Mekaniikka 1 Lukion fysiikan kertausta



Samankaltaiset tiedostot
NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

Pietarsaaren lukio Vesa Maanselkä

Mekaniikkaa ja sähköstatiikkaa Lukion fysiikan kertausta

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan valintakoe , vastaukset tehtäviin 1-2

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

g-kentät ja voimat Haarto & Karhunen

Kitka ja Newtonin lakien sovellukset

VUOROVAIKUTUS JA VOIMA

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen)

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen

Fysiikka 1. Dynamiikka. Voima tunnus = Liike ja sen muutosten selittäminen Physics. [F] = 1N (newton)

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Luvun 5 laskuesimerkit

3.4 Liike-energiasta ja potentiaalienergiasta

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

Luvun 5 laskuesimerkit

Luvun 10 laskuesimerkit

KERTAUSTEHTÄVIÄ KURSSIIN A-01 Mekaniikka, osa 1

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.

Nyt kerrataan! Lukion FYS5-kurssi

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

v = Δs 12,5 km 5,0 km Δt 1,0 h 0,2 h 0,8 h = 9,375 km h 9 km h kaava 1p, matkanmuutos 1p, ajanmuutos 1p, sijoitus 1p, vastaus ja tarkkuus 1p

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe , malliratkaisut

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat!

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

HARJOITUS 4 1. (E 5.29):

Luento 10: Työ, energia ja teho

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki

FYSIIKAN HARJOITUSKOE I Mekaniikka, 8. luokka

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Harjoitellaan voimakuvion piirtämistä

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl

2.3 Voiman jakaminen komponentteihin

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen

Mekaniikan jatkokurssi Fys102

Utsjoki ABI KURSSI MEKANIIKKAA MOMENTUM IMPULSE ENERGY CONSERVATION. Rutherfordin sironta

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

Mekaniikan jatkokurssi Fys102

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta

Mekaniikkan jatkokurssi

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe , malliratkaisut

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä

Nopeus, kiihtyvyys ja liikemäärä Vektorit

MEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta

Luento 7: Voima ja Liikemäärä

Luento 6: Liikemäärä ja impulssi

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Luku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia

Luento 5: Käyräviivainen liike

Luento 3: Käyräviivainen liike

Mekaniikan jatkokurssi Fys102

:37:37 1/50 luentokalvot_05_combined.pdf (#38)

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

PAINOPISTE JA MASSAKESKIPISTE

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:

Kertauskysymyksiä. KPL1 Suureita ja mittauksia. KPL2 Vuorovaikutus ja voima. Avain Fysiikka KPL 1-4

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe , malliratkaisut ja arvostelu.

Voiman ja liikemäärän yhteys: Tämä pätee kun voima F on vakio hetken

Mekaniikan jatkokurssi Fys102

Massakeskipiste Kosketusvoimat

Luento 9: Potentiaalienergia

Muunnokset ja mittayksiköt

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

FYSIIKAN HARJOITUSTEHTÄVIÄ

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N

Luvun 10 laskuesimerkit

Luento 5: Käyräviivainen liike

Kpl 2: Vuorovaikutus ja voima

Luento 5: Voima ja Liikemäärä

Luvun 8 laskuesimerkit

1.4 Suhteellinen liike

STATIIKKA. TF00BN89 5op

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti

Theory Finnish (Finland)

FY9 Fysiikan kokonaiskuva

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe , malliratkaisut.

5.9 Voiman momentti (moment of force, torque)

E 3.15: Maan pinnalla levossa olevassa avaruusaluksessa pallo vierii pois pöydän vaakasuoralta pinnalta ja osuu lattiaan D:n etäisyydellä pöydän

Työ ja kineettinen energia

4 Kaksi- ja kolmiulotteinen liike

Transkriptio:

Mekaniikka 1 Lukion fysiikan kertausta 21.7.2009 Pietarsaaren lukio Vesa Maanselkä Kiihdyttäviä autoja, lipsuvia hihnoja, loistavia tehtäviä, loistavaa filosofiaa LAske!

Sisältö Alustavia lähtökohtia mekaniikkaan... 3 Liikkeen kuvaaminen, vektorit ja voimat... 3 1. tehtävä kevät 86 yo-koe... 4 1. tehtävä kevät 89 yo-koe... 5 1. tehtävä kevät 89 yo-koe... 5 1. tehtävä syksy 89 yo-koe... 5 1. tehtävä kevät 96 yo-koe... 6 1. tehtävä kevät 2007 yo-koe... 6 10. tehtävä kevät 98 yo koe... 6 Newtonin lait... 7 Tehtävä... 7 1. tehtävä S87 yo-koe (Newtonin kolmas laki ja kitkavoima)... 8 3. tehtävä kevät 2000 yo-koe (perustehtävä voimista ja Newtonin toisen lain soveltamisesta)... 8 4. tehtävä syksy 99 yo-koe (Liike-energia, työ, teho ja hetkellinen teho)... 9 2. tehtävä kevät 2007 yo-koe... 9 10. tehtävä syksy 99 yo-koe (Kertaa laajasti suoraviivaista kinematiikkaa)... 10 Tehtävä, vektorit ja koordinaatisto... 10 3. tehtävä syksy 2001 yo-koe... Virhe. Kirjanmerkkiä ei ole määritetty. 11. tehtävä syksy 99 yo-koe (kaasun tilanyhtälö, voima ja paine, voiman momentti)... 11 6. tehtävä kevät 99 yo-koe (Kiihtyvyys ympyräradalla, vektorit)... 12 6. tehtävä syksy 99 yo-koe (ympyräliike, energiaperiaate ja Newtonin II laki)... 13 10. tehtävä kevät 99 yo-koe (pyörimisliikkeen peruslaki, voiman momentti, energiaperiaate)... 14

Alustavia lähtökohtia mekaniikkaan Liikkeen kuvaaminen, vektorit ja voimat Kertaavia nopeasti ratkaistavia -mutta tutkimusten mukaan ongelmia aiheuttavia- tehtäviä 1. Milloin kappaleilla A ja B on sama nopeus? 2. Missä pisteessä (A, B vai C) kappaleella on suurin nopeus? Entä pienin? Milloin liike on kiihtyvää? 3. Lenkkeilijä juoksee viereisin käyrän mukaisesti, vastaa seuraaviin kysymyksiin a. Milloin liike on kiihtyvää? b. Milloin liike on hidastuvaa? c. Milloin nopeus on suurin? d. Milloin kappale pysähtyy? e. Milloin kappale liikkuu tasaista nopeutta? f. Milloin kappale vaihtaa suuntaansa? g. Milloin kappale on takaisin lähtöpisteessään? 4. Piirrä viereistä käyrää vastaava funktio V(t) ja a(t)

5. Hahmottele alla olevasta kuvaajasta funktion x(t) kuvaaja sekä funktion a(t) kuvaaja. 6. Hahmottele alla olevasta tilanteesta kuvaajat v(t) ja a(t) 7. Alla olevassa kuvassa pallo päästetään levosta liikkeelle. Kuinka korkealle pallo kiipeää vastakkaisella seinämällä? 1. tehtävä kevät 86 yo-koe Kappale voi liikkua suoraviivaisesti. Oheiset kuvaajat esittävät kappaleen paikkaa s, nopeutta v, kiihtyvyyttä a ja kappaleeseen vaikuttavaa kokonaisvoimaa F ajan funktiona. Mikä on kappaleen liiketila eri tapauksissa? Perustele

1. tehtävä kevät 89 yo-koe Oheiset kuvaajat esittävät kappaleen paikkaa, nopeutta ja kiihtyvyyttä ajan funktiona maan suhteen levossa olevassa koordinaatistossa. Mitkä kuvaajista voivat liittyä alla mainittuihin tapauksiin: a) pysäköity auto b) liukuportailla seisova henkilö c) asemalle saapuva juna, joka jarruttaa tasaisesti ja pysähtyy d) pysäkiltä tasaisesti kiihdyttäen lähtevä raitiovaunu e) laskuvarjon varassa putoava henkilö f) vakioteholla kiihdyttävä auto? Kuhunkin kohtaan voi liittyä kaksi tai useampi kuvaaja. Vastaukseksi riittää kuvaajan numero. 1. tehtävä kevät 89 yo-koe Mitkä seuraavista paikan, nopeuden ja kiihtyvyyden kuvaajista voivat esittää a) tornista putoavan kappaleen liikettä, b) lattialla pomppivan pallon liikettä, c) jousen varassa pystysuunnassa heilahtelevan kappaleen liikettä? Liikettä tarkasteltaessa positiivinen suunta on valittu alaspäin. 1. tehtävä syksy 89 yo-koe Oheinen kuvio esittää suoraviivaisesti liikkuvan kappaleen nopeuden kuvaajaa. a) Määritä ja piirrä kappaleen paikka ajan funktiona. b) Mihin tavalliseen liikkeeseen kuvaaja voi liittyä?

1. tehtävä kevät 96 yo-koe a) Mitkä seuraavista paikan, nopeuden ja kiihtyvyyden kuvaajista voivat esittää pystysuoraan ylöspäin heitetyn kappaleen liikettä ja mitkä eivät? b) Piirrä ja nimeä alleviivattuihin kappaleisiin vaikuttavat voimat: 1) kivi, joka putoaa vedessä kohti järven pohjaa, 2) henkilö, joka pysyy vakiokulmanopeudella pyörivän karusellisylinterin seinämällä, vaikka sylinterin pohja on laskettu alas. Kiinnitä huomiota voimien keskinäiseen suuruuteen. 1. tehtävä kevät 2007 yo-koe Kuvassa on joitakin paikan s, nopeuden v ja kiihtyvyyden a kuvaajia. Perustele, mitkä kuvaajista voivat esittää seuraavia liikkeitä: a) vakionopeudella etenevä polkupyöräilijä b) pysäkille tasaisesti jarruttava raitiovaunu c) suoraan alaspäin putoava tennispallo. 10. tehtävä kevät 98 yo koe Kolme samanlaista herkkäliikkeistä vaunua liikkuu kuvion mukaisia teitä pitkin saman matkan pisteisiin A mennessä. Vaunut lähetetään liikkeelle samanaikaisesti samalta korkeudelta y ilman alkunopeutta. Perustele, a) millä vaunulla on pisteessä A suurin nopeus, b) millä vaunulla on pisteessä A suurin kiihtyvyys ja c) mikä vaunu ohittaa ensimmäisenä pisteen A.

Mekaniikan I peruslaki Newtonin lait eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy levossa, jos siihen ei vaikuta ulkoisia voimia. Laki koskee vapaita kappaleita, jotka eivät ole vuorovaikutuksessa muiden kappaleiden kanssa Mekaniikan II peruslaki eli dynamiikan peruslaki (myös Newtonin II laki) Kappaleeseen vaikuttava kokonaisvoima F antaa kappaleelle kiihtyvyyden a. Mitä suurempi on kappaleeseen kohdistuva voima, sitä suuremman kiihtyvyyden se kappaleelle aiheuttaa. Kappaleeseen vaikuttava kokonaisvoima F antaa m-massaiselle kappaleelle kiihtyvyyden a siten, että F = ma F = dp dt eli voima on myös liikemäärän muutos! Mekaniikan III peruslaki eli voiman ja vastavoiman laki (myös Newtonin III laki) Newtonin kolmas laki sanoo, että Jos kappaleeseen vaikuttaa jokin voima, niin samanaikaisesti kappaleen täytyy vaikuttaa toiseen kappaleeseen yhtä suurella, mutta suunnaltaan vastakkaisella voimalla. Esimerkiksi omena aiheuttaa pöytään voiman johtuen Maan vetovoimasta, mutta myös pöytä aiheuttaa omenaan yhtä suuren mutta vastakkaissuuntaisen voiman. Omena siis pysyy paikallaan. On tärkeä huomata, että voima ja vastavoima vaikuttavat aina eri kappaleisiin. Kaikilla voimilla on vastavoimat. Maa vetää omenaa puoleensa ja omena vetää maata puoleensa. Mekaniikan III peruslaista seuraa, että kappaleiden vuorovaikutuksissa niiden yhteenlaskettu liikemäärä säilyy. Tehtävä Omena on pöydällä. Piirrä tilanteesta kuva ja erittele kaikki tilanteessa esiintyvät voimat ja niiden aiheuttajat. Ohje: Piirrä kolme erillistä kuvaa 1 omena, 2 pöytä, 3 maa ja tarkastele voimia.

1. tehtävä S87 yo-koe (Newtonin kolmas laki ja kitkavoima) Määrittele ja selitä sopivien kuvioiden avulla käsitteet a) voima ja vastavoima ja b) lepokitkavoima. a) voima ja vastavoima Newtonin III lain mukaan voima on aina vuorovaikutus kahden kappaleen välillä. Kun kappale A vaikuttaa kappaleeseen B, vaikuttaa kappale B kappaleesen A yhtä suurella, mutta vastakkaissuuntaisella voimalla. Voima ja vastavoima siis vaikuttavat eri kappaleisiin. Kappaleen A vapaakappalekuvassa on se voima, jolla B vaikuttaa A:han. Kappaleen B vapaakappalekuvassa on voima, jolla A vaikuttaa B:hen. Esimerkkinä köydenveto. Vasemmanpuoleinen henkilö vetää köyttä voimalla -F ja köysi vetää henkilöä voimalla F. Jotta hän ei menisi köyden mukana pitää maan työntää takaisin kitkavoimalla F. Kitka ei ole vastavoima köysivoimalle, vaan kitkavoiman vastavoima on voima, jolla mies työntää maata eteenpäin. Painovoima (G) ja jalkoihin kohdistuva tukivoima estävät vetäjän kaatumisen. Nämä voimat eivät ole vastavoimia. Maan vetavoiman vastavoima on se gravitaatiovoima, jolla henkilö vetää maata puoleensa. Se voima kohdistuu maahan, eikä piirretä tähän. Tukivoima, jolla maa kannattaa henkilöä, on lähinnä sähköisiä voimia ja sen vastavoima, on se voima, jolla jalka painaa maata. Voiman ja vastavoiman pitää olla samantyyppisiä voimia esimerkiksi kumpikin ovat gravitaatiovoimia ja vastavoimat kohdistuvat aina eri kappaleisiin. b) lepokitkavoima. Kun vedämme tai työnnämme kappaletta, lepokitkavoima estää kappaleen liikkumisen. Kun lisäämme voimaa riittävästi, jossakin vaiheessa kappale lähtee liikkeelle. Kitkavoima kasvaa ulkoisen voiman kasvaessa. Sitä kitkaa, joka kappaleella on juuri ennen sen liikkeelle lähtöä, kutsutaan täysin kehittyneeksi lepokitkaksi tai lepokitkavoimaksi. 3. tehtävä kevät 2000 yo-koe (perustehtävä voimista ja Newtonin toisen lain soveltamisesta) Veturin (massa 84 tonnia) ja kolmen vaunun (kunkin massa 24 tonnia) muodostama juna liikkuu suoralla vaakasuoralla radalla. Junan nopeus kasvaa 7,0 sekunnissa tasaisesti nollasta arvoon 16 km/h. Määritä veturiin kohdistuvat voimat ja junan kiihdyttämiseen vaadittava energia. Liikevastuksia ei oteta huomioon. 1. Tärkein juttu tässä on piirtää voimakuvio oikein. Muista että kiihdyttävä voima on kitkavoima. 2. Tehtävänä on tarkastella veturiin kohdistuvia voimia, joten vaunujen aiheuttamat voimat on otettava huomioon. 3. Kun saat liikeyhtälöt (NII) oikein, niin tehtävän ratkaisu on helppo!

4. tehtävä syksy 99 yo-koe (Liike-energia, työ, teho ja hetkellinen teho) Pyöräilijä lisää vauhtiaan vakioteholla. a) Kuinka suuri on tämä teho, jos pyörän nopeus kasvaa arvosta 18 km/h arvoon 23 km/h 1,2 sekunnissa? b) Missä rajoissa pyörän kiihtyvyys tällöin vaihtelee? Pyöräilijän ja polkupyörän yhteinen massa on 78 kg. 1. Muista, että kun voima tekee työtä energia muuttuu. 2. Tärkeä huomata: Kun teho pysyy vakiona, niin kiihdyttävä voima F muuttuu, jolloin kiihtyvyys a ei ole vakio! 3. Lausu siis kiihtyvyys a käyttäen hetkellisen tehon kaavaa P = Fv. 4. Hetkellinen teho on energian muutos ΔE pienellä aikavälillä Δt, josta saadaan, että hetkellinen teho on P = Fv (katso alla olevat esimerkit lisätiedoksi). Esimerkki energian derivoinnista tarkemmin sanoen hetkellinen teho P on energian derivaatta muuttujan t suhteen: P = de dt = Fv Jos energia on vakio, ei työtä tehdä, jolloin teho on tietysti nolla (vakion derivaattana). Derivoidaan esimerkin vuoksi liike-energian E k lauseke: P = de k dt = d 1 2 mv2 dt = 1 2 m d dt v2 = 1 2 m d dt at 2 = 1 2 ma2 d dt t2 = ma 2 t = mav = Fv Derivoidaan vielä työn lauseke W = Fs ajan t suhteen: P = dw dt = dfs ds = F dt dt = Fv P.S Hauskaa ja hyödyllistä ajanvietettä on derivoida fysiikan kaavoja. Matematiikka antaa työkalun, miksi emme sitä käyttäisi! 2. tehtävä kevät 2007 yo-koe Kulmin lentomäen lähtöpuomi on asetettu 66 m:n korkeudelle hyppyrin nokasta. Hyppääjä lähtee levosta liukumaan pitkin vauhtimäkeä ja saavuttaa hyppyrin nokalla nopeuden 101 km/h. Kuinka suuren työn liikevastusvoimat tekevät liu un aikana? Hyppääjän ja varusteiden yhteinen massa on 71 kg

10. tehtävä syksy 99 yo-koe (Kertaa laajasti suoraviivaista kinematiikkaa) Torninosturilla nostetaan rakennuselementtiä siten, että elementin nopeus kasvaa tasaisesti. Tarkastele elementin a) paikkaa, b) liikemäärää, c) kiihtyvyyttä ja d) potentiaalienergiaa sekä e) nostovaijerin jännitysvoimaa ja f) jännitysvoiman tehoa ajan funktiona. Minkä suureiden kuvaajat ovat nousevia suoria? 1. Piirrä voimakuvio! 2. Jos nopeus v kasvaa tasaisesti, niin kiihtyvyys on vakio, jolloin kinematiikan peruskaavat v = v 0 + at ja S = v 0 t + 1 2 at2 ovat käyttökelpoisia. 3. Jännitysvoiman ratkaisemisessa pääset soveltamaan Newtonin toista lakia. 4. Jännitys voiman tehon ratkaisemisessa kannattaa käyttää hekellisen tehon kaavaa (ks. edellinen tehtävä). Tehtävä, vektorit ja koordinaatisto a) Kelkka liukuu kitkatonta mäkeä alas. Piirrä tilanteessa vaikuttavat voimat ja tee Newtonin toisen lain mukaiset yhtälöt voimista koordinaatistossa, jossa positiivisen x-akselin suunta on rinteen suuntainen ja alaspäin. b) Ratkaise tämä sama tehtävä koordinaatistossa, jossa koordinaatisto on pystyssä, eli tavanomaisesti. Origo on kelkan massakeskipisteessä. Muista vektorin ilmoittamiseen tarvitaan aina vähentään kaksi lukua (voima, nopeus, matka, paikka, liikemäärä, kiihtyvyys jne.) Skalaarille riittää yksi ainoa luku, eli ainoastaan suuruus (lämpötila, tiheys jne.) Vektoreiden havainnollinen yhteenlasku simulaatio! http://phet.colorado.edu/sims/vectoraddition/vector-addition_en.html Painovoima G on vektori, joten oikea tapa ilmoittaa se on käyttää kahta lukua. G = (G x, G y ) Vektorin pituus on sen suuruus. Vektorin G suuruutta eli sen itseisarvoa merkitään G = mg α Jos suuruus tiedetään, vektorin komponentit saadaan yleensä sinillä ja kosinilla. Jos komponentit tunnetaan, saadaan suuruus Pythagoraksella. Vektoritehtävissä PIIRRÄ AINA KUVA! G = mg α

11. tehtävä syksy 99 yo-koe (kaasun tilanyhtälö, voima ja paine, voiman momentti) Pakastekaapin avaaminen on tunnetusti vaikeaa muutaman sekunnin kuluttua siitä, kun ovi on pakasteiden oton jälkeen suljettu. a) Kaapin sisältämän ilman lämpötila on sulkemishetkellä -2 ºC. Se laskee nopeasti arvoon -10 ºC. Kuinka suurella voimalla oven kahvasta pitäisi tällöin vetää, jotta ovi aukeaisi? Oven leveys on 0,5 m ja korkeus 1,0 m sekä kahvan etäisyys oven saranoidusta reunasta on 0,45 m. b) Miksi oven avaaminen on oleellisesti helpompaa muutaman minuutin kuluttua? Tehtävän annosta saa ensimmäisen vihjeen. Oven avaaminen on tavanomaista vaikeampaa, eli vaatii normaalia suuremman voiman. Mistä tämä voisi johtua? Voit mallintaa tehtävää kertauksen vuoksi PhET:n kaasu simulaatiolla! http://phet.colorado.edu/simulations/sims.php?sim= Gas_Properties Muistetaan, että suljetussa astiassa olevan kaasun lämpötilan lasku pienentää painetta p astiassa, kun taas astian lämmittäminen suurentaa painetta, jos tilavuus V ja ainemäärä pysyvät vakiona. Jos paine jääkaapin sisällä on huoneen painetta pienempi, vaati oven avaaminen voiman, joka on laskettava annettujen arvojen pohjalta. Lisäksi on muistettava ottaa huomioon voimien vaikutus pisteet. Paine-eron aiheuttama voima kohdistuu oveen tasaisesti, joten sen voidaan ajatella kohdistuvaksi oven keskikohtaan (vipuvarsi on oven leveys/2). Kahva on tietyn matkan päässä oven saranoista, joka täytyy ottaa huomioon tasapainoehtoa kirjoitettaessa. Kertaa siis, jos tarpeen: 1. Kaasun tilanyhtälö 2. paine ja voima 3. Tasapainoehto 4. Voiman momentti 1. Pumppaa astiaan kaasua ja aseta tilavuus vakioksi. 2. Kirjoita alkulämpötila T 1 ja paine p 0 ylös. 3. Jäähdytä astiaa ja katso mitä paineelle tapahtuu. Ota loppulämpötila T 2 sekä paine lopussa p ylös. Tehtävässä paineen muutos p = p 0 p pitää laskea. Voit siis testata samalla kuinka hyvin simulaatio mallintaa todellisuutta. Piirrä aina ensin tarkka ja tarpeeksi iso kuva!

6. tehtävä kevät 99 yo-koe (Kiihtyvyys ympyräradalla, vektorit) Henkilöauto kiihdyttää nopeuttaan kallistamattomassa liikenneympyrässä siten, että auton nopeus kasvaa tasaisesti arvosta 25 km/h arvoon 40 km/h 2,8 sekunnissa. Auton ja siinä olevien matkustajien yhteismassa on 1300 kg ja liikenneympyrän säde 29 m. Määritä autoon kohdistuvan kokonaisvoiman suuruus ja suunta auton liikesuuntaan nähden hetkellä, jolloin auton nopeus on 35 km/h. Minkä ulkoisten voimien summa kysytty kokonaisvoima on? Alla olevilla vihjeillä pääset alkuun. Kertaa vektoreiden yhteenlasku! F = ma a = a tan + a norm Tulkitse ensin seuraavat kuvat! Pyöritä leppäkerttuja karusellissa ja saa tuntumaa vektoreihin ja pyörivän liikkeen fysiikkaan! http://phet.colorado.edu/simulations/sim s.php?sim=ladybug_revolution Aseta kulmakiihtyvyys α ja seuraa kokonaiskiihtyvyysvektorin käyttäytymistä!

6. tehtävä syksy 99 yo-koe (ympyräliike, energiaperiaate ja Newtonin II laki) Metallipallon jonka massa on 120 g, riippuu 85 cm:n pituisen langan päässä. Palloa isketään vaakasuoraan, jolloin se heilahtaa. Heilahduskulman θ saavuttaessa arvon 125º pallo alkaa poiketa ympyräradalta. Kuinka suuri oli pallon lähtönopeus? 1. Piirrä kuva ja merkitse siihen palloon vaikuttavat voimat iskun jälkeen 2. Mikä on ympyräradalla pitävä voima, entä tämän voiman vastavoima (NII)? 3. Tarkastele rajatapausta pallon ympyräradan lopussa ja mieti palloon vaikuttavia voimia tässä pisteessä. 4. Kirjoita voimista yhtälö ja ratkaise nopeus v ympyräradan lopussa. 5. Pallon mekaaninen energia säilyy kun kitkat oletetaan häviävän pieniksi. Kirjoita energiaperiaatteen mukainen yhtälö ja ratkaise siitä alkunopeus v 0

10. tehtävä kevät 99 yo-koe (pyörimisliikkeen peruslaki, voiman momentti, energiaperiaate) Pystysuoran tangon alapäässä on lähes kitkaton sarananivel. Tasapaksun tangon pituus on 3,4 m. Tangon annetaan kaatua. a) Kuinka suurella nopeudella tangon yläpää osuu vaakasuoraan alustaan? b) Kuinka suuri on tangon kulmakiihtyvyys välittömästi ennen alustaan osumista? 1. Missä on tangon massakeskipiste? 2. Mikä on tangon pontiaalienergia pystyasennossa? 3. Mikä on pyörimisliikkeessä olevan tangon energia? 4. Kuinka kehänopeus v lasketaan, jos tiedetään kulmanopeus ω? 5. Massakeskipiste putoaa alas tangon kaatuessa, jolloin tangon potentiaalienergia muuttuu tangon pyörimisenergiaksi. 6. Kun tanko kaatuu, maan vetovoima aiheuttaa vääntömomentin tankoon. Maanvetovoima vääntää tankoa massakeskipisteen kohdalta. 7. Mikä on maanvetovoiman aiheuttama momentti juuri kun tanko osuu maahan? Pyörimisliikkeen peruslaki, eli laki F = ma pyörivälle massalle on M = Jα, missä M on vääntävän voiman F momentti, J = kappaleen hitausmomentti, jonka saa taulukkokirjasta ja α on kulmakiihtyvyys yksikkönä [1/s 2 ]. 3. tehtävä syksy 2001 yo-koe Hiihtäjä (kokonaismassa 72 kg) liukuu vakionopeudella jyrkän rinteen jälkeistä loivaa myötälettä, jonka kaltevuuskulma on 8,0. Suksen pohjan ja ladun välinen liukukitkakerroin on 0,12. Hiihtäjään vaikuttava ilmanvastus riippuu nopeudesta oheisen kuvion mukaisesti. Kuinka suuri on hiihtäjän nopeus?

K2007 nro 10 Ilmakiväärin luodin nopeuden mittaamiseksi tasapaksu puusauva ripustettiin yläpäästään kuvan mukaisesti siten, että se pääsi heilahtamaan kiinteän akselin A ympäri. Puusauvan pituus oli 30 cm ja massa 420 g. Luoti (m = 0,511 g) ammuttiin siten, että se osui vaakasuoralla, akselia vastaan kohtisuoralla nopeudella sauvan alapäähän upoten siihen. Kuinka suuri oli luodin nopeus, kun sauva heilahti törmäyksen jälkeen 25 astetta pystysuoraan suuntaan nähden? Mekaaninen energia ei säily, koska luoti tekee työtä uppoutuessaan puuhun. Liikemäärän säilymislakia ei voi soveltaa, koska sauva on kiinnitetty pisteeseen A. Pyörimismäärä L sen sijaan säilyy, koska ulkoisilla voimilla ei ole momenttia pisteen A suhteen! m 1 = luodin massa 0, 511 g m 2 = sauvan massa 420 g l = sauvan pituus 0, 3 m θ = 25 J A1 = hitausmomentti enen osumaa (luoti) J A2 = hitausmomentti osuman jälkeen ω 1 = luodin kulmanopeus A: n suhteen = v l ω = systeemin kulmanopeus osuman jälkeen Tarkastele systeemin pyörimisliikemäärää ennen ja jälkeen osuman. L ennen = J A1 ω 1 = m 1 l 2 ω 1 = m 1 l 2 v l = m 1lv L jälkeen = J A2 ω, missä J A2 = 1 3 m 2l 2 + m 1 l 2 = 1 3 m 2 + m 1 l 2 m 1 lv = J A2 ω ω = m 1lv J A2 Sauva siis lähtee heilahtamaan kulmanopeudella ω luodin osuman jälkeen. Mekaaninen energia ei säily törmäyksessä, mutta kun sauva on lähtenyt liikkeelle, voidaan energiaperiaatetta soveltaa, koska akselissa ei ole kitkamomenttia. Luodin nopeudeksi pitäisi tulla noin 250 m/s