Laske Laudatur ClassPadilla - syksy 2013
|
|
- Julia Seppälä
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Laske Laudatur ClassPadilla - syksy 2013 Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun. Casio Scandinavia Keilaranta Espoo info@casio.fi
2 Hyvä matemaatikko, Symbolinen laskenta on tullut jäädäkseen Suomeen. ClassPad-sarjan kesällä 2013 julkaistu viimeisin malli fx-cp400 on todella helppokäyttöinen ja käyttäjäystävällinen apuväline sekä opiskelun ja oppimisen tueksi että ylioppilaskirjoitusten tehtävien ratkaisemiseen. Tässä vihkosessa on laskettu sekä pitkän että lyhyen matematiikan tehtävistä ylimmän arvosanan saamiseen oikeuttavat pistemäärät ClassPadilla. Muutama helppo tehtävä (esim. lyhyt matematiikka 6, 7 ja 8) tai laskimen käyttöä huonosti tukevat todistustehtävät (pitkä matematiikka 13) on sivuutettu. Ylioppilastutkintolautakunta työstää uutta sähköistä tutkintoa ja ratkoo siihen liittyviä haasteita. ClassPad Manager-ohjelmisto on erinomainen opetuksen ja oppimisen työväline. Tulevaisuus näyttää, millä työkaluilla sähköisiä ylioppilaskokeita ratkotaan. Varmaa on kuitenkin se, että sähköisiin kokeisiin siirrytään matematiikan osalta tämän vuosikymmenen lopulla. Casio tekee opettajille tukimateriaalia, josta tämäkin vihkonen on esimerkki. Aktiivisesti päivittyvät pedagogiset www-sivumme osoitteessa antavat ideoita opetukseen ja ryhmätöihin. Sivujemme kautta voi myös ladata materiaalia, ohjekirjoja tai rekisteröityä opettajien tietopalveluun. Rekisteröityneet asiakkaamme pidetään automaattisesti ajantasalla Casion toimista Suomessa, laskinten päivityksistä ja materiaaleista. Sivuiltamme löytyy myös videomateriaalia laskinten opetuskäytöstä sekä ratkaisuja ylioppilastehtäviin tämä vihkonen mukaanluettuna. Tämän syksyn yo-tehtävistä erityisesti pitkän matematiikan loppupään tehtävät nostavat laskimen arvoa rutiiniosien laskemisessa. Laskimen avulla aikaa säästyy esim. tehtävien vastausten suuruusluokan arviointiin ja matemaattisen ajattelun syvällistämiseen. Hyvänä esimerkkinä tästä on molemmat pitkän matematiikan jokeritehtävät. Vektoritehtävät, geometriset tutkimustehtävät ja fysikaalinen lyhyen matematiikan korkeushyppytehtävä mahdollistavat ClassPadin monipuolisemman käytön. Perinteiset ratkaisu- ja derivointitehtävät, tekijöihin jaot ja integroinnit olivat edelleen mukana eivätkä ne laskimen peruskäytön hallitsevalle ole kovinkaan aikaavieviä. Mukavaa matematiikkaa, Espoossa Pepe Palovaara
3 Kirjoittamalla lausekkeet tai yhtälöt sellaisenaan ja maalaamalla ne kynällä voidaan ratkaisut hakea Interaktiivisen valikon kautta. Tällöin ClassPad täydentää annetut komennot eikä käyttäjän tarvitse välittää syntaksista. Komennoilla solve ja rfactor voidaan hakea ratkaisut. Vastaukset ovat a) x = 3. b) x = -1 v x = 0. c) (x 2)(x 7). Kirjoittamalla lauseke sellaisenaan joko fyysiseltä tai virtuaaliselta näppäimistöltä voidaan a) kohdan derivaatan arvo hakea Interaktiivisen valikon komennolla diff. Tämän jälkeen Interaktiivisen valikon komennolla solve voidaan ratkaista, milloin derivaatta saa arvon 1. Integraalifunktio saadaan integroimalla annettu funktio. Käyttäjän on syytä huomata, että vakion C lisääminen tulee tehdä itse. Viimeisessä osatehtävässä voidaan ratkaista a:n ja b:n yhtälöstä b, jolloin nähdään moniko kertainen se on a:han verrattuna. Muunnos prosenteiksi saadaan vähentämällä kertoimesta 1 jakertomalla tulos sadalla. Vastaukset ovat a) x = 0 v x =. b). c) 33,3% suurempi.
4 Vektorit voi piirtää alkamaan esim. origosta Geometria sovelluksessa. Valitsemalla vektori voidaan niiden välinen kulma merkitä näkyviin valikosta Piirrä -> Kiinnitetty kulma. Vastaustarkkuuden voi säätää halutuksi asetuksista kohdasta Geometriamuoto > Numeromuoto -> Korj 1. Geometriasovelluksesta on mahdollista raahata piirretyt vektorit myös Pääsovellukseen, jolloin ne niiden välisen kulman voi laskea Interaktiivisen valikon kohdasta Vektorit -> angle. Vektorit ovat yhdensuuntaiset, jos ja vain jos niiden ristitulovektori on nollavektori. Laskemalla ristitulovektori ja ratkaisemalla yhtälö, jossa sen komponentit ovat nollia, saadaan ratkaisu selville. Vastaukset ovat a) n. 81,9 o. b) s = -1. Casio järjestää maksuttomia koulutustilaisuuksia. Oletko jo kysynyt omaasi?
5 Yhtälöparin avulla voidaan ratkaista käyrien leikkauspiste, jonka x- koordinaatiksi saadaan 1. Lasketaan Interaktiivisen valikon derivointitoiminnolla derivaatan arvo pisteessä 1 kummallekin käyrälle, jolloin saadaan tangenttien kulmakertoimet. Tangentit leikkaavat toisensa kohtisuorasti, kun kohtisuoruusehto toteutuu. Tämä voidaan ratkaista yhtälönä k:n suhteen. Tehdään yhtälö, maalataan se kynällä ja valitaan Interaktiivisen valikon solve-komento. Vastaus on k = v k =. Ratkaistaan kummallekin annetulle vektorille yksikkövektorit. Tehdään aluksi vektorit vaakamatriiseina, maalataan ne kynällä ja valitaan Interaktiivisesta valikosta komento Vektorit -> UnitV. Pisteen A paikkavektoriin lisätään haluttu määrä yksikkövektoreita, jolloin vastaukseksi saadaan loppupisteen koordinaatit. Vastaus on (10, -7, -2).
6 ClassPad fx-cp400 laskee annetun integraalin arvon suoraan. Voidaan myös ratkaista funktion nollakohdat annetulla välillä ja integroida osissa. Vastaus on. ClassPadin opettajatilausten yhteydessä toimitetään ClassPad Manager-ohjelma, joka on ihanteellinen työkalu projektorin tai älytaulun kanssa. Nämäkin kuvat on tehty Manager-ohjelmalla.
7 Ratkaistaan aluksi käyrien leikkauspisteet yhtälöparilla ja muodostetaan käyrien välimatkaa ilmaiseva erotusfunktio. Lasketaan erotusfunktion suurin arvo saatujen leikkauspisteiden välissä sekä tarkkana että likiarvona Interaktiivisen valikon kautta. Edelliseen vastaukseen voi viitata muuttujalla ans. Vastauksen esittämistavan voi vaihtaa koskemalla kynällä näytön alareunan vaihtoehtoja Tarkka ja Desim. Vastaus on.
8 Lasketaan Pääsovelluksessa jakovälin pituus ja määritellään funktio f(x). Soveltamalla puolisuunnikassääntöä saadaan integraalin likiarvoksi 0,945. Vastaus on 0,945. Olemme mukana mm. MAOLin koulutuspäivillä, ITK-päivillä ja kansainvälisillä messuilla. Seuraa ilmoittelua kotisivujemme kautta osoitteessa
9 Määritetään funktio R(x) Define-komennolla, jolloin raja-arvojen laskemisessa voidaan viitata funktioon helposti. Raja-arvot voidaan laskea Interaktiivisen valikon komennolla Laskenta -> lim, jolloin lausekkeeksi riittää kirjoittaa R(x) ja raja-arvon laskemispisteeksi ensin ja sen jälkeen. Vastaukset ovat a) 3. b).
10 Sijoitetaan vuoronperään yhtälöön koordinaatit x ja y nolliksi ja ratkaistaan koordinaattiakselien leikkauspisteet. Sijoitetaan kolme saaduista pisteistä ympyrän yleiseen yhtälöön, jolloin saadaan muodostettua yksikäsitteinen ympyrän yhtälö. Ratkaistaan yhtälöryhmästä kertoimet A, B ja C. Sijoitetaan saadut kertoimet yleiseen yhtälöön, jolloin ympyrän yhtälö näiden kolmen pisteen kautta saadaan määritettyä. Sijoittamalla neljännen pisteen koordinaatit saatuun yhtälöön voidaan todeta, että sen koordinaatit toteuttavat ympyrän yhtälön ja näin neljäskin piste kuuluu samalle ympyrän kehälle.
11 Avataan Pääsovelluksen kaveriksi Kartioyhtälöiden sovellus, jolloin saatu ympyrän yhtälö voidaan raahata siihen ja sovittaa neliömuotoon. Joko neliömuodosta tai piirtämällä ja analysoimalla ympyrän yhtälöä saadaan selville ympyrän keskipisteen koordinaatit. Origon ja ympyrän keskipisteen kautta kulkevan suoran yhtälö voidaan hakea esim. piirtämällä suora Geometria-sovellukseen. Suoran yhtälöksi saadaan y = -x. Ratkaistaan alkuperäisen käyrän ja saadun suoran leikkauspisteet yhtälöparilla. Alkuperäinen käyrä ei voi olla ympyrä, koska sen yhtälössä esiintyy sekatermi -3xy. Vastaukset: a) Leikkauspisteet ovat (0, -2), (0, 1), (-1, 0) ja (2, 0). b) Ympyrän yhtälö on. c) Leikkauspisteet ovat ja. d) Ei ole.
12 Käyrä & Taulukko sovellukseen voidaan määrittää funktioiden lausekkeet ja piirtää ne k:n arvoille 0, 1 ja 2. Pääsovelluksen integrointitoiminnolla määrättyjen integraalien arvot saadaan laskettua.
13 Peräkkäiset pinta-alat muodostavat geometrisen jonon, jossa suhdelukuna on. Geometrisen jonon summakaavan avulla saadaan c) kohdan tarkka arvo laskettua. Geometrisen suppenevan sarjan summakaavalla tai raja-arvon laskemisella saadaan d) kohdan arvoksi laskettua 4. Vastaukset ovat a) Ks. kuva. b) Integraalien arvot ovat 2, 1, ja. c). d).
14 Pääsovelluksen avulla voidaan kirjoittaa kaksi ensimmäistä yhtälöä, maalata ne kynällä ja valita Interaktiivisesta valikosta komento solve, joka ratkaisee yhtälöt. Viimeisen kohdan lauseke voidaan kirjoittaa sellaisenaan ja sijoittaa siihen annetut a:n ja b:n arvot. Vastaukset ovat a) x = 0 v x = 4. b) x = -2. c) 6.
15 Kirjoittamalla suoran yhtälö Käyrä & Taulukko sovellukseen suoran kuva voidaan piirtää ja akselien leikkauspisteet selvittää Analyysi valikon graafisilla ratkaisutyökaluilla Juuri ja y-akselin lp. Pääsovelluksen yhtälöparin avulla ratkeaa b) kohta ja c) kohta on suora prosenttilasku. Vastaukset ovat a) (0, 12) ja (4, 0). b) c). Voit ottaa meihin helposti yhteyttä sähköpostitse
16 Geometria-sovelluksessa voidaan määrittää kolmio annettujen mittojen mukaan. Valitsemalla kaksi kylkeä, saadaan huippukulman suuruus ja valitsemalla kolme kylkeä saadaan kolmion pinta-ala. Vastaustarkkuuden voi säätää asetuksista Geometriamuoto -> Numeromuoto -> Korj 0. Vastaukset ovat a) 26 o. b) 1755 m 2. Muista myös kansainvälinen pedagoginen sivustomme edu.casio.com
17 Muodostetaan Pääsovellukseen rimojen yhteismitan lauseke ja sijoitetaan siihen annetut x:n ja y:n arvot. Vastaustarkkuuden voi säätää asetuksista Perusmuoto -> Numeromuoto -> Korj 0. Vastaus on 60π cm.
18 Ratkaisu voidaan hakea joko yhtälöryhmällä Pääsovelluksessa tai muodostamalla toisen asteen regressioyhtälö annettujen koordinaattiparien avulla Taulukkolaskenta-sovelluksessa. Vastaus on.
19 Pääsovelluksessa voidaan määrittää Definekomennolla funktion lauseke. Tämän jälkeen Interaktiivisesta valikosta kohdasta Laskenta -> fmin/fmax voidaan laskea suurin ja pienin arvo suljetulla välillä. Tehtävä on mahdollista tehdä myös Käyrä&Taulukko sovelluksessa. Syötetään funktion lauseke ja piirretään siitä kulkukaavio välille [-2, 4] ja tutkitaan kulkukaaviosta välin päätepisteiden ja mahdollisten paikallisten ääriarvojen suuruudet. Kuvaaja voidaan myös piirtää ja sovittaa automaattisesti annetulle välille. Vastaus on pienin arvo -15, suurin arvo 37.
20 Numeerinen ratkaisin sovellukseen voi syöttää minkä tahansa kaavan, johon suureiden numeeriset arvot syötetään. Ratkaistava suure valitaan ja kosketaan kynällä näppäintä Solve. Muuttujat kannattaa syöttää virtuaalinäppäimistön Var välilehdeltä, jolloin kertomerkkejä ei tarvita. Vastaukset ovat a) 175 (muunnettu) > 200 (muunnettu) > 196 (muunnettu). b) n. 68-vuotiaana.
21 Merkitään kultarahojen määrää x ja hopearahojen määrää y. Ratkaistaan Pääsovelluksessa ehtoja vastaavista yhtälöistä y. Avataan Pääsovelluksen rinnalle funktioluettelo ja raahataan saadut ratkaisut luetteloon. Lisätään vielä lukumääristä johtuvat epänegatiivisuusehdot ja piirretään tilanteesta kuva. Asetusten kohdasta Graafin muoto -> Epäyhtälön piirto voi tarkistaa, piirretäänkö usean ehtoyhtälön unioni vai leikkaus. Analyysityökaluista voi laskea suorien leikkauspisteet toistensa ja akselien kanssa. Leikkauspisteiksi saadaan (0, 60), (40, 20), (0, 0) ja (50, 0). Muodostetaan muovipussin kestämien rahojen arvon lauseke ja sijoitetaan saadut optimointialueen kulmapisteet siihen Pääsovelluksessa. Vastaus on 40 kultarahaa ja 20 hopearahaa.
22 Pääsovelluksessa voidaan tehdä sijoituksen arvoa kuvaava yhtälö ja raahata se koordinaatiston päälle piirtämistä varten. Kyseessä on laskeva suora, joka leikkaa y-akselin pisteessä (0, 12660). Vastaus on a). b) Ks. kuva.
23 Laskut voi tehdä suoraan Pääsovelluksessa. Vastaukset ovat a) 28. b) 28. Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun.
24
k14 Laske Laudatur ClassPadilla - Lyhyt matematiikka, kevät 2014 Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun.
k14 Laske Laudatur ClassPadilla - Lyhyt matematiikka, kevät 2014 Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun. Casio Scandinavia Keilaranta 4 02150 Espoo info@casio.fi Hyvä
Laske Laudatur ClassPadilla
Teemme työstäsi helpompaa. Laske Laudatur ClassPadilla Pitkä matematiikka, syksy 2017 Casio Scandinavia Keilaranta 17 02150 Espoo info@casio.fi Hyvä lukija, Kaksiosaiset matematiikan kokeet saivat jatkoa
Laske Laudatur ClassPadilla
Teemme työstäsi helpompaa. Laske Laudatur ClassPadilla Lyhyt matematiikka, syksy 2017 Casio Scandinavia Keilaranta 17 02150 Espoo info@casio.fi Hyvä lukija, Kaksiosaiset matematiikan kokeet saivat jatkoa
Tekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
Casion fx-cg20 ylioppilaskirjoituksissa apuna
Casion fx-cg20 ylioppilaskirjoituksissa apuna Grafiikkalaskin on oivallinen apuväline ongelmien ratkaisun tukena. Sen avulla voi piirtää kuvaajat, ratkaista yhtälöt ja yhtälöryhmät, suorittaa funktioanalyysin
9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa
9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.
Yleistä vektoreista GeoGebralla
Vektoreita GeoGebralla Vektoreilla voi laskea joko komentopohjaisesti esim. CAS-ikkunassa tai piirtämällä piirtoikkunassa. Ensimmäisen tavan etuna on, että laskujen tueksi muodostuu kuva. Tästä on varmasti
Fx-CP400 -laskimella voit ratkaista yhtälöitä ja yhtälöryhmiä eri tavoin.
3. Yhtälöt Fx-CP400 -laskimella voit ratkaista yhtälöitä ja yhtälöryhmiä eri tavoin. 3.1 Ensimmäisen asteen yhtälöt Ratkaise yhtälö. 3 x ( x 3) 4x 5 Kirjoita tehtävä sellaisenaan, maalaa se ja käytä Interactive
Vanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
ClassPad 330 plus ylioppilaskirjoituksissa apuna
ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys
LASKE LAUDATUR CLASSWIZ- LASKIMELLA
LASKE LAUDATUR CLASSWIZ- LASKIMELLA Tiivistelmä Kevään 2019 yo-kokeiden ratkaisut ClassWiz-laskimella laskettuina. Katso lisää laskimista nettisivuiltamme www.casio-laskimet.fi Pepe Palovaara pepe.palovaara@casio.fi
K14. Laske Laudatur ClassPadilla - Pitkä matematiikka, kevät Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun.
K14 Laske Laudatur ClassPadilla - Pitkä matematiikka, kevät 2014 Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun. Casio Scandinavia Keilaranta 4 02150 Espoo info@casio.fi Hyvä
ClassPad 330 plus ylioppilaskirjoituksissa apuna
ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys
Ylioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan
Laske Laudatur ClassPadilla
Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun. Laske Laudatur ClassPadilla Kevät 2017 pitkä matematiikka Pitkä matematiikka, kevät 2017 Casio Scandinavia Keilaranta 17 02150
1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)
Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)
Lyhyen matematiikan ylioppilaskoe ClassPadilla - kevät 2013
Lyhyen matematiikan ylioppilaskoe ClassPadilla - kevät 2013 Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun. Casio Scandinavia Keilaranta 4 02150 Espoo info@casio.fi Arvoisa lukija,
Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!
MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki
Hannu Mäkiö. kertolasku * jakolasku / potenssiin korotus ^ Syöte Geogebran vastaus
Perusohjeita, symbolista laskentaa Geogebralla Kielen vaihtaminen. Jos Geogebrasi kieli on vielä englanti, niin muuta se Options välilehdestä kohdasta Language suomeksi (finnish). Esittelen tässä muutaman
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
y=-3x+2 y=2x-3 y=3x+2 x = = 6
MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+
Laske Laudatur ClassPadilla
Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun. Laske Laudatur ClassPadilla Lyhyt matematiikka, kevät 2015 Casio Scandinavia Keilaranta 4 02150 Espoo info@casio.fi Hyvä lukija,
Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.
Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan
Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
Laudatur 4 MAA4 ratkaisut kertausharjoituksiin
Laudatur MAA ratkaisut kertausharjoituksiin Yhtälöparit ja yhtälöryhmät 6. a) x y = 7 eli,y+, sijoitetaan alempaan yhtälöön x+ 7y = (, y+, ) + 7y =,y =, y = Sijoitetaan y = yhtälöparin ylempään yhtälöön.,
MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!
A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim
Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.
Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)
Casion fx-cg20 ylioppilaskirjoituksissa apuna
Casion fx-cg20 ylioppilaskirjoituksissa apuna Grafiikkalaskin on oivallinen apuväline ongelmien ratkaisun tukena. Sen avulla voi piirtää kuvaajat, ratkaista yhtälöt ja yhtälöryhmät, suorittaa funktioanalyysin
Pitkän matematiikan ylioppilaskoe ClassPadilla - kevät 2013
Pitkän matematiikan ylioppilaskoe ClassPadilla - kevät 2013 Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun. Casio Scandinavia Keilaranta 4 02150 Espoo info@casio.fi Arvoisa lukija,
Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x
MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa
Laske Laudatur ClassPadilla
Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun. Laske Laudatur ClassPadilla Pitkä matematiikka, syksy 2015 Casio Scandinavia Keilaranta 4 02150 Espoo info@casio.fi Hyvä Opettaja
Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.
Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän
A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:
MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6.3.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
ClassPad 330 Plus ylioppilaskirjoituksissa -syksy 2012 lyhyt matematiikka-
ClassPad 330 Plus ylioppilaskirjoituksissa -syksy 2012 lyhyt matematiikka- Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun. ClassPad. Hyvä lukija, CAS-laskennan hyödyntäminen
2 Pistejoukko koordinaatistossa
Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4..6 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Funktion f( ) = määrittelyehto on +, eli. + Ratkaistaan funktion nollakohdat. f(
Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä
Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit
Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.
Tekijä Pitkä matematiikka 6 9.5.017 K1 a) Ratkaistaan nimittäjien nollakohdat. x 1= 0 x = 1 ja x = 0 Funktion f määrittelyehto on x 1 ja x 0. Funktion f määrittelyjoukko on R \ {0, 1}. b) ( 1) ( 1) f (
Laske Laudatur ClassPadilla
Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun. Laske Laudatur ClassPadilla Lyhyt matematiikka, syksy 2015 Casio Scandinavia Keilaranta 4 02150 Espoo info@casio.fi Hyvä Opettaja
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ.0.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.
MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse
5.3 Suoran ja toisen asteen käyrän yhteiset pisteet
.3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina
A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.
PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.
Tekijä Pitkä matematiikka 4 16.12.2016 K1 Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. 3 r s = 0 4 r+ 4s = 2 12r 4s = 0 + r+ 4s = 2 13 r = 2 r = 2 13 2 Sijoitetaan r = esimerkiksi yhtälöparin
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo -. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x +9, b) log (x) 7, c) x + x 4 =.. Määrää kaikki ne
Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +
ClassPad 330 plus ylioppilaskirjoituksissa apuna
ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 26..208 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.
MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise
MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!
MAA7 7.1 Koe Jussi Tyni 9.1.01 1. Laske raja-arvot: a) 5 lim 5 10 b) lim 9 71. a) Määritä erotusosamäärän avulla funktion f (). f ( ) derivaatta 1 b) Millä välillä funktio f ( ) 9 on kasvava? Perustele
Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n
Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta
1 Ensimmäisen asteen polynomifunktio
Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f
Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )
Kertaus K1. a) OA =- i + j + k K. b) B = (, 0, 5) K. a) AB = (6 -(- )) i + ( - ) j + (- -(- 7)) k = 8i - j + 4k AB = 8 + (- 1) + 4 = 64+ 1+ 16 = 81= 9 b) 1 1 ( ) AB = (--(- 1)) i + - - 1 j =-i - 4j AB
origo III neljännes D
Sijoita pisteet A(1,4) ja B(4,5;5) sekä C(-3,4) ja D(-4,--5) y II neljännes C A I neljännes B x origo III neljännes D IV neljännes KOTIT. Sijoita ja nimeä koordinaatistoon pisteitä niin, että pisteet yhdistettäessä
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,
yleisessä muodossa x y ax by c 0. 6p
MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y
Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet
ifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A27 Hakula/Vuojamo Kurssitentti, 2.2, 28, arvosteluperusteet T Moniosaisten tehtävien osien painoarvo on sama ellei muuta ole erikseen osoitettu. Kokeessa
a) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 1.10.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
LASKINOPAS. Pertti Lehtinen
LASKINOPAS Pertti Lehtinen 14. ELOKUUTA 2017 Sisällys Kielen vaihtaminen... 4 Tietokoneessa softan ulkoasu... 4 Laskinsoftan ulkoasun muuttaminen... 5 Uuden / vanhan tiedoston avaaminen / tallettaminen
MAB3 - Harjoitustehtävien ratkaisut:
MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla
n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.
MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
Koontitehtäviä luvuista 1 9
11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:
MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)
MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle
Tekijä Pitkä matematiikka
Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin
KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.
KERTAUSHARJOITUKSIA. Rationaalifunktio 66. a) b) + + + = + + = 9 9 5) ( ) ( ) 9 5 9 5 9 5 5 9 5 = = ( ) = 6 + 9 5 6 5 5 Vastaus: a) 67. a) b) a a) a 9 b) a+ a a = = a + a + a a + a a + a a ( a ) + = a
Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:
. Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona
Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora
Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen
Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)
Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat
Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½.
MAA4 - HARJOITUKSIA 1 Esitä lauseke 3 x + x 4 ilman itseisarvomerkkejä Ratkaise yhtälö a ) 5x 9 = 6 b) 6x 9 = 0 c) 7x 9 + 6 = 0 3 Ratkaise yhtälö x 7 3 + 4x = 4 Ratkaise yhtälö 5x + = 3x 4 5 Ratkaise yhtälö
x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua
Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö
MAB3 - Harjoitustehtävien ratkaisut:
MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.
w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:
Määrittelyjoukot Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:, 0 ; log, > 0 ;, 0 (parilliset juuret) ; tan, π + nπ Potenssisäännöt Ole tarkkana kantaluvun kanssa 3 3
Ratkaisut vuosien tehtäviin
Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015
PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.
Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)
Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman
12. Differentiaaliyhtälöt
1. Differentiaaliyhtälöt 1.1 Johdanto Differentiaaliyhtälöitä voidaan käyttää monilla alueilla esimerkiksi tarkasteltaessa jonkin kohteen lämpötilan vaihtelua, eksponentiaalista kasvua, sähkölatauksen
RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.
RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion
4 Yleinen potenssifunktio ja polynomifunktio
4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako
x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)
MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A
Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
Sähköinen koe (esikatselu) MAA A-osio
MAA2 2018 A-osio Laske molemmat tehtävät! Tee tehtävät huolellisesti. Muodosta vastaukset abitin kaavaeditoriin. Kysy opettajalta tarvittaessa neuvoa teknisissä ja ohjelmien käyttöön liittyvissä ongelmissa.
Mukavia kokeiluja ClassPad 330 -laskimella
Mukavia kokeiluja ClassPad 330 -laskimella Tervetuloa tutustumaan Casio ClassPad laskimeen! Jos laskin ei ole yksin omassa käytössäsi, on hyvä tyhjentää aluksi muistit ja näytöt valikosta Edit->Clear All
jakokulmassa x 4 x 8 x 3x
Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:
Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste
Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa