Interaction effects in graphene

Samankaltaiset tiedostot
The CCR Model and Production Correspondence

Capacity Utilization

Efficiency change over time

Alternative DEA Models

Results on the new polydrug use questions in the Finnish TDI data

Gap-filling methods for CH 4 data

Information on preparing Presentation

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

Viral DNA as a model for coil to globule transition

16. Allocation Models

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Exercise 1. (session: )

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL

make and make and make ThinkMath 2017

Other approaches to restrict multipliers

Instructor: Tuomas Lappi September 5, Determination of the non-abelian Debye screening mass using classical chromodynamics

LYTH-CONS CONSISTENCY TRANSMITTER

Bounds on non-surjective cellular automata

Statistical design. Tuomas Selander

EUROOPAN PARLAMENTTI

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

Fighting diffuse nutrient load: Multifunctional water management concept in natural reed beds

Toppila/Kivistö Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä.

Network to Get Work. Tehtäviä opiskelijoille Assignments for students.

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

0. Johdatus kurssiin. Ene Kitkallinen virtaus

Luento5 8. Atomifysiikka

FYSA235, Kvanttimekaniikka I, osa B, tentti Tentin yhteispistemäärä on 48 pistettä. Kaavakokoelma ja CG-taulukko paperinipun lopussa.

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)

Alternatives to the DFT

Valuation of Asian Quanto- Basket Options

LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet

Metsälamminkankaan tuulivoimapuiston osayleiskaava

Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)

AYYE 9/ HOUSING POLICY

Capacity utilization

ReFuel 70 % Emission Reduction Using Renewable High Cetane Number Paraffinic Diesel Fuel. Kalle Lehto, Aalto-yliopisto 5.5.

PHYS-C0210 Kvanttimekaniikka Exercise 2, extra challenges, week 45

anna minun kertoa let me tell you

Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija

Kitchen Pendant 2/10/19

( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145

Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a

The Viking Battle - Part Version: Finnish

Master's Programme in Life Science Technologies (LifeTech) Prof. Juho Rousu Director of the Life Science Technologies programme 3.1.

Operatioanalyysi 2011, Harjoitus 4, viikko 40

Equality of treatment Public Services

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

( ,5 1 1,5 2 km

C++11 seminaari, kevät Johannes Koskinen

CFD Lappeenrannan teknillisessä yliopistossa. Jouni Ritvanen.

Tilausvahvistus. Anttolan Urheilijat HENNA-RIIKKA HAIKONEN KUMMANNIEMENTIE 5 B RAHULA. Anttolan Urheilijat

TM ETRS-TM35FIN-ETRS89 WTG

Green Growth Sessio - Millaisilla kansainvälistymismalleilla kasvumarkkinoille?

Pituuden lämpötilalaajeneminen ja -kutistuminen

MEETING PEOPLE COMMUNICATIVE QUESTIONS

TM ETRS-TM35FIN-ETRS89 WTG

JA CHALLENGE Anna-Mari Sopenlehto Central Administration The City Development Group Business Developement and Competence

MUSEOT KULTTUURIPALVELUINA

Thin Films Technology. Lecture 3: Physical Vapor Deposition PVD. Jari Koskinen. Aalto University. Page 1

WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies

TM ETRS-TM35FIN-ETRS89 WTG

Lämmitysjärjestelmät

Keskittämisrenkaat. Meiltä löytyy ratkaisu jokaiseen putkikokoon, 25 mm ja siitä ylöspäin.

Data Quality Master Data Management

,0 Yes ,0 120, ,8

TM ETRS-TM35FIN-ETRS89 WTG

Kuivajääpuhallus IB 7/40 Advanced

TM ETRS-TM35FIN-ETRS89 WTG

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

Small Number Counts to 100. Story transcript: English and Blackfoot

Returns to Scale Chapters

Information on Finnish Courses Autumn Semester 2017 Jenni Laine & Päivi Paukku Centre for Language and Communication Studies

Information on Finnish Language Courses Spring Semester 2017 Jenni Laine

Mat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Miksi Suomi on Suomi (Finnish Edition)

FYSE301(Elektroniikka(1(A3osa,(kevät(2013(

7. Product-line architectures

Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto

Matkustaminen Majoittuminen

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result

Kvanttilaskenta - 1. tehtävät

Kuivajääpuhallus IB 15/120. Vakiovarusteet: Suutinlaatikko Suutinrasva Viuhkasuutin Viuhkasuuttimen irto-osa 8 mm Työkalu suuttimenvaihtoon 2 kpl

Matkustaminen Majoittuminen

S Sähkön jakelu ja markkinat S Electricity Distribution and Markets

Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus

Yhtiön nimi: - Luotu: - Puhelin: - Fax: - Päiväys: -

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

Kaivostoiminnan eri vaiheiden kumulatiivisten vaikutusten huomioimisen kehittäminen suomalaisessa luonnonsuojelulainsäädännössä

Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition)

TM ETRS-TM35FIN-ETRS89 WTG

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin. Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana

Siirtymä maisteriohjelmiin tekniikan korkeakoulujen välillä Transfer to MSc programmes between engineering schools

Operatioanalyysi 2011, Harjoitus 2, viikko 38

Transkriptio:

Interaction effects in graphene Markus Müller collaborations with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) The Abdus Salam ICTP Trieste Sean Hartnoll (Harvard) Pavel Kovtun (Victoria) Taiwan National University, 23 rd December, 2009

Outline Relativistic physics in graphene, quantum critical systems and conformal field theories Strong coupling features in collision-dominated transport as inspired by AdS-CFT results Comparison with strongly coupled fluids (via AdS-CFT) Graphene: an almost perfect quantum liquid

Dirac fermions in graphene (Semenoff 84, Haldane 88) Honeycomb lattice of C atoms Tight binding dispersion 2 massless Dirac cones in the Brillouin zone: (Sublattice degree of freedom pseudospin)

Dirac fermions in graphene (Semenoff 84, Haldane 88) Honeycomb lattice of C atoms Tight binding dispersion 2 massless Dirac cones in the Brillouin zone: (Sublattice degree of freedom pseudospin) Fermi velocity (speed of light ) Coulomb interactions: Fine structure constant

Dirac fermions in graphene (Semenoff 84, Haldane 88) Honeycomb lattice of C atoms Tight binding dispersion 2 massless Dirac cones in the Brillouin zone: (Sublattice degree of freedom pseudospin) Fermi velocity (speed of light ) Coulomb interactions: Fine structure constant

Relativistic fluid at the Dirac point D. Sheehy, J. Schmalian, Phys. Rev. Lett. 99, 226803 (2007). Relativistic plasma physics of interacting particles and holes! Non-degenerate Fermi gas!

Relativistic fluid at the Dirac point D. Sheehy, J. Schmalian, Phys. Rev. Lett. 99, 226803 (2007). Relativistic plasma physics of interacting particles and holes! Strongly coupled, nearly quantum critical fluid at = 0 Strong coupling!

Relativistic fluid at the Dirac point D. Sheehy, J. Schmalian, Phys. Rev. Lett. 99, 226803 (2007). Relativistic plasma physics of interacting particles and holes! Strongly coupled, nearly quantum critical fluid at = 0 Strong coupling! Very similar as for quantum criticality (e.g. SIT) and in their associated CFT s

Other relativistic fluids: Bismuth (3d Dirac fermions with very small mass) Systems close to quantum criticality (with z = 1) Example: Superconductor-insulator transition (Bose-Hubbard model) Maximal possible relaxation rate! Damle, Sachdev (1996) Bhaseen, Green, Sondhi (2007). Hartnoll, Kovtun, MM, Sachdev (2007) Conformal field theories (critical points) E.g.: strongly coupled Non-Abelian gauge theories (akin to QCD): Exact treatment via AdS-CFT correspondence! C. P. Herzog, P. Kovtun, S. Sachdev, and D. T. Son (2007) Hartnoll, Kovtun, MM, Sachdev (2007)

Are Coulomb interactions strong? Fine structure constant (QED concept) Large!

Are Coulomb interactions strong? Fine structure constant (QED concept) Large! r s (Wigner crystal concept) Small!? n-independent!

Are Coulomb interactions strong? Fine structure constant (QED concept) Large! r s (Wigner crystal concept) Small!? Recall QED/QCD: n-independent! The coupling strength depends on the scale. Different theories have different scale behavior! is the high energy limit of the coupling. But we care about ( )!

Are Coulomb interactions strong? Coulomb interactions: Unexpectedly strong! nearly quantum critical!

Are Coulomb interactions strong? Coulomb interactions: Unexpectedly strong! nearly quantum critical! RG: (μ = 0) Strong coupling! Cb marginal! Gonzalez et al., PRL 77, 3589 (1996)

Are Coulomb interactions strong? Coulomb interactions: Unexpectedly strong! nearly quantum critical! RG: (μ = 0) Strong coupling! Cb marginal! RG flow of v F RG flow of Coulomb only marginally irrelevant for μ = 0! Gonzalez et al., PRL 77, 3589 (1996)

Are Coulomb interactions strong? Coulomb interactions: Unexpectedly strong! nearly quantum critical! RG: (μ = 0) Strong coupling! Cb marginal! RG flow of v F RG flow of Coulomb only marginally irrelevant for μ = 0! But: (μ > 0) For Gonzalez et al., PRL 77, 3589 (1996) screening kicks in, short ranged Cb irrelevant

Consequences for transport 1. Collision-limited conductivity in clean undoped graphene 2. Emergent relativistic invariance at low frequencies! 3. Graphene is a perfect quantum liquid: very small viscosity!

Hydrodynamic approach to transport

Strong coupling in undoped graphene MM, L. Fritz, and S. Sachdev, PRB 08. 1. Inelastic scattering rate (Electron-electron interactions) μ >> T: standard 2d Fermi liquid C: Independent of the Coulomb coupling strength!

Strong coupling in undoped graphene MM, L. Fritz, and S. Sachdev, PRB 08. 1. Inelastic scattering rate (Electron-electron interactions) Relaxation rate ~ T, like in quantum critical systems! Fastest possible rate! μ >> T: standard 2d Fermi liquid μ < T: strongly coupled relativistic liquid

Strong coupling in undoped graphene MM, L. Fritz, and S. Sachdev, PRB 08. 1. Inelastic scattering rate (Electron-electron interactions) Relaxation rate ~ T, like in quantum critical systems! Fastest possible rate! μ >> T: standard 2d Fermi liquid μ < T: strongly coupled relativistic liquid Heisenberg uncertainty principle for well-defined quasiparticles

Strong coupling in undoped graphene MM, L. Fritz, and S. Sachdev, PRB 08. 1. Inelastic scattering rate (Electron-electron interactions) Relaxation rate ~ T, like in quantum critical systems! Fastest possible rate! μ >> T: standard 2d Fermi liquid μ < T: strongly coupled relativistic liquid Heisenberg uncertainty principle for well-defined quasiparticles As long as (T) ~ 1, energy uncertainty is saturated, scattering is maximal Nearly universal strong coupling features in transport, similarly as at the 2d superfluid-insulator transition [Damle, Sachdev (1996, 1997)]

Strong coupling in undoped graphene MM, L. Fritz, and S. Sachdev, PRB 08. 1. Inelastic scattering rate (Electron-electron interactions) Relaxation rate ~ T, like in quantum critical systems! Fastest possible rate! μ >> T: standard 2d Fermi liquid μ < T: strongly coupled relativistic liquid 2. Elastic scattering rate (Scattering from charged impurities) Subdominant at high T, low disorder

Strong coupling in undoped graphene MM, L. Fritz, and S. Sachdev, PRB 08. 1. Inelastic scattering rate (Electron-electron interactions) Relaxation rate ~ T, like in quantum critical systems! Fastest possible rate! μ >> T: standard 2d Fermi liquid μ < T: strongly coupled relativistic liquid 2. Elastic scattering rate (Scattering from charged impurities) Subdominant at high T, low disorder 3. Deflection rate due to magnetic field (Cyclotron frequency of non-interacting particles with thermal energy )

Strong coupling in undoped graphene MM, L. Fritz, and S. Sachdev, PRB 08. 1. Inelastic scattering rate (Electron-electron interactions) Relaxation rate ~ T, like in quantum critical systems! Fastest possible rate! μ >> T: standard 2d Fermi liquid μ < T: strongly coupled relativistic liquid 2. Elastic scattering rate (Scattering from charged impurities) Subdominant at high T, low disorder 3. Deflection rate due to magnetic field (Cyclotron frequency of non-interacting particles with thermal energy ) Hydrodynamic regime: (collision-dominated)

Hydrodynamics Hydrodynamic collision-dominated regime Long times, Large scales

Hydrodynamics Hydrodynamic collision-dominated regime Long times, Large scales Local equilibrium established: Study relaxation towards global equilibrium Slow modes: Diffusion of the density of conserved quantities: Charge Momentum Energy

Relativistic Hydrodynamics S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007). Energy-momentum tensor Current 3-vector 3-velocity: Dissipative current No energy current Viscous stress tensor (Reynold s tensor)

Relativistic Hydrodynamics S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007). Energy-momentum tensor Current 3-vector 3-velocity: Dissipative current No energy current Viscous stress tensor (Reynold s tensor) + Thermodynamic relations Gibbs-Duheme 1 st law of thermodynamics

Relativistic Hydrodynamics S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007). Conservation laws (equations of motion): Charge conservation

Relativistic Hydrodynamics S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007). Conservation laws (equations of motion): Charge conservation Energy/momentum conservation Coulomb interaction

Relativistic Hydrodynamics S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007). Conservation laws (equations of motion): Charge conservation Energy/momentum conservation Weak disorder momentum relaxation Coulomb interaction

Relativistic Hydrodynamics S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007). Conservation laws (equations of motion): Charge conservation Energy/momentum conservation Coulomb interaction Dissipative current and viscous tensor?

Relativistic Hydrodynamics S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007). Dissipative current and viscous tensor? Heat current Entropy current

Relativistic Hydrodynamics S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007). Dissipative current and viscous tensor? Heat current Entropy current Positivity of entropy production (Second law):

Relativistic Hydrodynamics S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007). Dissipative current and viscous tensor? Heat current Entropy current Positivity of entropy production (Second law):

Relativistic Hydrodynamics S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007). Dissipative current and viscous tensor? Heat current Entropy current Positivity of entropy production (Second law):

Relativistic Hydrodynamics S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007). Dissipative current and viscous tensor? Heat current Entropy current Positivity of entropy production (Second law): Irrelevant for response at k 0

Relativistic Hydrodynamics S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007). Dissipative current and viscous tensor? Heat current Entropy current Positivity of entropy production (Second law): Irrelevant for response at k 0 One single transport coefficient (instead of two)!

Meaning of Q? At zero doping (particle-hole symmetry): Q = ( xx imp = 0)<! Interaction-limited conductivity of the pure system! How is it possible that ( xx imp = 0) is finite??

Collision-limited conductivity Damle, Sachdev, (1996). Fritz et al. (2008), Kashuba (2008) Finite conductivity in a pure system at particle-hole symmetry ( = 0)!

Collision-limited conductivity Finite conductivity in a pure system at particle-hole symmetry ( = 0)! Key: Charge current without momentum! Damle, Sachdev, (1996). Fritz et al. (2008), Kashuba (2008) (particle) (hole) Pair creation/annihilation leads to current decay Finite collision-limited conductivity!

Collision-limited conductivity Damle, Sachdev, (1996). Fritz et al. (2008), Kashuba (2008) Finite conductivity in a pure system at particle-hole symmetry ( = 0)! Key: Charge current without momentum (particle) (hole) Pair creation/annihilation leads to current decay Finite collision-limited conductivity! Marginal irrelevance of Coulomb: Maximal possible relaxation rate, set only by temperature

Collision-limited conductivity Damle, Sachdev, (1996). Fritz et al. (2008), Kashuba (2008) Finite conductivity in a pure system at particle-hole symmetry ( = 0)! Key: Charge current without momentum (particle) (hole) Pair creation/annihilation leads to current decay Finite collision-limited conductivity! Marginal irrelevance of Coulomb: Maximal possible relaxation rate, set only by temperature Nearly universal conductivity

Collision-limited conductivity Damle, Sachdev, (1996). Fritz et al. (2008), Kashuba (2008) Finite conductivity in a pure system at particle-hole symmetry ( = 0)! Key: Charge current without momentum (particle) (hole) Pair creation/annihilation leads to current decay Finite collision-limited conductivity! Marginal irrelevance of Coulomb: Maximal possible relaxation rate, set only by temperature Nearly universal conductivity

Collision-limited conductivity Damle, Sachdev, (1996). Fritz et al. (2008), Kashuba (2008) Finite conductivity in a pure system at particle-hole symmetry ( = 0)! Key: Charge current without momentum (particle) (hole) Pair creation/annihilation leads to current decay Finite collision-limited conductivity! Marginal irrelevance of Coulomb: Maximal possible relaxation rate, set only by temperature Nearly universal conductivity Marginal irrelevance of Coulomb:

Back to Hydrodynamics S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007). Elements discussed so far: Conservation laws (equations of motion): Charge conservation Energy/momentum conservation Dissipative current (relating electrical and energy current)

Thermoelectric response S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007). Charge and heat current: Thermo-electric response etc.

Thermoelectric response S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007). Charge and heat current: Thermo-electric response etc. i) Solve linearized conservation laws ii) Read off the response functions from the dynamic response to initial conditions! (see Kadanoff & Martin, 1960)

Results from Hydrodynamics

Response functions at B=0 Symmetry z -z : Longitudinal conductivity: Collision-limited conductivity at the quantum critical point r = 0 Drude-like conductivity, divergent for Momentum conservation (r 0)!

Response functions at B=0 Symmetry z -z : Longitudinal conductivity: Thermal conductivity: Relativistic Wiedemann-Franz-like relations between and in the quantum critical window!

B > 0 : Cyclotron resonance E.g.: Longitudinal conductivity Pole in the response Collective cyclotron frequency of the relativistic plasma

B > 0 : Cyclotron resonance E.g.: Longitudinal conductivity Pole in the response Collective cyclotron frequency of the relativistic plasma Intrinsic, interaction-induced broadening ( Galilean invariant systems: No broadening due to Kohn s theorem) Observable at room temperature in the GHz regime!

Boltzmann Approach MM, L. Fritz, and S. Sachdev, PRB 2008 Recover and refine the hydrodynamic description Describe relativistic-to-fermiliquid crossover

Boltzmann approach Boltzmann equation in Born approximation L. Fritz, J. Schmalian, MM, and S. Sachdev, PRB 2008 e.g.: collision-limited conductivity:

Relativistic hydrodynamics from microscopics Does relativistic hydro really apply to graphene even though Coulomb interactions break relativistic invariance? Yes! Within weak-coupling theory: Key point: There is a zero ( momentum ) mode of the collision integral due to translational invariance of the interactions The dynamics of the zero mode under an AC driving field reproduces relativistic hydrodynamics at low frequencies.

What to do beyond the weak coupling (Boltzmann) approximation [ ( ) 0]??

What to do beyond the weak coupling (Boltzmann) approximation [ ( ) 0]?? Answer until recently: Not much at all!

What to do beyond the weak coupling (Boltzmann) approximation [ ( ) 0]?? Answer until recently: Not much at all! Newest progress from string theory: 1) Look at similar theories which are very strongly coupled, but can be solved exactly 2) Try to extract the generally valid, universal part of the result and use it as a guide

What to do beyond the weak coupling (Boltzmann) approximation [ ( ) 0]?? Answer until recently: Not much at all! Newest progress from string theory: 1) Look at similar theories which are very strongly coupled, but can be solved exactly 2) Try to extract the generally valid, universal part of the result and use it as a guide Warning: There is no AdS-CFT mapping for graphene itself!

Compare graphene to: Strongly coupled relativistic liquids S. Hartnoll, P. Kovtun, MM, S. Sachdev (2007) Obtain exact results via string theoretical AdS CFT correspondence Response functions in particular strongly coupled relativistic fluids (for maximally supersymmetric Yang Mills theories with colors):

Compare graphene to: Strongly coupled relativistic liquids S. Hartnoll, P. Kovtun, MM, S. Sachdev (2007) Obtain exact results via string theoretical AdS CFT correspondence Response functions in particular strongly coupled relativistic fluids (for maximally supersymmetric Yang Mills theories with colors): Confirm the structure of the hydrodynamic response functions such as ( ). Calculate the transport coefficients for a strongly coupled theory! SUSY - SU(N): ; Interpretation: effective degrees of freedom, strongly coupled: T = O(1)

AdS/CFT correspondence The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions 3+1 dimensional AdS space Maldacena, Gubser, Klebanov, Polyakov, Witten

AdS/CFT correspondence The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions 3+1 dimensional AdS space A 2+1 dimensional system at its quantum critical point Maldacena, Gubser, Klebanov, Polyakov, Witten

AdS/CFT correspondence The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions 3+1 dimensional AdS space A 2+1 dimensional system at its quantum critical point Maldacena, Gubser, Klebanov, Polyakov, Witten

Black hole temperature = temperature of quantum critical system AdS/CFT correspondence The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions 3+1 dimensional AdS space A 2+1 dimensional system at its quantum critical point Maldacena, Gubser, Klebanov, Polyakov, Witten

AdS/CFT correspondence The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions 3+1 dimensional AdS space Black hole entropy = Entropy of quantum criticality A 2+1 dimensional system at its quantum critical point Strominger, Vafa

Quantum critical dynamics = waves in curved space AdS/CFT correspondence The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions 3+1 dimensional AdS space A 2+1 dimensional system at its quantum critical point Maldacena, Gubser, Klebanov, Polyakov, Witten

AdS/CFT correspondence The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions 3+1 dimensional AdS space Dissipation in quantum criticality = waves falling into black hole A 2+1 dimensional system at its quantum critical point Kovtun, Policastro, Son

Au+Au collisions at RHIC Quark-gluon plasma can be described by QCD (nearly conformal, critical theory) Extremely low viscosity fluid!

Au+Au collisions at RHIC Quark-gluon plasma can be described by QCD (nearly conformal, critical theory) Extremely low viscosity fluid! SUSY - SU(N): This IS an extremely low value! Is there a lowest possible value, or a most perfect liquid?

Graphene a nearly perfect liquid! MM, J. Schmalian, and L. Fritz, (PRL 2009) Anomalously low viscosity (like quark-gluon plasma) Heisenberg Measure of strong coupling: Conjecture from AdS-CFT:

Graphene a nearly perfect liquid! MM, J. Schmalian, and L. Fritz, (PRL 2009) Anomalously low viscosity (like quark-gluon plasma) Heisenberg Measure of strong coupling: Doped Graphene & Fermi liquids: (Khalatnikov etc) Conjecture from AdS-CFT:

Graphene a nearly perfect liquid! MM, J. Schmalian, and L. Fritz, (PRL 2009) Anomalously low viscosity (like quark-gluon plasma) Heisenberg Measure of strong coupling: Doped Graphene & Fermi liquids: (Khalatnikov etc) Undoped Graphene: Conjecture from AdS-CFT: Boltzmann-Born Approximation:

Graphene T. Schäfer, Phys. Rev. A 76, 063618 (2007). A. Turlapov, J. Kinast, B. Clancy, Le Luo, J. Joseph, J. E. Thomas, J. Low Temp. Phys. 150, 567 (2008)

Electronic consequences of low viscosity? MM, J. Schmalian, L. Fritz, (PRL 2009) Expected viscous effects on conductance in non-uniform current flow: Decrease of conductance with length scale L

Electronic consequences of low viscosity? MM, J. Schmalian, L. Fritz, (PRL 2009) Electronic turbulence in clean, strongly coupled graphene? (or at quantum criticality!) Reynolds number:

Electronic consequences of low viscosity? MM, J. Schmalian, L. Fritz, (PRL 2009) Electronic turbulence in clean, strongly coupled graphene? (or at quantum criticality!) Reynolds number: Strongly driven mesoscopic systems: (Kim s group [Columbia]) Complex fluid dynamics! (pre-turbulent flow) New phenomenon in an electronic system!

Summary Strong coupling Undoped graphene is strongly coupled in a large temperature window! Nearly universal strong coupling features in transport; many similarities with strongly coupled critical fluids (described by AdS-CFT) Emergent relativistic hydrodynamics at low frequency Graphene: Nearly perfect quantum liquid! Possibility of complex (turbulent?) current flow at high bias