Sähköasennusten perusteet Pekka Rantala Kevät 2015 Sisältö 1. Sähkötekniikan perusteita 2. Sähköasennuksia sääteleviä säännöksiä 3. 3-vaihejärjestelmä 4. Muutamia perusjuttuja 5. Kiinteistön sähköverkko 6. Suojaus sähköiskulta 1
1. Sähkötekniikan perusteita Sähkösuureita Jännite U voltti, V Virta I ampeeri, A Resistanssi R ohmi, Ω Teho P watti, W U = R I U R I P = U I P U I 2
Virtapiiri Virta I Jännitelähde (teholähde) Jännite U Kuorma (= vastus R) valaisin, lämmitin, TV, Teholähde tuottaa tehon P Kuormassa kuluu/häviää/käytetään teho P Vertaa sähkön virtaamista veden virtaamiseen! Tasasähkö, DC = Direct Current Sähkölähteessä on kiinteät plus- ja miinus-navat. Virta kulkee koko ajan samaan suuntaan. Esimerkkejä tilanteista, joissa on tasasähköä: Paristot ja akut Auton akku Kännykän tai tietokoneen laturin antama sähkö Elektroniikan käyttöjännite (esim. PC:n sisällä) Aurinkopaneeli Sähkölähteenä on kemiallinen pari (paristot, akut, aurinkopaneeli) tai elektroniikan kytkentä (laturit, teholähteet) 3
Vaihtosähkö, AC = Alternating Current Virran kulkusuunta vaihtuu jatkuvasti, virta kulkee edestakas. Sähkölähteessä ei ole pysyvää plus ja miinus-napaa. Esimerkkejä tilanteista, joissa on vaihtosähköä: Kodin pistorasiat Liesituulettimen moottori Pellolla näkyvät sähköjohdot Muuntajat Sähkölähteenä tyypillisesti pyörivä generaattori, esim. vesivoimalaitos tai tuulimylly. Kodin pistorasia Minkälaista sähköä saadaan tavallisesta pistorasiasta? Mikä merkitys on töpselin eri rei illä? 4
Kodin pistorasia nollajohdin N yhteydessä maahan vaihejohdin L kuuma karva suojamaajohdin PE yhteydessä maahan Pistorasia 230 V vaihe L nolla N Virta I Kuorma (= valaisin) maadoitus suojamaa PE Kodin sähköverkko on käyttömaadoitettu. = virtapiirin nollajohto on yhteydessä maahan. Vaihtosähkö, AC = Alternating Current 5 4 3 2 û 1 0 0 90 180 270 360 450 540 630 720-1 α[astetta] -2-3 -4 T -5 Vaihtosähkö on sini-signaalin muotoista. Se syntyy luonnostaan tasaisesti pyörivästä generaattorista. Suomessa sähköverkon taajuus f = 50 Hz, 50 kierrosta sekunnissa Jaksonpituus T on aika, jonka jälkeen kuvio alkaa toistamaan itseään uudestaan, alkaa uusi kierros. Suomessa T = 20 ms (= 1/50 Hz). û on jännitteen huippuarvo = 2 230 V 230 V on vaihtojännitteen tehollisarvo. 5
2. Sähköasennuksia sääteleviä säännöksiä Sähköturvallisuuslaki Sähköturvallisuusasetus Kauppa- ja teollisuusministeriön (Ktm) päätökset SFS-standardit (Standardisarja SFS 6000 (2012)) Turvallisuus- ja kemikaaliviraston (Tukes) ohjeet (S10 (2012)) Sähköturvallisuuslaki 410/1996 2 LUKU Sähköturvallisuuden taso, 5 Sähkölaitteet ja laitteistot on suunniteltava, rakennettava, valmistettava ja korjattava niin sekä niitä on huollettava ja käytettävä niin, että: 1. Niistä ei aiheudu kenenkään hengelle, terveydelle tai omaisuudelle vaaraa; 2. Niistä ei sähköisesti tai sähkömagneettisesti aiheudu kohtuutonta häiriötä; sekä 3. Niiden toiminta ei häiriinny helposti sähköisesti tai sähkömagneettisesti. 6
KTM:n päätös Sähkölaitteistojen turvallisuudesta 1193/1999 Sähköasennusten turvallisuutta koskeva velvoittava julkaisu Ei anna yksityiskohtaisia teknisiä määräyksiä, vaan periaatteita, että vaatimukset täyttyvät, kun noudatetaan aihetta koskevia standardeja. HUOM! Standardien käyttö ei ole pakollista, vaan niistä voidaan tietyin menettelyin poiketa. Standardien käyttö on kuitenkin aina helpoin tapa toteuttaa vaatimukset ja tämän vuoksi standardeja yleensä noudatetaan. SFS 6000 standardisarja (2012) Pienjännitesähköasennukset Standardisarja SFS 6000 sisältää 39 standardia Koskee sähköasennuksia, joiden nimellisjännite on korkeintaan 1000 V AC (tai 1500 V DC) Perustuu pääosin eurooppalaisiin harmonisointiasiakirjoihin Genelec HD 60364 Low-voltage electrical installations ja vastaavaan kansainväliseen standardisarjaan IEC 60364. Standardisarjassa on mukana myös kansallisia lisäyksiä, jotka on koottu SFS 6000-8 standardeiksi. 7
SFS 6000 standardisarjan soveltamisala (kohta 11) Sovelletaan esim. Asuinrakennukset Liikerakennukset Julkiset rakennukset Teollisuusrakennukset Maatalousrakennukset Lääkintätilat Näyttelyt, messut Rakennustyömaat EI sovelleta esim. Sähköratalaitteet Moottoriajoneuvojen sähkölaitteet Laivat, lentokoneet Sähköaitaukset Rakennusten salamasuojaus (Huom! Ylijännitesuojaus) Hissit Koneiden sähkölaitteet Sovelletaanko auton lämmitystolppien asennuksiin? Sovelletaanko matkailuajoneuvojen sähköasennuksiin? SFS 6000 sisältö karkeasti, osa 1 Perusperiaatteet, termit, yleisten ominaisuuksien määrittely Osa 4: Suojausmenetelmät Suojaus sähköiskulta (4-41) Suojaus lämmön vaikutuksilta (4-42) Ylivirtasuojaus (4-43) Suojaus jännite- ja sähkömagn. häiriöiltä (4-44) Osa 5: Sähkölaitteiden valinta ja asentaminen Johtojärjestelmät (5-52) Erottaminen, kytkentä ja ohjaus (5-53) Maadoittaminen ja suojajohtimet (5-54) Muut sähkölaitteet (5-55), esim. valaisimet Turvajärjestelmät (5-56) Osa 6: Tarkastukset Käyttöönottotarkastus (61) 8
SFS 6000 sisältö karkeasti, osa 2 Osa 7: Erikoistilojen asennukset (alla lueteltu vain osa) Kylpy- ja suihkutilat, uima-altaat, saunat (701, 702, 703) Rakennustyömaat (704) Maa- ja puutarhatalouden tilat (705) Leirintäalueet, Venesatamat (708, 709) Lääkintätilat (710) Valosähköiset laitteet (Aurinkokennot) (712) Kalusteet (713) Huvipuistojen tilapäiset asennukset (740) Osa 8: Eräitä asennuksia koskevat täydentävät vaatimukset (Suomessa noudatettavat kansalliset lisäykset) Asennusten korjaus-, muutos- ja laajennustyöt (vanhat asennukset) (802) Sähkölaitekorjaamot ja laboratoriot (803) Tukesin ohje S10 Turvallisuus- ja kemikaalivirasto Tukes julkaisee ohjeen S10, jossa on lueteltu ne standardit, joiden mukaan toimittuna täytetään määräysten vaatimukset. http://tukes.fi/tiedostot/julkaisut/s10-2012.pdf Keskeisimmät vanhat määräykset annettiin Sähkötarkastuskeskuksen julkaisussa A1 Sähköturvallisuusmääräykset (StM). (viimeisin 1989) 9
3. 3-vaihejärjestelmä Miksi 3-vaihejärjestelmä? Miksi kolmivaihejärjestelmä ( 3~) on niin yleisesti käytössä? Jotakin hyvää siinä varmasti pitää olla!? 10
1-vaihe- ja 3-vaihejärjestelmä Miksi kannattaa käyttää 3-vaihejärjestelmää? L N L1 N L2 L3 Sama teho saadaan siirrettyä vähemmillä (tai ohuemmilla) johtimilla kuin 1-vaihejärjestelmässä. 3-vaihejärjestelmän etuja Vaiheiden välillä on 120 vaihesiirto saadaan helposti aikaan pyörivä magneettikenttä (sähkömoottori) Eri vaiheiden virtojen huippuhetki on eri tasaisella kuormituksella summa on nolla, EI TARVITA NOLLAJOHDINTA lainkaan Miksi 2- tai 4-vaihejärjestelmä ei ole yhtä hyvä? 11
3-vaihejärjestelmä 120 120 120 Û U pp 400 300 200 100 0 0 90 180 270 360 450 540 630 720-100 -200-300 -400 Vaihe1 Vaihe2 Vaihe3 GND Û = huippuarvo Huipusta huippuun arvo U pp = 2 Û (= U hattu) (= peak to peak) Tehollisarvo U RMS = Û 2 RMS = Root Mean Square Vaihe- ja pääjännite L1 L2 L3 N Vaihejännite 230 V (tehollisarvo) Vaiheen ja nollan välillä Pääjännite 400 V (tehollisarvo) Kahden vaiheen välillä 12
Vaihe- ja pääjännite L3 400 V N L1 230 V L2 4. Muutamia perusjuttuja Pienoisjännite (ELV = Extra Low Voltage) Max. 50 VAC Niin pieni jännite, että ei ole vaarallinen Pienjännite Max. 1000 VAC tavallinen jännitetaso asennuksissa Suurjännite Yli 1000 VAC Sähkönsiirrossa ja suuritehoisissa järjestelmissä 13
Katkotaan jännitettä Sähkölaitteiden ohjauskytkimet kytketään kuumaan karvaan Nolla-johdin on jatkuvasti kytkeytyneenä laitteeseen Erikoistapauksissa voidaan katkoa 2-napaisesti sekä vaihetta että nollaa (pistotulppa-liitos) L L L N N N katkotaan jännitettä EI NÄIN 2-napainen kytkin Suojamaa, PE (= Protected Earth) Suojajohdin PE kytketään sähkölaitteen jännitteelle alttiiseen osaan (tyypillisesti metallikotelo) Suojajohtimen liittimen tunnus on Suojajohtimen väri on AINA keltavihreä Keltavihreää EI SAA käyttää mihinkään muuhun Suojajohtimessa EI SAA olla kytkinlaitetta (543.3.3) L N PE KeVi KeVi keltavihreä 14
Suojamaa Normaalitilanteessa, kun kaikki on kunnossa suojamaajohdossa ei kulje virtaa Suojamaajohto on varaventtiili vikatilanteita varten Jos laitteen runko tulee viassa jännitteiseksi sähkö pääsee pois suojamaajohtoa pitkin L N PE KeVi 5. Kiinteistön sähköverkko 15
Suomen sähköverkon rakenne Voimalaitos Suomen Kantaverkko Jakeluverkko Voimalaitos Fingrid Jakeluverkko Jakeluverkko kiinteistöjen sähköverkot Pienen kiinteistön sähköverkko 16
Etäluettava mittari Etäluettavan mittarin pitää olla kytkettynä verkkoon koko ajan. Mittarin lukemisen ja vikatilanteiden selvittämisen vuoksi pitää olla sähköt päällä jatkuvasti. Termejä, osa1 Liittymisjohto, liittymiskohta Maadoitus ja potentiaalintasaus Potentiaalintasaus on johtavien osien sähköinen liitäntä, jonka tarkoituksena on saavuttaa tasapotentiaali. (826-13-19) Maadoitus on sähköinen liitäntä järjestelmän ja paikallisen maan välillä. (826-13-03) Ryhmäjohto (Final Circuit) Voimalaitokselta kuluttajalle ulottuvan sähköverkon viimeinen pätkä 17
Ryhmäjohto Kulutuskojetta tai pistorasiaa syöttävä johto Johdolla on tietty kuormitettavuus Millä virralla johtoa voi jatkuvasti kuormittaa, niin että se ei kuumene liikaa = mitoitusvirta Ryhmäjohdon suojalaitteiden pitää reagoida ylivirtaan, joka voi olla Ylikuormitusvirta (ei vikatilannetta) tai Oikosulkuvirta (on vikatilanne) Lähes kaikissa kotitalouden ryhmäjohdoissa pitää olla suojalaitteena myös vikavirtasuoja (VVSK) Ryhmäkeskus, ryhmäjohto syöttö L1, L2, L3 5 pistorasiaryhmä N PE (tai PEN) pääkytkin ylivirtasuojat vikavirtasuojat ryhmäjohdot 3-vaiheryhmä valaisinryhmä energian kulkusuunta Ryhmäkeskus = ryhmäjohtoja syöttävä keskus Ylivirtasuoja on joko sulake tai johdonsuojakatkaisija eli automaattisulake, stotsi 18
Johdon kuormitettavuus Johdolla on tietty kuormitettavuus [A], johon vaikuttaa: Johtimen paksuus (= poikkipinta-ala mm 2 ) Johtimen eriste (PVC vai PEX) Materiaali (Al vai Cu) Asennustapa pinta-asennus, uppo-asennus, maakaapeli, ilmajohto Muut tekijät, esim. ympäristön lämpötila, useita johtoja nipussa, läpivienti lämpöeristeen läpi Nyrkkisääntö: 1,5 mm 2 10 A sulake 2,5 mm 2 16 A sulake Ryhmäjohtoon liitettävä teho P [W] 1-vaiheinen ryhmäjohto, jännite U V = 230 V P = U V I 10 A:n sulake, max. teho on 2300 W = 2,3 kw 16 A:n sulake, max. teho on 3680 W = 3,6 kw 3-vaiheinen ryhmäjohto, jännite U P = 400 V P = 3 U P I (= 3 U V I) 10 A:n sulake, max. teho on 6,9 kw 16 A:n sulake, max. teho on 11 kw 19
Termejä, osa 2 Äärijohdin (vaihejohdin): L, L1, L2, L3 = kuuma karva (ruskea, musta, harmaa) Nollajohdin: N (sininen) Suoja(maadoitus)johdin: PE (Protected Earth) PEN-johdin: PE+N, yhdistetty suoja- ja nollajohdin Jännitteelle altis osa (on osa sähkölaitetta) Esim. sähkölaitteen metallikotelo Muu johtava osa (ei ole sähkölaitteen osa) Esim. vesikiertoiset lämmityspatterit, yhteys maahan Ison kiinteistön sähköverkko Pienessä kiinteistössä (esim. omakotitalo) on vain yksi keskus, joka hoitaa kaikki tehtävät. Isossa kiinteistössä (esim. kerrostalo) on useita sähkökeskuksia, joilla on omat tehtävänsä: Pääkeskus (liittyminen jakeluverkkoon) Mittauskeskus (eri käyttöpaikkojen energiamittarit) Ryhmäkeskukset (jokaisella käyttöpaikalla omansa) Nousukeskus (pää- ja ryhmäkeskuksen välissä) Samassa sähkötilassa voi olla useampi keskus kylki kyljessä, esim. mittaus- ja nousukeskus. 20
Kiinteistön sähköverkon osia Pääkeskus Jakeluverkko Sähköliittymä Jakokeskuksia ja johdotuksia Kulutuslaitteet Rivi- tai kerrostalon sähköverkko 21
Jakelujärjestelmät Sähkönjakelujärjestelmien luokittelun keskeinen peruste on se, miten järjestelmä on maadoitettu. TN järjestelmät (Terra Neutral) Virtapiirin yksi piste on suoraan maadoitettu. Tavallisesti maadoitettu piste on kolmivaihejärjestelmän tähtipiste. = on tehty käyttömaadoitus Suomessa kaikki tavalliset sähköverkot ovat TNjärjestelmien mukaisia. TN-S järjestelmä (Terra Neutral Separate) 22
TN-C järjestelmä (Terra Neutral Combined) TN-C-S järjestelmä L1 L2 L3 PEN 23
TT- ja IT-järjestelmä TT-järjestelmä IT-järjestelmä Kumpikin näistä järjestelmistä on harvinainen Suomessa pienjänniteasennuksissa. Euroopassa näitä kyllä käytetään muissa maissa. IT-järjestelmää käytetään Suomessa esim. leikkaussaleissa. Jakeluverkko ja sisäverkko Jakeluverkko TN-C järjestelmä 4-johdin järjestelmä liittymisjohto 4 Kiinteistön sisäverkko TN-S järjestelmä 5-johdin järjestelmä Paikallinen maadoituselektrodi Liittymispisteessä: PEN erilliset PE ja N 24
6. Suojaus sähköiskulta Lähtökohtana jännitteellinen johto Miten tilanne tehdään turvalliseksi, kun 1. Sähkölaite (asennus) on täysin ehjä tarvitaan perussuojaus 2. Kun sähkölaitteeseen tulee vika? tarvitaan vikasuojaus 25
Suojaus sähköiskulta 1/2 (ihmisiltä ja kotieläimiltä) Perusperiaate (asennuksissa ja laitteissa): Vaaralliset jännitteiset osat eivät saa olla kosketeltavissa Perussuojaus Yhden vian tilanne: Kosketeltavat johtavat osat eivät saa tulla vaarallisesti jännitteisiksi Vikasuojaus Suojaus sähköiskulta 2/2 (ihmisiltä ja kotieläimiltä) Normaalissa asennuksessa pitää olla sekä perusettä vikasuojaus. Suojausmenetelmän pitää koostua: Sopivasta yhdistelmästä, jossa on erilliset perusja vikasuojaus TAI Menetelmästä, jolla saadaan aikaan molemmat Pelkkä perussuojaus vastaa suojausluokkaa 0 Suojausluokka 0 ei uusissa asennuksissa ole luvallinen 26
Perussuojaus (ent. kosketussuojaus) Suojaa sähköiskulta, kun kaikki OK (ei vikaa) Tarkoitus estää jännitteisten osien koskettaminen Toteutuskeinoja: Jännitteisten osien peruseristys Voidaan poistaa vain rikkomalla Suojukset ja kotelot Voidaan avata vain avaimella tai työkalulla Esteet tai sijoitus kosketusetäisyyden ulkopuolelle Vain kun ammattihenkilöt valvovat käyttöä EI SAA käyttää esim. asunnoissa Vikasuojaus (ent. kosketusjännitesuojaus) Suojaa sähköiskulta yhden vian tilanteessa Toteutuskeinoja: 1. Syötön automaattinen poiskytkentä (yleisin tapa asennuksissa) 2. Kaksoiseristys tai vahvistettu eristys 3. Pienoisjännite 4. Sähköinen erotus syöttämään yhtä kulutuskojetta 27
Suojausmenetelmä: Syötön automaattinen poiskytkentä kiinteässä asennuksessa = suojausluokka I Perussuojauksen on oltava kunnossa Jännitteelle alttiit osat yhdistetään suojamaadoitusjohtimeen Pistorasiat ovat maadoitettuja suojakosketinpistorasioita Syötön automaattinen poiskytkentä 230 VAC, poiskytkentäaika enintään 0,4 s Erityistilanteissa saa olla 5 s (esim. pääjohdot) Rakennuksessa on oltava suojaava potentiaalintasaus, jossa liitetään yhteen mm. Maadoitusjohdin (maadoituselektrodi) Metalliset vesi- ja ilmanvaihtoputket PE-johtimella pitää olla hyvä yhteys maahan kaikista asennuksen kohdista käyttöönottotarkastuksessa mitataan suojajohdon jatkuvuus 28
Suojausmenetelmä: Kaksoiseristys tai vahvistettu eristys = suojaeristys = suojausluokka II Perussuojaus on toteutettu peruseristyksellä ja vikasuojaus lisäsuojauksella TAI Perus- ja vikasuojaus on toteutettu yhdistetyllä vahvistetulla eristyksellä Tunnus Laitteessa mahdollisesti myös merkki Luokan II laitteita syöttävä asennus Luokan II laitteita syöttävissä piireissä pitää olla suojamaadoitusjohdin, joka kulkee piirin mukana. Suojamaadoitusjohdin liitetään kiinteän asennuksen jokaisessa pisteessä ja joka laitteessa. Poikkeuksena jotkin valaisinkytkimet 29
Suojausmenetelmä: pienoisjännite (= suojajännite) = suojausluokka III Perus- ja vikasuojaus saavutetaan, kun: nimellisjännite ei ylitä 50 VAC tai 120 VDC (= ELV = Extra Low Voltage = Pienoisjännite) Syöttö tehdään standardin mukaisesta jännitelähteestä Muut standardin vaatimukset täyttyy (414.4) Tunnus vaakuna vastaa pienoisjännitettä (joka saadaan suojaerotusmuuntajasta) Suojausmenetelmä: sähköinen erotus (ei numeroitua luokkaa) Perussuojaus on toteutettu peruseristyksellä Vikasuojauksena käytetään erotettujen osien sähköistä erotusta muista piireistä ja maasta Tunnus tai 30
Suojaerotus Erotetun virtapiirin mikään osa ei saa olla yhteydessä toisiin virtapiireihin eikä maahan. Toteutetaan kelluva virtapiiri Suojaerotetulla virtapiirillä saa syöttää vain yhtä laitetta. (muutama poikkeus) Vertaus: toimii kuin auton akusta saatava sähkö, täysin oma virtapiiri, irrallaan maasta Yhteenveto: Suojausluokat Luokka 0 Pelkkä peruseristys ei saa käyttää uusissa asennuksissa Luokka I Syötön nopea poiskytkentä Suojamaadoitettu Luokka II Suojaeristetty Luokka III Suojajännite (pienoisjännite) Suojaerotus (ei omaa numeroa tälle tavalle) 31
Lisäsuojaus vikavirtasuojalla (maadoitetuissa pistorasioissa) Käytetään perussuojauksen ja vikasuojauksen lisänä, ei riitä yksinään Mitoitustoimintavirraltaan enintään 30 ma:n vikavirtasuojaa pitää käyttää suojaamaan esim: Lähes kaikki mitoitusvirraltaan enintään 20 A tavanomaiset maallikoiden käyttöön tarkoitetut pistorasiat (ei tarvitse esim. pakastimen, APK:n pistorasia) Ulkona käytettävät enintään 32 A pistorasiat tai siirrettävät laitteet VVSK, vikavirtasuoja(kytkin) Ehjä sähkölaite Viallinen sähkölaite 32
Turvakytkin Jokaisen koneen (jota voidaan/tarvii huoltaa) syötössä on oltava luotettava erotuskohta. Syötön erotus toteutetaan tyypillisesti turvakytkimellä. 33