6.5. Renderöintijärjestys
|
|
- Ida Koskinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 6.5. Renderöintijärjestys Näkymän käsittelyjärjestyksiä on kahta tyyppiä. Ensimmäinen on monikulmioittainen käsittely, jossa kukin monikulmio prosessoidaan vuorollaan välittämättä muista. Toinen on selaussuorajärjestys, jossa annetun selaussuoran leikkaavat monikulmioiden janat käsitellään ennen siirtymistä seuraavalle selaussuoralle. Monikulmioittaisella käsittelyllä on etuja. Se on yksinkertainen toteuttaa ja tarvitsee vain vähän aktiivista dataa kerrallaan. Täten siinä ei ole näkymän monimutkaisuuden suhteen vastaan ylärajaa, kuten selaussuorakäsittelyssä. Heikkoutena siinä on, ettei se hyödynnä inormaation jakamista, varsinkaan sitä, että useimmat särmät liittyvät kahteen monikulmioon. Monikulmioittaista käsittelyä voidaan käyttää ainoastaan Z puskuriin perustuvan piilopintojen poiston yhteydessä, joka on muistia runsaasti vaativa menetelmä. Selaussuoramenetelmissä sitä paitsi luodaan koko kuva selaussuorajärjestyksessä, mikä on hyödyllistä laitteistototeutusten kannalta ja laskostumisen poistossa (anti aliasing). Menetelmien ero kuvastuu varsinkin niiden tavasta rakentaa särmälista. Edellä on tarkasteltu asiaa monikulmioittaisen käsittelyn kannalta. Selaussuoramenetelmällä tulisi sellaisella menettelyllä kaikkien monikulmioiden kaikkien särmien rasterointi etukäteen ongelmia tuhlaavan tilankäytön takia. Näin ollen tälle on mielekästä soveltaa aktiivisten särmien listaa, jossa on kerrallaan vain yhden selaussuoran särmät. 6. luku luku 350 Selaussuoramenetelmän käsittelyn luonnos on: Monikulmioittaisen käsittelyn luonnos on: or jokaiselle monikulmiolle do muodosta lista monikulmioiden särmistä or y := ymin to ymax do or jokaiselle parille (x i,x i+1 ) särmien listassa[y] do sävytä vaakasuora jana pisteestä (x i,y) pisteeseen (x i+1,y) tyhjennä aktiivisten särmien lista or jokaiselle selaussuoralle do or jokaiselle nykyiseltä selaussuoralta lähtevälle särmälle do lisää särmä aktiivisten särmien listaan alusta sen sävytys ja rasteriarvot ja näiden lisäysarvot poista särmät, jotka eivät vaikuta enää selaussuoralla jäsennä aktiivisten lista käsiteltävien janojen saamiseksi lisää lisäysarvot kaikkiin aktiivisiin särmiin 6. luku luku 352
2 6.6. Piilopintojen poisto On kaksi paljon käytettyä piilopintojen poiston lähestymistapaa, selaussuorapohjainen ja Z puskuripohjainen. Muita on olemassa, kuten alijako (pilkkominen), mutta niitä on edellisiä vähemmän sovellettu ja ovat pikemmin varattu erikoistarkoituksiin, esim. lentosimulaattoriohjelmiin. Z puskuri algoritmi Z puskuri algoritmi (Catmull, 1975) on hyvin keskeinen tietokonegraiikassa, aivan kuin Phongin heijastusmalli ja interpolointilaskenta. Monikulmion sisäiset pisteet sävytetään inkrementaalisesti ja niiden syvyysarvot lasketaan interpoloimalla monikulmion kärkien z arvojen perusteella katselumuunnoksen jälkeen. Syvyysarvot lasketaan luvun 1.5. yhtälöiden mukaisesti. Monikulmion pisteisiin (x s,y s ) on liitetty z arvot. Z puskuri algoritmi etsii ne läpi hakien minimin. Haku toteutetaan Z puskurin avulla, joka sisältää nykyisen pisteen (x,y) ja toistaiseksi löydetyn pienimmän z arvon. Monikulmioprosessin kuluessa pisteen (x,y) intensiteetti kirjoitetaan näyttöpuskuriin tai ei sen mukaan, onko nykyisen pisteen syvyysarvo z pienempi kuin tähän mennessä pienin, joka on talletettuna Z puskuriin. Merkittävä etu Z puskurin soveltamisessa on, että se on riippumaton kohteen esitysmuodosta. Vaikka sitä tässä kuvataan monikulmioverkkojen yhteydessä, se sopii myös esim. CSG kohteille. Menetelmän suurin etu on toteutuksen yksinkertaisuus. Sen suurin heikkous on Z puskuria varten tarvittavan muistin määrä. 6. luku luku 354 Z puskurin koko riippuu tarkkuudesta, jolla kunkin pisteen (x,y) syvyysarvo tallennetaan (näkymän monimutkaisuuden unktio). Arvoa ittiä pidetään tavallisesti riittävänä. Näkymä on skaalattava tähän z:n kiinnitettyyn väliin, jotta tarkkuus maksimoituu. Z puskuri ja kuvan osien koostaminen Z puskuri algoritmin hyöty on myös, että kuhunkin pikseliin liittyvä z arvo voidaan säilyttää ja käyttää erikseen luotujen näkymän osien koontiin tai lomittamiseen. Kolmiulotteiset kuvat muodostetaan monesti erillisistä alikuvista. Näitä voidaan yhdistää mm. Boolen operaattoreilla. Yksinkertainen erillisten alkioiden koostaminen perustuu pikselittäiseen käsittelyyn, jossa on RGB Z esitys alikuvan pikseleitä varten. Parametri mahdollistaa alikuvien erillisen rakentamisen ja yhdistämisen säilyttäen alipikseli inormaation, jota voidaan hyödyntää kunkin alikuvan käsittelyssä. Kaksi alikuvaa yhdistetään inäärioperaatiolla: = op Tarkastellaan esim. operaatiota Z min. Olkoot kaksi yksikohteista alikuvaa, jotka on renderöity erikseen. Jokaisen pikselin z arvot on käsitelty. 6. luku luku 356
3 Tällöin koostaminen merkitsee piilopinnan poistoon vaikuttamista kohteiden välillä ja määritellään pikseleille: RGB Z = ( i Z = min( Z, Z < Z ) Parametri, 0 1, on pikselialueen osa, jonka kohde kattaa. Sitä käytetään tekijänä määräämään kahden kuvan värisekoitusta. then RGB else RGB ) Operaattori over määritellään: RGB α = α = RGB Tämä tarkoittaa, että kun RGB :tä on läsnä pikselissä. + (1 α + (1 α ) α vähenee, enemmän Koostamisoperaatio omp yhdistää em. operaatiot. Se laskee pikselien tulokset, kun Z arvot pikselien nurkissa ovat erilaiset arvojen RGB ja RGB välillä. Arvoa Z verrataan arvoon Z jokaisessa neljässä kulmassa. Näin on 16 eri mahdollisuutta. Särmiä pitkin interpoloidaan lineaarisesti. Lasketaan osa (pikselialue, jossa on lähempänä kuin ). Saadaan omp: ) RGB RGB = β ( over ) + (1 β )( over ) 6. luku luku 358 Z puskuri ja renderöinti Z puskuri ei määrää rajoituksia tietokantaorganisoinnille (paitsi sävytysinterpoloinnin mielessä). Sen yksinkertaisin muoto on johdettavissa monikulmioittain, jolloin monikulmiot voidaan esittää halutussa järjestyksessä. Jokaiselle monikulmiolle voidaan laskea: (1) sisäpikselien (x,y) arvo (2) jokaisen pisteen (x,y) syvyysarvo z (3) jokaisen pisteen (x,y) intensiteetti I Näin algoritmiin tulee kolme rinnakkaista interpolointilaskentaa ja kolme sisäkkäistä silmukkaa. Intensiteetit I ja z arvot ovat käytettävissä kussakin kärjessä. Interpolointi niille tehdään kahdessa sisäsilmukassa. Z puskuria hyödyntävä piilopintojenpoistoalgoritmi on seuraava: or kaikille arvoille x, y do Z puskuri[x,y] := maksimisyvyys or jokaiselle monikulmiolle do tee monikulmion särmistä lista (jokaiselle särmälle lasketaan arvot x, z ja I kullekin selaussuoralle ja tallennetaan nämä särmälistaan) or y := y min to y max do or jokaiselle janalle särmälistassa[y] do hae X vasen, X oikea, Z vasen, Z oikea, I vasen, I oikea 6. luku luku 360
4 or x := X vasen to X oikea do interpoloi lineaarisesti z ja I arvojen Z vasen ja Z oikea välillä sekä I vasen ja I oikea välillä i z < Z puskuri[x,y] then Z puskuri[x,y] := z näyttöpuskuri[x,y] := I Algoritmin tehottomuus sävytyksessä tulee lähinnä piilopikselien laskemisesta, jotka jätetään joko huomiotta tai myöhemmin uudelleenkirjoitetaan. Käytettäessä Phongin interpolointia heijastusmallilaskennan (interpoloidun normaalin unktio) tulee olla mukana sisimmässä silmukassa. Interpoloidaan normaalia N eikä intensiteettiä I, jolloin algoritmin viimeinen rivi kuuluu: näyttöpuskuri[x,y]:=sävytysunktio(n) Selaussuora Z puskuri On olemassa muunnelma Z puskuri algoritmista nimeltään selaussuora Z puskuri. Tämä käyttää ainoastaan yhden pikselin korkuista Z puskuria, johon talletetaan vain yksi selaussuora kerrallaan. Hyötynä on pieni muistin tarve, joten sitä käytetään muistiltaan rajoitetuissa ympäristöissä. Muitakin selaussuoramenetelmiä on ja myös muitakin Z puskurimenetelmiä, esim. Z pyramidi, mutta niihin ei puututa tässä. 6. luku luku 362 Piilopintojen poiston jänteet Tässä algoritmi pyrkii löytämään jokaiselle selaussuoralle jänteet, joille sävytys voidaan suorittaa. Tehtävänä on jakaa selaussuora osiin, joille yksittäinen pinta on vallitseva. Tällöin sävytyslaskenta tehdään vain kerran kullekin pikselille, mikä poistaa Z puskurin tehottomuutta. Menettelyn heikkoutena on kuitenkin monimutkaisuus. Näin ollen Z puskurin käyttö on yleisempää kuvien jatkuvasti monimutkaistuessa. Ei puututa algoritmin yksityiskohtiin, mutta esitetään sitä valaisevat kuvat ja Kuva Selaussuoratasoa siirretään alas näkymän läpi, jolloin saadaan janat ja jänteet. Kuva Jänteiden käsittelyä. 6. luku luku 364
5 BSP puut ja piilopintojen poisto Luvussa 2 esitettyjen BSP puiden hyödyntäminen rajoittui aluksi kauan lähinnä lentosimulaattoriohjelmiin. Kolmiulotteisten videopelien ja muun animoinnin nousun myötä BSP puut ovat pulpahtaneet esiin myös näkyvyyslaskennan yhteydessä. Alkuperäinen BSP puiden käyttö piilopintojen poistossa perustui staattiseen näkymään ja vaihtuvaan katselupisteeseen lentosimulaattoritai tietokonepelisovelluksessa. Ensivaiheessa näkymän BSP puu konstruoidaan (vain kerran), ja toisessa vaiheessa katselupistettä verrataan tähän rakenteeseen näkyvyyden määräämiseksi. Etuna on se, että huomattava osa näkyvyyslaskennasta voidaan tehdä esiprosessointina, mikä on tehokasta, ja täten tärkeää mm. reaaliaikaiselle tietokonegraiikalle. Kuvan käsittäessä konvekseja kohteita, jotka ovat erotettavissa tasoista muodostetuilla konvekseilla alueilla, rekursiivista hajota ja hallitse menettelyä voidaan soveltaa avaruuden jakamiseen. Oletetaan, että käytettävissä on sopiva menetelmä asettaa tasot ja puu on täydellinen, kun jokainen alue käsittää ainoastaan yhden kohteen. Kuva esittää esimerkin. Jokainen lehtisolmu määrittää yhden kohteen, ja solmu vastaa erottavaa tasoa. Puun muodostamisen (kuva (a)) jälkeen määrätään näkyvyysjärjestys katselupisteelle laskeutuen puuta juuresta käsin. Katselupistekoordinaattien avulla lasketaan sitä lähin kohde (kuva ()). Juuresta laskeudutaan tason A puolelle alipuuhun tämän ollessa lähinnä katselupistettä. Tullaan tasolle B ja kohteelle luku luku 366 Kuva () esittää näkyvyysjärjestyksen reitin. Kohde 3 on seuraavaksi lähin. Tämän jälkeen mennään juuren kautta kohteeseen 1 ja lopuksi 4. Näin saatiin näkyvyysjärjestys lähimmästä kaukaisimpaan kohteeseen: 2, 3, 1 ja 4. Luonnollisesti se voitaisiin laskea myös käänteisessä järjestyksessä. Kuva BSP operaatiot nelikohteiselle kuvalle. (a) BSP puun laatiminen. () Laskeutuminen puussa käyttäen katselupistekoordinaatteja antaa lähimmän kohteen. () Kaikkien kohteiden näkyvyysjärjestyksen laskenta. 6. luku 367 Käytännössä menettely ei ole erityisen hyödyllinen, sillä useimmiten sovelluksissa on kuvia, joissa kohteiden kompleksisuus (monikulmioiden määrä kohdetta kohti) on paljon suurempi kuin näkymän kompleksisuus (kohteiden määrä siinä), ja jotta menettely olisi hyödyllinen, pitää käsitellä kohteiden monikulmioita, ei niinkään kokonaisia kohteita. Lisäksi tasojen asettaminen on hankalaa. 6. luku 368
6 Monikulmioiden näkyvyyden järjestämiseksi valitaan tasot, jotka sisältävät etupuolen monikulmioita. Jokin monikulmio valitaan juurisolmuksi. Muut käydään läpi kyseisen monikulmion käsittävää tasoa vasten ja sijoitetaan sopivaan jälkeläishaaraan. Jokainen juuritason leikkaava monikulmio jaetaan kahteen osaan. Prosessi jatkuu rekursiivisesti, kunnes kaikki monikulmiot ovat tasolla. Näin syntyy enemmän monikulmioita, kuin oli alkuperäisessä näkymässä, mutta suhde on tavallisesti pienempi kuin 2. Kuvassa on yksinkertainen esimerkki. Ensimmäinen valittu taso A sisältää monikulmion kohteesta 1 ja jakaa kohteen 3 kahtia. Puu rakentuu entiseen tapaan, ja määrätään sisälläulkona periaatteella, millä puolella jaossa kohde sijaitsee. Kuva Monikulmioiden BSP puu. BSP puiden alkuperäinen toimintatapa oli kaukaalähelle järjestys. Monikulmioiden käsittely näyttöpuskuriin tässä järjestyksessä antaa nk. maalarin algoritmin, jossa läheiset pikselit kirjoitetaan kaukaisempien päälle. Myös läheltä kauasjärjestystä voidaan käyttää, mutta on merkittävä jollakin tavalla, milloin pikselissä on jo käyty. 6. luku luku 370 Näkyvyysjärjestyksen kehittämiseksi tulee: Laskeutua pitkin puuta käyttäen pistekoordinaatteja. Määrätä jokaisessa solmussa, onko katselupiste solmutason edessä vai takana. Aluksi laskeutua pitkin alipuun kaukaista sivua ja tulostaa monikulmiot. Sitten laskeutua pitkin alipuun läheistä sivua ja tulostaa monikulmiot. Tämä antaa monikulmioiden takaa eteenjärjestyksen nykyisen katselukulman suhteen. Monikulmiot renderöidään näyttöpuskuriin kyseisessä järjestyksessä. Menettely kärsii samasta haitasta kuin Z puskuri, kun käsitellyt pikselit saatetaan välittömästi kirjoittaa päälle. 6. luku 371
4. Esittäminen ja visualisointi (renderöinti)
4. Esittäminen ja visualisointi (renderöinti) Tutkitaan erilaisia renderöintimenetelmiä, joita käytetään luvuissa 2 ja 3 esitettyjen kuvien esitysmuotojen visualisointiin. Seuraavassa selvitetään: (1)
LisätiedotAlgoritmit 2. Luento 2 To Timo Männikkö
Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento
LisätiedotAlgoritmit 2. Luento 2 Ke Timo Männikkö
Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento
LisätiedotAlgoritmit 2. Luento 5 Ti Timo Männikkö
Algoritmit 2 Luento 5 Ti 26.3.2019 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot B-puun muunnelmia Algoritmit 2 Kevät 2019 Luento 5 Ti 26.3.2019 2/34 B-puu B-puut ovat tasapainoisia
LisätiedotAlgoritmit 2. Luento 6 Ke Timo Männikkö
Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu
Lisätiedot2.2. Kohteiden konstruktiivinen avaruusgeometrinen esitys
.. Kohteiden konstruktiivinen avaruusgeometrinen esitys Avaruusgeometrinen esitys on käyttäjäriippuvainen ja vaati erikoismenetelmiä tai lopuksi konversion monikulmiomalliksi. Se on korkean tason esitys
LisätiedotAlgoritmit 1. Luento 8 Ke Timo Männikkö
Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin
LisätiedotAlgoritmit 2. Luento 6 To Timo Männikkö
Algoritmit 2 Luento 6 To 28.3.2019 Timo Männikkö Luento 6 B-puun operaatiot Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2019 Luento 6 To 28.3.2019 2/30 B-puu 40 60 80 130 90 100
LisätiedotAlgoritmit 2. Luento 5 Ti Timo Männikkö
Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti
LisätiedotLuento 6: Piilopinnat ja Näkyvyys
Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Piilopinnat ja Näkyvyys Janne Kontkanen Geometrinen mallinnus / 1 Johdanto Piilopintojen poisto-ongelma Syntyy kuvattaessa 3-ulotteista maailmaa 2-ulotteisella
Lisätiedot10.2. Säteenjäljitys ja radiositeettialgoritmi. Säteenjäljitys
10.2. Säteenjäljitys ja radiositeettialgoritmi Säteenjäljitys Säteenjäljityksessä (T. Whitted 1980) valonsäteiden kulkema reitti etsitään käänteisessä järjestyksessä katsojan silmästä takaisin kuvaan valolähteeseen
Lisätiedot2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.
Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen
LisätiedotTIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 9. marraskuuta 2009
TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe D tiistai 10.11. klo 10 välikielen generointi Vaihe E tiistai
Lisätiedot811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu
832A Tietorakenteet ja algoritmit, 204-205, Harjoitus 7, ratkaisu Hajota ja hallitse-menetelmä: Tehtävä 7.. Muodosta hajota ja hallitse-menetelmää käyttäen algoritmi TULOSTA_PUU_LASKEVA, joka tulostaa
LisätiedotAlgoritmit 2. Luento 9 Ti Timo Männikkö
Algoritmit 2 Luento 9 Ti 17.4.2018 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen Huffmanin koodi LZW-menetelmä Taulukointi Editointietäisyys Algoritmit 2 Kevät 2018 Luento 9 Ti 17.4.2018 2/29 Merkkitiedon
LisätiedotAlgoritmit 2. Luento 4 To Timo Männikkö
Algoritmit 2 Luento 4 To 21.3.2019 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2019 Luento 4
LisätiedotTehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003
Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja
Lisätiedot10. Esitys ja kuvaus
10. Esitys ja kuvaus Kun kuva on ensin segmentoitu alueisiin edellisen luvun menetelmin, segmentoidut pikselit kootaan esittämään ja kuvaamaan kohteita muodossa, joka sopii hyvin jatkokäsittelyä varten.
Lisätiedotv 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint.
Yleiset hakupuut 4 Monitiehakupuu: Binäärihakupuu 0 1 3 5 6 7 8 v k 1 k k 3 v v 3 v 4 k 1 k 3 k 1 k k k 3 d lapsisolmua d 1 avainta Yleinen hakupuu? Tietorakenteet, syksy 007 1 Esimerkki monitiehakupuusta
LisätiedotAlgoritmit 2. Luento 7 Ti Timo Männikkö
Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26
LisätiedotAlgoritmit 1. Luento 10 Ke Timo Männikkö
Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot
LisätiedotAlgoritmit 1. Luento 3 Ti Timo Männikkö
Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien
LisätiedotAlgoritmit 2. Luento 4 Ke Timo Männikkö
Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4
LisätiedotAlgoritmit 1. Luento 6 Ke Timo Männikkö
Algoritmit 1 Luento 6 Ke 25.1.2017 Timo Männikkö Luento 6 Järjestetty lista Listan toteutus dynaamisesti Linkitetyn listan operaatiot Vaihtoehtoisia listarakenteita Puurakenteet Binääripuu Järjestetty
LisätiedotTietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin
LisätiedotMiten käydä läpi puun alkiot (traversal)?
inääripuut ieman lisää aidon binääripuun ominaisuuksia lehtisolmuja on yksi enemmän kuin sisäsolmuja inääripuut tasolla d on korkeintaan 2 d solmua pätee myös epäaidolle binääripuulle taso 0: 2 0 = 1 solmu
Lisätiedot811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta
811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta jälkiosasta IV Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden aikakompleksisuus
LisätiedotLuku 8. Aluekyselyt. 8.1 Summataulukko
Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa
Lisätiedot4. Joukkojen käsittely
4 Joukkojen käsittely Tämän luvun jälkeen opiskelija osaa soveltaa lomittuvien kasojen operaatioita tuntee lomittuvien kasojen toteutuksen binomi- ja Fibonacci-kasoina sekä näiden totetutusten analyysiperiaatteet
LisätiedotSolmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:
Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman
LisätiedotTietorakenteet, laskuharjoitus 7, ratkaisuja
Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9
Lisätiedot58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut
Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten
LisätiedotSisältö. Luento 6: Piilopinnat. Peruskäsitteet (jatkuu) Peruskäsitteitä. Yksinkertaisia tapauksia. Yksinkertaiset tapaukset jatkuu
Tietokonegrafiikka / perusteet T-111.300/301 4 ov / 2 ov Peruskäsitteitä Z-buffer Syvyyslajittelu Juovalajittelu Rekursiivinen aluejako Piiloviivat Sisältö Luento 6: Piilopinnat Marko Myllymaa 09/03 Piilopinnat
LisätiedotPaikkatiedon käsittely 6. Kyselyn käsittely
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 6. Kyselyn käsittely Antti Leino antti.leino@cs.helsinki.fi 1.2.2007 Tietojenkäsittelytieteen laitos Kysely indeksin
LisätiedotAlgoritmit 1. Luento 7 Ti Timo Männikkö
Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017
LisätiedotOhjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin
LisätiedotTampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus
Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)
Lisätiedotf(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))
Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia
LisätiedotALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,
LisätiedotPinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia
Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä
LisätiedotLauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:
Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs
Lisätiedot58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille
LisätiedotJohdatus graafiteoriaan
Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 126 Luku 3 Puut 3.1 Puu 3.2 Virittävä puu 3.3 Virittävän puun konstruointi 3.4 Minimaalinen virittävä puu
LisätiedotMaksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta
Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti
LisätiedotDatatähti 2019 loppu
Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio
LisätiedotAlgoritmit 2. Luento 10 To Timo Männikkö
Algoritmit 2 Luento 10 To 19.4.2018 Timo Männikkö Luento 10 Peruutusmenetelmä Osajoukon summa Verkon 3-väritys Pelipuut Pelipuun läpikäynti Algoritmit 2 Kevät 2018 Luento 10 To 19.4.2018 2/34 Algoritmien
LisätiedotHakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina
Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella
LisätiedotLuento 6: Geometrinen mallinnus
Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Geometrinen mallinnus Lauri Savioja, Janne Kontkanen 11/2007 Geometrinen mallinnus / 1 Sisältö Mitä on geometrinen mallinnus tietokonegrafiikassa
Lisätiedot811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu
1312A Tietorakenteet ja algoritmit, 2016-2017, Harjoitus 5, Ratkaisu Harjoituksen aihe ovat hash-taulukot ja binääriset etsintäpuut Tehtävä 5.1 Tallenna avaimet 10,22,31,4,15,28,17 ja 59 hash-taulukkoon,
Lisätiedot811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja
811312A Tietorakenteet ja algoritmit, 2015-2016 VI Algoritmien suunnitteluparadigmoja Sisältö 1. Hajota ja hallitse-menetelmä 2. Dynaaminen taulukointi 3. Ahneet algoritmit 4. Peruuttavat algoritmit 811312A
LisätiedotA274101 TIETORAKENTEET JA ALGORITMIT
A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.
Lisätiedot815338A Ohjelmointikielten periaatteet 2014-2015. Harjoitus 7 Vastaukset
815338A Ohjelmointikielten periaatteet 2014-2015. Harjoitus 7 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/
LisätiedotAVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta
AVL-puut eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta pohjana jo esitetyt binäärihakupuiden operaatiot tasapainotus vie pahimmillaan lisäajan lisäys- ja
Lisätiedot811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta
811312A Tietorakenteet ja algoritmit 2018-2019 Kertausta jälkiosasta V Hashtaulukot ja binääriset etsintäpuut Hashtaulukot Perusajatus tunnettava Tiedettävä mikä on tiivistefunktio Törmäysongelman hallinta:
LisätiedotTietorakenteet ja algoritmit - syksy 2015 1
Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä
LisätiedotAlgoritmit 2. Luento 11 Ti Timo Männikkö
Algoritmit 2 Luento 11 Ti 25.4.2017 Timo Männikkö Luento 11 Peruutusmenetelmä Osajoukon summa Pelipuut Pelipuun läpikäynti Rajoitehaku Kapsäkkiongelma Algoritmit 2 Kevät 2017 Luento 11 Ti 25.4.2017 2/29
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
LisätiedotInversio-ongelmien laskennallinen peruskurssi Luento 7 8
Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Kevät 2011 1 Iteratiivisista menetelmistä Tähän mennessä on tarkasteltu niin sanottuja suoria menetelmiä, joissa (likimääräinen) ratkaisu saadaan
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:
LisätiedotTKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen)
TKT0001 Tietorakenteet ja algoritmit Erilliskoe 5.1.01, malliratkaisut (Jyrki Kivinen) 1. [1 pistettä] (a) Esitä algoritmi, joka poistaa kahteen suuntaan linkitetystä järjestämättömästä tunnussolmullisesta
LisätiedotRATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.
RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion
LisätiedotAlgoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö
Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu
LisätiedotTietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen
Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:
Lisätiedot1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
LisätiedotDemo 1: Simplex-menetelmä
MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x
LisätiedotRistitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
Lisätiedot(p j b (i, j) + p i b (j, i)) (p j b (i, j) + p i (1 b (i, j)) p i. tähän. Palaamme sanakirjaongelmaan vielä tasoitetun analyysin yhteydessä.
Loppu seuraa suoralla laskulla: n n Tave TR = p j (1 + b (i, j)) j=1 = 1 + 1 i
LisätiedotTKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto
Indeksin luonti ja hävitys TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto Komentoa ei ole standardoitu ja niinpä sen muoto vaihtelee järjestelmäkohtaisesti Indeksi voidaan
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
LisätiedotT-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011
T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 Vastaa kolmeen tehtävistä 1-4 ja tehtävään 5. 1. Selitä lyhyesti mitä seuraavat termit tarkoittavat tai minkä ongelman algoritmi ratkaisee
LisätiedotKahden suoran leikkauspiste ja välinen kulma (suoraparvia)
Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole
LisätiedotJohdatus verkkoteoriaan luento Netspace
Johdatus verkkoteoriaan luento 3.4.18 Netspace Matriisioperaatio suunnatuissa verkoissa Taustoitusta verkkoteorian ulkopuolelta ennen kuljetusalgoritmia LP-ongelma yleisesti LP = linear programming =
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot
LisätiedotA ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
LisätiedotKartio ja pyramidi
Kartio ja pyramidi Kun avaruuden suora s liikkuu pitkin itseään leikkaamatonta tason T suljettua käyrää ja lisäksi kulkee tason T ulkopuolisen pisteen P kautta, suora s piirtää avaruuteen pinnan, jota
Lisätiedot811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit
811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi
LisätiedotLuento 6: Tulostusprimitiivien toteutus
Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Tulostusprimitiivien toteutus Lauri Savioja 11/07 Primitiivien toteutus / 1 ntialiasointi Fill-algoritmit Point-in-polygon Sisältö Primitiivien toteutus
LisätiedotLiite: Verkot. TKK (c) Ilkka Mellin (2004) 1
Liite: Verkot TKK (c) Ilkka Mellin (2004) 1 : Mitä opimme? Verkkoteoria on hyödyllinen sovelletun matematiikan osa-alue, jolla on sovelluksia esimerkiksi logiikassa, operaatiotutkimuksessa, peli-ja päätösteoriassa
LisätiedotHarjoitus 6 ( )
Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.
LisätiedotAlgoritmit 1. Luento 11 Ti Timo Männikkö
Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017
Lisätiedotjäsentäminen TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 26. marraskuuta 2015 TIETOTEKNIIKAN LAITOS
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. marraskuuta 2015 Sisällys Tunnistamis- ja jäsennysongelma Olkoon G = (N, Σ, P, S) kontekstiton kielioppi ja
Lisätiedot10. Globaali valaistus
10. Globaali valaistus Globaalilla eli kokonaisvalaistuksella tarkoitetaan tietokonegrafiikassa malleja, jotka renderöivät kuvaa laskien pisteestä x heijastuneen valon ottamalla huomioon kaiken tähän pisteeseen
LisätiedotAlgoritmit 1. Luento 12 Ti Timo Männikkö
Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit
LisätiedotAlgoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 20.3.2018 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2018 Luento 3 Ti 20.3.2018
LisätiedotAlgoritmit 2. Luento 8 To Timo Männikkö
Algoritmit 2 Luento 8 To 4.4.2019 Timo Männikkö Luento 8 Algoritmien analysointi Algoritmien suunnittelu Rekursio Osittaminen Rekursioyhtälöt Rekursioyhtälön ratkaiseminen Master-lause Algoritmit 2 Kevät
LisätiedotKombinatorinen optimointi
Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein
LisätiedotAlgoritmit 1. Luento 12 Ke Timo Männikkö
Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu
LisätiedotTIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 2. helmikuuta 2012
TIEA241 Automaatit ja, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 2. helmikuuta 2012 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti lueteltava
LisätiedotMediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin
Mediaanisuodattimet Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että niiden ominaisuudet tunnetaan hyvin niiden analysointiin on olemassa vakiintuneita menetelmiä
Lisätiedot10. Painotetut graafit
10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä
LisätiedotJohdatus verkkoteoriaan 4. luento
Johdatus verkkoteoriaan 4. luento 28.11.17 Viikolla 46 läpikäydyt käsitteet Viikolla 47 läpikäydyt käsitteet Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot,
Lisätiedot58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen)
58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 1. Lisäysjärjestämisessä järjestetään ensin taulukon kaksi ensimmäistä lukua, sitten kolme ensimmäistä lukua, sitten neljä ensimmäistä
Lisätiedot1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.
Matematiikan kurssikoe, Maa4 Vektorit RATKAISUT Sievin lukio Keskiviikko 12.4.2017 VASTAA YHTEENSÄ VIITEEN TEHTÄVÄÄN! MAOL JA LASKIN/LAS- KINOHJELMAT OVAT SALLITTUJA! 1. Olkoot vektorit a, b ja c seuraavasti
LisätiedotAlgoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 2 3.-4.4.2019 Timo Männikkö Tehtävä 1 Avoin osoitteenmuodostus: Hajautustaulukko t (koko m) Erikoisarvot VAPAA ja POISTETTU Hajautusfunktio h(k,i) Operaatiot: lisaa etsi poista Algoritmit
LisätiedotTarkennamme geneeristä painamiskorotusalgoritmia
Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi
Lisätiedot3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.
3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta
LisätiedotTilanhallintatekniikat
Tilanhallintatekniikat 3D grafiikkamoottoreissa Moottori on projektin osa joka vastaa tiettyjen toiminnallisuuksien hallinnasta hallitsee kaikki vastuualueen datat suorittaa kaikki tehtäväalueen toiminnot
LisätiedotNumeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35
Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen
LisätiedotAlgoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 1 27.-28.3.2019 Timo Männikkö Tehtävä 1 (a) 4n 2 + n + 4 = O(n 2 ) c, n 0 > 0 : 0 4n 2 + n + 4 cn 2 n n 0 Vasen aina tosi Oikea tosi, jos (c 4)n 2 n 4 0, joten oltava c > 4 Kokeillaan
Lisätiedot58131 Tietorakenteet Erilliskoe , ratkaisuja (Jyrki Kivinen)
58131 Tietorakenteet Erilliskoe 11.11.2008, ratkaisuja (Jyrki Kivinen) 1. (a) Koska halutaan DELETEMAX mahdollisimman nopeaksi, käytetään järjestettyä linkitettyä listaa, jossa suurin alkio on listan kärjessä.
Lisätiedot