käsitellään suuria massamääriä ja massan syöttö sekoittimeen on tehokasta. 9

2. ELINKAARIARVIOINNIN MENETELMÄT Eräs niistä työkaluista, joiden avulla voidaan kuvata ja arvioida erilaisten tuotteiden (kuten erilaisten maarakennusprosessien) kustannus- ja ympäristövaikutuksia pitkällä aikavälillä, on elinkaariarviointi, johon sisältyy elinkaarenaikaisten kustannusten ja ympäristövaikutusten arviointi. 2.1 Ympäristövaikutusten arviointi, LCA Yleensä elinkaariarviointi ymmärretään tuotteen elinkaarenkaarenaikaisten ympäristövaikutusten arviointina josta käytetään lyhennettä LCA (Lindfors, L-G. 1995, Lindfors ym. 1995a, ja Lindfors ym. 1995b). SETACin (Society of Environmental Toxicology and Chemistry) mukaan Elinkaariarviointi (LCA) on objektiivinen prosessi jonkin tuotteen, prosessin tai toiminnon elinkaaren aikaisten ympäristövaikutusten arvioimiseksi. Standardiin ja virallisemmin nykyään käytettyihin sanastoihin (SFS-EN ISO 14040, osa RIL:in Elinkaaritekniikan sanastosta RIL 242-2007) perustuvat määritelmät on esitetty tämän raportin alussa seuraavasti (ks. terminologia): - Tuotteen l. tuotejärjestelmän elinkaarella tarkoitetaan sen peräkkäisiä ja vuorovaikutteisia vaiheita raaka-aineiden hankinnasta tai tuottamisesta luonnonvaroista loppusijoitukseen. - Elinkaariarviointi on laskentamenettely, jolla tuotejärjestelmään liittyviä syötteitä, tuotoksia, ympäristönäkökohtia, ympäristöhaittoja ja ympäristövaikutuksia arvioidaan kaikissa tarkasteltavan elinkaarijakson vaiheissa ja koko tarkasteltavan elinkaarijakson ajalta. Elinkaariarvioinnissa (LCA) selvitetään ja määritetään mahdollisimman yksityiskohtaisesti, ja mielellään kvantitatiivisesti, tuotteen ympäristökuormitukset sen elinkaaren eri vaiheissa, ja arvioidaan kuormituksien vaikutukset ympäristöön. Lisäksi määritellään toimenpiteet näiden ympäristövaikutusten parantamiseksi. Oikeaoppiseen elinkaariarviointiin otetaan mukaan tuotteen elinkaaren kaikki vaiheet alkaen luonnonvarojen otosta ja jalostamisesta ja päättyen loppuun käytetyn, kuluneen tuotteen hajoamiseen kaatopaikalla. Elinkaariarviointi käsittää tavallisesti ainoastaan tuotteen ympäristövaikutukset rakennettuun ja luonnon ympäristöön, ja elollisen luonnon sekä ihmisten terveyteen. Ulkopuolelle jäävät inhimillisen toiminnan muut vaikutukset, kuten taloudelliset (LCC) ja sosiaaliset vaikutukset. Elinkaariarviointia käytetään sekä julkisiin että yksityisiin tarkoituksiin. Julkiset elinkaariarvioinnit ovat esim. jonkin tuotantosektorin tai jopa yksittäisen teollisuusyrityksen sisäisiä elinkaariarviointeja sen perustuotteista tavoitteena mm. tiedottaminen tuotteiden ja tuotantoprosessien ominaisuuksista ao. sidosryhmille. Julkishallinnossa elinkaariarviointia voidaan käyttää mm. ympäristöpoliittisen ohjauksen välineenä; virallisimmin sitä on käytetty mm. ympäristömerkkien kriteerien asettamisessa sekä infra-alalla Tiehallinnon ja VTT:n projekteissa (mm. Eskola ym. 1998 ja 1999, Petäjä ym. 2001, Korkiala-Tanttu ym. 2005 ja 2006 /TIEH 3200998, ja RT 2005). Yksityisesti elinkaariarviointia ovat käyttäneet lähinnä suuryritykset, jolloin menetelmää on tarvittu lähinnä sisäisessä käytössä mm. strategisen suunnittelun työvälineenä, tuotekehityksessä, markkinointiviestinnässä, ja yleisesti toiminnan ympäristövaikutuksien selvittämiseksi (esim. Maijala 2001). Elinkaariarvioinnin menetelmiä on kehitetty eri puolilla maailmaa ainakin 1970-luvulta lähtien. Nykyisin metodiikkaan pyritään yhdenmukaistamaan ja siitä on olemassa suomenkieliset standardit kuten SFS-EN ISO 14040:2006. Ympäristöasioiden hallinta. Elinkaariarviointi. Periaatteet ja pääpiirteet. 10

SFS-EN ISO 14044:2006. Ympäristöasioiden hallinta. Elinkaariarviointi. Vaatimukset ja suuntaviivoja. Standardit pohjautuvat 1990-luvulla yleisesti hyväksyttyihin periaatteisiin ja menetelmään. Tällainen yleisesti hyväksytty menetelmä rakentuu neljästä päävaiheesta alla olevan taulukon (1) mukaisesti. Taulukko 1: Elinkaariarvioinnin vaiheet Vaihe 1. Suunnittelu eli tavoitteiden määrittely ja rajaukset (Goal definition and scoping) 2. Inventaarin l. ekotaseen laatiminen (Inventory) 3. Vaikutusten arviointi (Impact assessment) 4. Tulosten soveltaminen l. parannustoimenpiteiden arviointi (Improvement assessment) Sisältö Määritellään mm. miksi elinkaariarviointi tehdään, mihin tuloksia käytetään, miten tutkimuksen kohde rajataan, mitä tutkimuksen tulee sisältää ja minkälaisia tietoja tarvitaan. Tiedot tutkittavan tuotejärjestelmän eri osiin syötettyjen materiaalien ja energian määrästä ja laadusta sekä järjestelmän eri osista poistuvien materiaalien, tuotteiden ja päästöjen määrästä ja laadusta. Tietoja muokataan ja ne kohdennetaan mm. pää- ja sivutuotteille; tietoja yhdistetään valituille muuttujille (ympäristökuormitukset) Ympäristökuormitukset ryhmitellään valittuihin ympäristövaikutusten luokkiin. Kunkin luokitellun tekijän vaikutus ympäristöön kuvataan kvalitatiivisesti ja kvantitatiivisesti. Arvioidaan eri vaikutusluokkien painoarvo ja merkitys. Subjektiivisuus ei ole täysin vältettävissä. Arvioidaan vaihtoehtoisia mahdollisuuksia hyödyntää tuloksia käytännössä Perusvalintoja ovat mm. tuotejärjestelmä ja toiminnallinen yksikkö. Tuotejärjestelmä on sarja yksikköprosesseja, joissa on perusvirtoja ja tuotevirtoja, jotka toteuttavat yhden tai useampia määriteltyjä toimintoja ja jotka kuvaavat tarkasteltavaa tuotteen elinkaarta. Tuotejärjestelmä voidaan kuvata esimerkiksi kuvan (1) mukaisella yksinkertaisella tavalla (tämän raportin tarkoittamaa tuotetta ajatellen). Toiminnallinen yksikkö on tuotejärjestelmän määrällinen suorituskyky, jota käytetään referenssiyksikkönä elinkaariarvioinnissa. STABLE-projektissa toiminnallisena yksikkönä on 1000 (kuiva-)tonnia ruopattua massaa (karakterisointi luvussa 3.3). Elinkaariarvioinnin suunnitteluvaiheessa tehdyt määritelmät ohjaavat seuraavien vaiheiden suorittamista ja vaikuttavat mm. tutkittavan tuotejärjestelmän rajauksiin. Ohjaavana määritelmänä on esimerkiksi se, käytetäänkö elinkaariarvioinnin tuloksia yrityksen sisäiseen tutkimus- ja kehitystoimintaan vai yrityksen ulkoisessa viestinnässä ja muussa markkinoinnissa. Inventaari voi olla kvalitatiivinen tai kvantitatiivinen. Kvantitatiivisessa inventaarissa ympäristökuormituksille annetaan numeeriset arvot, joita voidaan käyttää edelleen kvantitatiiviseen vaikutusten arviointiin. Kvalitatiivisilla lisätiedoilla täydennetään kvantitatiivista informaatiota, mutta pelkän kvalitatiivisen inventaarin tekemistä ei pidetä yleensä riittävänä tai edes mielekkäänä. Joissakin tapauksissa on mahdollista arvioida tarkastellun järjestelmän vaikutukset ympäristöön jo inventaarin tai ekotaseen (LCI) perusteella. Kaikkia tavoitteita tämä ei tyydytä, sillä inventaarin tiedot ympäristökuormituksesta sellaisenaan eivät kerro mitään niistä aiheutuvien ongelmien laadusta ja mittasuhteista. Tämän vuoksi tarvitaan vaikutusten arvioinnin vaihetta, jossa systemaattisesti luokitellaan ja arvotetaan inventaarin tulokset. Vaikutusluokkina voivat olla esimerkiksi luonnonvaro- 11

jen kulutus ja ilmastomuutos, jonka indeksinä on ilmaston lämpenemispotentiaali (GWP). Arvottamisessa määritetään ympäristövaikutusten merkitys ja tärkeysjärjestys. Se on yksinkertaisimmillaan esimerkiksi tietyn tuotteen vuosittaisesta valmistuksesta aiheutuva luonnonvarojen kulutus verrattuna ao. teollisuusalan koko vuosituotannosta aiheutuvaan luonnonvarojen kulutukseen Suomessa. Elinkaariarvioinnin tulosten laatutaso riippuu siihen saatavilla olevien tietojen (datan) ja niiden soveltamisen laatutasosta. Tietojen laatutasoa indikoivat käytettyjen lähdeviitteiden asiatuntijalähteiden mukaan erilaiset laatutekijät, kuten - virheettömyys - luotettavuus - koskemattomuus (integriteetti): tieto on täydellistä ja alkuperäistä - käyttökelpoisuus: tieto on dokumentoitu ja julkista - siirrettävyys: tietoa voidaan siirtää ja käyttää elinkaariarvioinnissa - ylläpidettävyys, täydentävän tiedon tarve sekä saatavuus - joustavuus: tietoa on helppo muokata - testattavuus ja tarkistettavuus Tietojen laatutasoon vaikuttavat tietojen keruussa käytettävissä olevat resurssit ja valmiit tietokannat. Korkeimman laatuluokan tietoa on sellainen, joka perustuu tarkoin määriteltyihin, pitkällä aikavälillä suoritettuihin ja jatkuviin mittauksiin tutkittavasta prosessista, sekä joka on puolueettoman tahon todentamaa ja varsin tuoretta, korkeintaan alle kolme vuotta vanhaa. Heikointa on tieto, jonka alkuperää ei voida todentaa ja joka arvioidaan tuntematta prosessia tai tuotetta. Elinkaariarvioinnin asiantuntijoiden mielestä onkin parempi tyytyä vähään määrään tietoa kuin olla tinkimättä kvantitatiivisen tiedon laadussa. Mm. Kirkpatrick (1995) korostaa kuitenkin sitä, että mikäli elinkaariarvioinnissa vaaditaan täydellisyyttä ja hyväksytään vain korkeatasoinen tieto, voivat arvioinnin suorittamisen vaatimat aika ja kustannukset kohota sellaiselle tasolle, että elinkaariarvioinnin käyttö mm. ympäristöjohtamisen työvälineenä ei ole enää kannattavaa. Elinkaaritarkasteluista saatava hyöty on vähimmillään sen antama kuvaus jonkin tuotteen tuotantoprosessin ympäristökuormituksesta ja joidenkin prosessin ympäristökuormitusta mittaavien parametrien tasosta tarkasteluhetkellä. Näitä tuloksia voidaan käyttää tuotteiden ja tuotantoprosessin kehittämisessä ja kehityksen seurannan lähtökohtana. Mikäli elinkaariarviointiin panostetaan enemmän, kyetään parantamaan tiedon ja täten elinkaariarvioinnin laadun tasoa, mutta väistämättä tulee vastaan jokin taso, jossa tiedot ovat lähes täydelliset, mutta elinkaariarvioinnin tuloksista ei enää ole käytännön hyötyä. 2.2 Elinkaaritaloudellisuuden arvioiminen, LCC Tarkasteltavan elinkaaren aikaisten kustannusten arvioiminen (LCC tai LCCA) perustuu investointilaskelmiin, joiden avulla määritetään tietyn tuote- tai toiminnallisen yksikön kustannukset tietyn tarkasteltavan jakson l. elinkaarijakson aikana. Voidaan myös puhua jonkin tuotteen elinkaaritaloudellisuuden arvioinnista l. laskemisesta (Maijala 2005). Elinkaaritaloudellisuuden laskentaa voidaan käyttää esimerkiksi tietyn infrarakenteen perustamisen, hoidon ja kunnossapidon pitkän aikavälin suunnittelussa sekä vaihtoehtoisten ratkaisujen kustannusten arvioinnissa ja vertailussa. Tarvetta korostaa infrastruktuurista vastuuta kantavien huoli sen rappeutumisesta. Hankkeen ja siihen kohdistuvan tarkastelun laajuus ja suunnittelun tavoitteet ratkaisevat kulloinkin mukaan otettavat kustannustekijät. Elinkaarikustannusten laskennassa tarkastellaan parhaassa tapauksessa kaikkia laskettavissa olevia kustannuksia ja hyötyjä, joita kohteen elinaikana 12

syntyy rakentamisesta, hoidosta ja kunnossapidosta sekä edellisten rahoituksesta ja kohteen käytöstä. Ylläpitokustannukset maksetaan niiden syntyaikana, joten niistä ei synny rahoituskustannuksia. Kustannuksia aiheutuu myös kohteen rakentamisen, käytön ja ylläpidon vaikutuksista ympäristöön (melu, ilman saasteet jms.). LCC-laskentamenetelmät ovat pääperiaatteiltaan samanlaisia kuin tavalliset investointilaskelmat. Yleisimmin käytettyjä menetelmiä ovat nykyarvomenetelmä, jossa kaikki tarkasteltavan aikavälin tulevaisuuden kustannukset muutetaan nykyarvoon, ja annuiteettimenetelmä, jossa kaikki kustannukset ja tulot jaetaan annuiteettitekijän avulla tarkasteluajanjakson eri vuosille yhtä suuriksi annuiteeteiksi (vuosikustannuksiksi). Ongelmia tuottavat lähinnä: - Arviointikriteerien ja rajausten määrittely - Laskentakoron määrittely: teollistuneissa maissa reaalikorko on vaihdellut 2 % ja 5 % välillä (ks. mm. Petäjä ym. 2001). Väärin valittu teoreettinen laskentakorkokanta johtaa kustannusten yli- tai aliarvottamiseen pitkällä tarkastelujaksolla. Mitä korkeampi korkokanta valitaan, sitä suurempi on vuosikustannuskertoimen arvo ja sitä merkittävämmäksi muodostuu rakennuskustannusten osuus koko tarkastelujakson kustannuksista. - Kustannuksia aiheuttavien tekijöiden tunnistaminen (etenkin vaurioitumiseen perustuvat kunnossapitotarpeet ja -ajankohdat erilaisilla rakenteilla). Tarkasteltavan kohteen hoitokustannusten osuus elinkaarikustannuksista on yleensä vähäinen. Ne ovat yleensä myös samat tarkasteltavissa eri vaihtoehtoja. Tämän vuoksi hoitokustannukset voidaan yleensä jättää kokonaan pois laskelmista. Kunnossapitokustannuksien määrittely perustuu toisaalta kohteen vaurioitumisen aiheuttamaan kunnossapitotarpeeseen (vaurioitumisen ennustamiseen) ja toisaalta valittaviin kunnossapidon toimenpiteisiin Toistaiseksi näiden kustannuksien muulle kuin kokemusperäiselle tai kohteen ylläpitäjän kunnossapitostrategiaan perustuvalle arvioinnille ei nähdä olevan riittäviä edellytyksiä. Perusedellytyksenä on yleisesti hyväksyttävien vaurioitumisen ennustemallien ja/tai kunnossapitomallien kehittyminen suunnittelun työvälineeksi. Tietyn ajanjakson kuluttua kohteen rakentamisesta tai peruskorjauksesta on rakennetta jälleen peruskorjattava. Kohteelle voidaan arvioida jäännösarvo, joka on investoinnin arvo kohteen taloudellisen pitoajan lopussa. Pitkällä tarkastelujaksolla voidaan olettaa eri vaihtoehtojen jäännösarvojen nykyarvot poikkeavan toisistaan niin vähän, että jäännösarvo voidaan jättää ottamatta huomioon. 13

3. ELINKAARITARKASTELUN KUVAUS 3.1 Tavoitteet STABLE-projektin tarkoituksena on ollut osoittaa laboratorio- ja pilottitestauksen avulla, että uusi prosessistabilointi kytkettynä ympäristön kannalta mahdollisimman turvalliseen ruoppaukseen ja monipuolisiin testeihin perustuviin sideaineratkaisuihin on teknisesti, taloudellisesti, ja ympäristövaikutusten kannalta paras käytettävissä oleva pilaantuneiden ruoppausmassojen käsittelymenetelmä. STABLE-projektin yhteydessä tehtyjen elinkaaritarkastelujen tavoitteena on osoittaa, missä määrin ja millä edellytyksin ruoppaaminen ympäristökauhalla yhdistettynä prosessistabilointiin on ympäristön ja kustannusten kannalta edullisempaa kuin (ainakin teoriassa) mahdolliset vaihtoehdot. 3.2 Ympäristövaikutusten arviointi ja valitut vaikutusluokat "Väylärakentamisen ympäristöarvot ja ekoindikaattorit" hankkeessa (TIEH 3200998) väylärakentamisen merkittävimmiksi ympäristöongelmaluokiksi arvioitiin: luonnonvarojen käyttö (painoarvo 28 %) pohjavesivaikutukset (painoarvo 15 %) ilmastonmuutos (painoarvo 14 % ) fysikaalis-mekaaniset vaikutukset (painoarvo10 %). Tämän arvioinnin tulos pätee todennäköisesti myös satama-alueen rakennushankkeisiin. Taulukossa (2) on esitetty rakennustyön aikana syntyviä ympäristövaikutuksia ja niiden aiheuttajia. Kolmannessa sarakkeessa on esitetty myös kyseisiin ympäristökuormituksiin liittyvät, väylärakentamisen ympäristövaikutusten arviointijärjestelmän (EIMI 2 ) mukaiset ympäristöongelmaluokat (TIEH 4000592). STABLE-projektin ympäristövaikutusten elinkaaritarkastelun laskelmissa päätettiin keskittyä ensi sijassa vertailemaan eri vaihtoehtojen luonnonvarojen käyttöä ja vaikutuksia ilmastomuutokseen. Viimeksi mainittu perustuu hankkeessa tarkasteltavien eri yksikköprosessien energiankulutukseen. Stabiloidun massan päästöjä maaperään ja sitä kautta vesiympäristöön voidaan arvioida hankkeen liukoisuustestien ja pilottikohteessa suoritetun ympäristöseurannan tulosten perusteella (luku 6). Pölypäästöjä muodostuu kuivien materiaalien käsittelyssä, mikäli niiden kuljetukset, siirrot ja kuormaukset tapahtuvat avoimessa tilassa. Hankkeessa kuivia materiaaleja olivat vain sideainekomponentit sementti ja masuunikuonajauhe, jotka molemmat syötettiin siiloista suoraan sekoitusprosessiin. Pölymittauksia ei ole tehty. Hiukkaspäästöjä voisi arvioida myös teoreettisesti kuljetuksiin ja työkoneiden käyttöön liittyen, polttoaineiden ominaispäästöihin liittyen, mutta nämä päästöt on todettu tässä tarkastelussa hyvin pieniksi ja jätettiin huomioon ottamatta. 2 Väylärakentamisen ympäristöarvot ja ekoindikaattorit projektissa kehitetyssä väylärakentamisen ympäristövaikutusten arviointijärjestelmässä (EIMI) ovat mukana kaikki merkittävät ympäristöongelmaluokat, jotka yhdessä kuvaavat kokonaishaittaa. Ympäristöongelmaluokkien mukaiset vaikutukset arvioidaan kuormitustekijöiden avulla. Arviointimallin käytön ongelmaksi nähtiin tarvittavien lähtötietojen saatavuus, vaihtoehtojen vertailussa kaikkien oleellisten tekijöiden huomiointi. 14

Pilottikohteessa ei ollut tarpeen tarkkailla päästöjä pohjaveteen, koska kohde sijaitsee meren rannalla ja satama-alueella. Pilottiprosessin aikana syntyy melua ja tärinää, mutta näidenkään osalta ei ole tehty mittauksia tässä projektissa. Taulukko 2: Rakennustyön aikaisia ympäristövaikutuksia ja niiden aiheuttajia (TIEH 4000592 / TIEH 3200998). Ympäristövaikutus Aiheuttajat Ympäristöongelmaluokka Luonnonvarojen käyttö Päästöt ilmaan Pölypäästöt Päästöt maaperään ja veteen Melu ja tärinä Kallioaines, sora ja hiekka, ylijäämämateriaalit, läjitettävät massat, kaatopaikalle menevät jätteet, uusiutumattomat energiaresurssit Kuljetusajoneuvot ja työkoneet, työnaikaiset liikennejärjestelyt, räjähdyskaasut, materiaalien (kuten asfaltin- ja sementin valmistus) Kiviainesten louhiminen, maaainesten kaivu, kuormaus ja kuljetus, rakentaminen Teollisuuden sivutuotteet, bitumipohjaiset materiaalit, kemikaali- / polttoainevuodot Kuormaus ja kuljetustoiminta, louhintaporaukset ja räjäytykset, murskaus ja rikotus, roudan rikkominen, paalutus sekä rakennusten ja rakenteiden purkaminen Luonnonvarojen käyttö Ilmastomuutos, alailmakehän otsonin muodostuminen, happamoituminen, rehevöityminen, paikallinen ilman laatu, suorat terveysvaikutukset Paikallinen ilman laatu, suorat terveysvaikutukset Ekotoksisuus, laadulliset pohjavesivaikutukset Fysikaalis-mekaaniset vaikutukset 3.3 Skenaariot, tuotejärjestelmät ja toiminnallinen yksikkö STABLE-projektissa on tarkasteltu ympäristö- ja kustannusvaikutuksia erilaisten skenaarioiden perusteella. Valitut skenaariot on esitetty taulukossa (3). STABLE-projektin pilotissa on testattu skenaariota S11 eli ruoppaus ympäristökauhalla ja stabilointi prosessistabilointilaitteella. Prosessistabiloinnin testausta varteen ruopattava kokonaismäärä pilaantunutta sedimenttiä oli arviolta runsaat 40 000 m 3. Todetun pilaantuneisuuden vuoksi tätä massamäärää ei ollut lupa sijoittaa meriläjitysalueelle. Turun Satama sai luvan käynnistää STABLE-projektissa tarjoutuvan vaihtoehdon, jossa pilaantuneet massat stabiloidaan ja käytetään satama-alueen laajennukseen eli konttivarastoalueen perustuksena. Tätä varten Turun satama rakensi satama-altaan eristyspenkereellä, joka rajoittuu yhdeltä sivultaan merialueeseen. Tämä eristetty satama-allas on täytetty pilottiprosessissa stabiloivalla sideaineella seostetulla ruoppausmassalla lokakuun 2008 ja helmikuun 2009 välisenä aikana. Stabiloituminen ja lujittuminen käynnistyi heti prosessistabilointilaitteessa tehdyn sekoituksen aikana ja jatkuu edelleen useita kuukausia, mahdollisesti jopa muutaman vuoden ajan. Seikkaperäisempi selostus ja eri testien tulokset ovat muussa tämän hankkeen raporttiaineistossa (mm. Seurantaraportti 2009). 15

Kaikki muut taulukossa (3) esitetyt skenaariot ovat teoreettisia vaihtoehtoja. Ympäristöviranomaisten nimenomaisissa lupaehdoissa (ao. Länsi-Suomen Ympäristölupaviraston lupapäätös LSY-2007-Y-113/2008) ruopattua massaa tuli ensisijaisesti käsitellä testattavalla prosessistabilointilaitteella ja massastabilointi sallitaan vain poikkeustilanteessa. Ruoppaus oli toteutettava ympäristökauhaa käyttäen, jotta sen vaikutukset vesiympäristöön olisivat mahdollisimman vähäiset. Täten myös normaalikauhan käyttö oli käytännössä poissuljettu vaihtoehto. Aurajoen ruoppausmassat ovat siinä määrin pilaantuneita, että niitä ei saanut läjittää mereen, mutta pilaantuneisuus on kaatopaikkakelpoisuuden kriteerien perusteella niin vähäistä, että massat voisi sijoittaa tavanomaiselle kaatopaikalle. Tällöin satama-allas täytettäisiin kiviaineksella, kuten louheella. Tämän vuoksi S2 vaihtoehto on periaatteessa mahdollinen. Käytännössä olisi kuitenkin ollut ongelmia ja lisäkustannuksia johtuen mm. siitä, että pilaantuneet ja runsaasti vettä sisältävät ruoppausmassat on kuljetettava kaatopaikalle säiliöautolla, sillä satama-alueella ei ole tilaa ruoppausmassojen väliaikaiselle sijoittamiselle vedenpoistotarkoituksessa; ruoppausmassojen sisältämät vedet olisi kerättävä ja johdettava muualle vedenpuhdistusta varten, ja vastaanottavaa kaatopaikkaa ei löydy Turun alueelta vaan mahdollisesti vasta suhteellisen pitkän matkan päästä, vähintään 75 kilometrin säteellä; kiviainesta tarvitaan paljon ja sen saatavuudessa on esiintynyt ongelmia etenkin silloin, kun pyritään käyttämään muissa rakennushankkeissa muodostuvaa ylijäämäkiviainesta. Taulukko 3: STABLE-skenaariot (lyhenteitä on käytetty tuloksia esittävissä kuvissa) S1 Ruopattujen massojen hyödyntäminen tulevan konttivarasto-alueen perustuksena S11 Ruoppaus ympäristökauhalla, stabilointi prosessistabiloinnilla S12 Ruoppaus normaalikauhalla, stabilointi prosessistabiloinnilla S13 Ruoppaus ympäristökauhalla, stabilointi massastabiloinnilla S14 Ruoppaus normaalikauhalla, stabilointi massastabiloinnilla S2 Vaihtoehto, jossa käytetään kiviaineksia stabiloidun ruoppausmassan sijasta Ruopatut massat läjitetään lähialueella sijaitsevalle eristetylle kaatopaikalle. Massat lastataan proomusta säiliöautoon kuljetusta varten. Vastaavasti ne lentotuhkat, joita olisi käytetty S1-vaihtoehdoissa, läjitetään voimalaitoksen sijaintipaikkakunnalla olevalle kaatopaikalle (ei oletusta hyötykäytöstä). Satama-alueen laajennus toteutetaan käyttämällä täyttöön erilaisia alueella muodostuvia ja tuotettuja kiviaineksia, osittain nämäkin ylijäämämassoja. Eri skenaarioiden tarkasteluissa on otettu huomioon tietyt yksikköprosessit, jotka ovat mukana kuvien (1 ja 2) tuotejärjestelmissä. Kuvan (1) tuotejärjestelmä liittyy stabilointeihin. Tarkastelu alkaa ruoppauksesta ja päättyy siihen, että sekoitetut / stabiloidut massat on siirretty satamaaltaaseen. Keskeisiä yksikköprosesseja ovat ruoppaus, sekoitus l. stabilointi ja massojen sijoitus satama-altaaseen. Muita tarkasteltuja yksikköprosesseja ovat sementin valmistusprosessi sekä materiaalien ja työkoneiden kuljetukset pilottipaikalle. Lentotuhka on energian tuotannon jäte ja masuunikuonajauhe on metalliteollisuuden sivutuote. Tarkastelussa oletetaan, että kaikki energian ja teollisuuden tuotantoprosesseihin tulevat panokset ja tuotantoprosesseista poistuvat tuotokset, kuten mm. päästöt ilmaan ja veteen, kohdistetaan tuotantoprosessien päätuotteille, jolloin näille jätteille / sivutuotteille ei ole kohdistettavissa mitään. Ympäristövaikutuksia tarkasteltaessa on tarkastelun ulkopuolelle jätetty myös satama-alueelle järjestetty eri materiaalien välivarastointipaikka, kaikki mahdollinen veden kulutus stabilointiprosessissa, ml. tuhkan kostutuksessa, laitteiden ja koneiden valmistus, prosessistabilointijärjestel- 16

män pystytys satama-alueelle ym. mainitsematta jääneet yksikköprosessit. Kohde tullaan stabiloinnin jälkeen esikuormittamaan, jotta myöhemmässä vaiheessa ei muodostuisi epäsuotuisia painumia. Tämän jälkeen kenttä saa päällisrakenteen. STABLE-projektissa tarkasteltava kohde on siis pohjarakenne, jonka kunnossapitojakson odotetaan olevan varsin pitkän, ainakin sata vuotta. Tarkasteluissa ei ole otettu huomioon mitään esikuormitukseen, päällisrakenteeseen, ja kohteen hoitoon ja kunnossapitoon liittyviä tekijöitä. Kuvan (2) tuotejärjestelmä liittyy vaihtoehtoon, jossa satama-allas täytetään kiviaineksella. Tällöinkin tarkastelu alkaa ruoppauksesta ja päättyy siihen, että kiviainekset on siirretty satamaaltaaseen. Keskeisiä yksikköprosesseja ovat ruoppaus, ruoppausmassojen ja lentotuhkan siirto kaatopaikalle ja satama-altaan täyttö kiviaineksella. Muita tarkasteltuja yksikköprosesseja ovat kiviaineksen tuotanto sekä materiaalien ja työkoneiden kuljetukset satamaan. Soveltuvilta osin tässä pätevät samat muutkin oletukset ja rajaukset kuin skenaarion S1 tuotejärjestelmälle. Toiminnalliseksi yksiköksi l. tuoteyksiköksi (TY) on valittu 1000 kuivatonnia pilaantunutta ruoppausmassaa. Tällä määritelmällä toiminnallinen yksikkö, jota kohti kaikki elinkaarilaskelmat tehdään, on riippumattoman ruoppausmassan vesipitoisuudesta ja sen vaihteluista. Laskelmissa tehdään kuitenkin oletukset ruoppausmassan vesipitoisuudelle, johon perustuu myös laskelmissa käytettävä sideaineseos. Laskelmat perustuvat ruoppausmassalle, joka on karakterisoitu tarkemmin STABLE-projektin teknisissä raporteissa (luku 4, Seurantaraportti 2009). 17

Sementin valmistus Voimalaitos- ja teollisuusjätteen / sivutuotteen tuotanto Ruoppauskaluston kuljetus kohteeseen Kuljetukset Päästöt ilmaan Energia (polttoaineet ym.) Ruoppaus Sideaine- ym. materiaalien varastointi satamassa Päästöt veteen / vesiympäristöön Luonnonvarat - kiviainekset - muu Ruopatun massan kuljetus satamalaiturille Stabilointi, sekoitus Satama-altaan täyttö ruoppausmassan ja sideaineen seoksella Kiinteä jäte Tarvittavan kaluston kuljetus kohteeseen Tarvittavan kaluston kuljetus kohteeseen Kuva 1. STABLE-tuotejärjestelmä skenaarioille S1 (stabiloinnit) 18

Ruoppauskaluston kuljetus kohteeseen Voimalaitostuhkan kuljetus kaatopaikalle Kiviaineksen tuotanto (kalliomurske, louhe) Ylijäämäkiviainekset muista rakennuskohteista Päästöt ilmaan Energia (polttoaine ym.) Ruoppaus Päästöt veteen Luonnonvarat - Kiviainekset Ruoppausmassan kuljetus rantaan ja edelleen kaatopaikalle Kiviainesten kuljetukset (varastointia ei oteta huomioon) Kiinteä muu jäte Satama-altaan täyttö kiviaineksella Tarvittavan kaluston kuljetus kohteelle Läjitys jätteenä kaatopaikalle (ruoppausmassa, voimalaitoksen tuhka) Kuva 2. STABLE-tuotejärjestelmä skenaarioille S2 (kiviainestäyttö) 19

4. ELINKAARILASKENNAN TIEDOT Edellä on esitetty elinkaaritarkasteluun liittyviä määritelmiä, oletuksia ja rajauksia. Tässä luvussa elinkaaritarkastelujen kuvausta tarkennetaan vielä kuvaamalla laskelmissa käytetyt tiedot ja tietolähteet, jotka koskevat sekä tarkasteltuja materiaaleja ja prosesseja että laskelmiin valittuja ominaispäätöjä. Tiedot liittyvät sekä ympäristö- että kustannusvaikutusten arviointiin. Tämän luvun taulukoiden perusteella voidaan todeta, että lopputulos on monia muuttujia koskevan valinnan summa. Tuloksia ei voi tarkastella irrallaan niihin liittyvistä oletuksista ja valinnoista. Yksikköprosessien tietoja muuttamalla on mahdollisuus testata lähtötietojen vaikutusta tuloksiin ja tehdä "entä jos" tarkasteluja. Laajat herkkyysanalyysit eivät kuitenkaan sisälly tähän tarkasteluun. Tietojen keruussa on lähdetty siitä, että itse prosessia ympäristöruoppauksesta prosessistabilointiin ja satama-altaan täyttöön stabiloidulla massalla tarkastellaan todellisin prosessitiedoin. Nämä eivät kuitenkaan ole mitään itse kohteessa mitattuja tietoja, sillä kyseessä on pilottistabilointi, johon liittyy tyypillisesti erilaisia hidastavia tekijöitä ja esiintyy myös teknisiin ongelmia. Normaaleja hidastavia tekijöitä ovat mm. ruopatun massan sisältävien sekalaisten kappaleiden (kuten polkupyörien ja autojen osat) poisto massan seasta ja ruopatun massan ominaisuuksien laaja vaihtelu liejusta soramaiseen materiaaliin. Pilotointiin liittyy puolestaan tavanomaista suurempi määrä testejä ja tarkistuksia. Prosessin kehitystarpeita, jotka perustuvat pilotoinnin tekniseen arviointiin, on pohdittu Seurantaraportissa (2009). 4.1.1 Materiaalit Elinkaaritarkastelun peruslaskelmissa käytetyt materiaalitiedot on esitetty taulukoissa 4-6. Taulukossa 5 ovat eri materiaaleista käytetyt massamäärät toiminnallista l. tuoteyksikköä (TY) kohti. Tässä taulukossa on myös karakterisoitu mainittu toiminnallinen yksikkö, jolloin 1000 t/ty kuivaa ruoppausmassa vastaa 2 174 m 3 /TY märkämassaa. Sideainemääritykset perustuvat prosessistabiloinnissa määritettyyn perussideaineeseen (suluissa käytön vaihteluväli) pikasementtiä (CEM I 52,5 R): 60 (45-75) kg/m 3 ; yleissementtiä hieman enemmän masuunikuonajauhetta (K400): 105 (0-105) kg/m 3 lentotuhkaa (Fortum, Naantalin kivihiilivoimalaitos): 100 (100-200) kg/m 3 Sideainekomponenttien määrän vaihteluväli liittyy tarpeeseen muuntaa sideainereseptiä ruopatun massan ominaisuuksien, kuten vesipitoisuuden perusteella. Käytännössä edellä mainitut määrät vaihtelivat eri ruoppausalueilta saatujen ruoppausmassojen laatuvaihtelun perusteella (ks. Seurantaraportti 2009 ja taulukko 4), mutta kokonaiskäyttö lienee vastannut perusreseptiä. Pikasementti on kalliimpaa kuin yleissementti, ja tarvittaessa se voitiin korvata yleissementillä nostamalla sementin suhteellista osuutta. Reseptin määrittelyn yhteydessä todettiin, että pikasementin avulla lujittuminen käynnistyi nopeammin ja hyvin pehmeä ruoppausmassa saatiin suhteellisen nopeasti helpommin käsiteltäväksi. Tämän lisäksi pikasementti sallii kohtalaisen suuret stabiloitavan massan vesipitoisuusvaihtelut. Prosessistabiloinnissa sideaineen sekoittuminen ruoppausmassaan on erittäin tasaista, jolloin myös massan stabiloitumisen odotetaan tapahtuvan eri osissa satama-allasta varsin tasaisesti. Taulukossa (4) määrät liittyvät prosessistabiloinnissa käytettäviin sideaineseoksiin. Massastabiloinnissa saataisiin aikaan epähomogeenisempi tulos, joten sideainetta tarvitaan enemmän (urakoitsijan laskelmissa on käytetty kerrointa 1,2). 20