Geometrialtaan mielivaltaisen huonetilan pintojen näkyvyyskertoimien laskenta
|
|
- Jaakko Ahonen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Geometrialtaan mielivaltaisen huonetilan pintojen näkyvyyskertoimien laskenta Ville Havu, Lassi Roininen, Eero Immonen, Janne Puustelli, Keijo Ruohonen Teollisuusmatematiikan työpaja, Tampere Taustaa Näkyvyyskertoimien laskentaa tarvitaan monissa sovelluksissa. Tällaisia ovat esimerkiksi säteilylämmönsiirto sekä tietokonegrafiikassa tarvittavien valaistusominaisuksien määrittäminen. Tässä työssä näkyvyyskertoimia pyritään soveltamaan talotekniseen mallinnukseen, jossa määritetään huonetilan eri pintojen vaikutus henkilön viihtyvyyteen. 2 Näkyvyyskertoimien määrittäminen Pisteessä sijaitsevan havainnoijan näkyvyyskertoimeksi pinnan suhteen määritellään (1) missä tarkoittaa sitä avaruuskulmaa, jossa pinta näkyy pisteestä. Mikäli siis pinnat ympäröivät havainnoijan, saadaan (2) Teknillinen korkeakoulu Tampereen teknillinen korkeakoulu 1
2 Toisaalta suoraan avaruuskulman määritelmän avulla, voidaan näkyvyyskertoimien (1) määrittäminen palauttaa pinnalla! tapahtuvaksi integroinniksi, jolloin #"%$'& missä on pinnan normaalivektori pisteessä/ ,$'& on pisteestä pinnan pisteeseen/ osoittava normaalivektori sekä() on pisteiden ja/10 välisen etäisyyden neliö. Integrointi tulee suorittaa yli pisteen näkemän pinnan osan ;:. Seuraavassa esitetään eri tapoja sekä näkyvien pinnan osien <:että pintaintegraalien (3) määrittämiseen. (*),+.- (3) Näkyvien pintojen määrittäminen laskennallisen geometrian keinoin Luonnollinen tapa näkyvyyskertoimien (3) laskemiseksi on käyttää laskennallisen geometrian keinoja integroimispinnan <:määrittämiseksi. Tällöin tarkastelupisteen suhde tasoon jakautuu kahteen päätyyppiin 1. Piste näkee tason kokonaan. Tällöin :. 2. Pisteen = ja tason välissä on varjostava taso= ;:. Tällöin on laskettava tason tasolle?> heittämä varjo, kun tilannetta tarkastellaan pisteestä. Tällöin { tason R varjo }. Varjostavia tasoja= voi olla useampia, joista jokainen on käsiteltävä erikseen. Kun taso ;:on näin saatu selville, voidaan integraali (3) suorittaa alueen ;:yli esimerkiksi jakamalla tämä kolmioihin sekä soveltamalla näihin jotakin tunnettua kvadratuuria. 2.2 Seinien toisiinsa kohdistama varjostus Seinätasojen aiheuttama varjostus voidaan taas selvittää seuraavalla algoritmilla (ns. "Clipping Plane" -algoritmi) : For i = 1 to (kaikkien särmien lkm) For j = 1 to (kaikkien seinien lkm) 2
3 P P yllä A käy end Tarkistetaan, <@<"/$'A CB A7että <@D"/$'A $FE7 särmä i on tason j edessä, eli katsotaan, että ja ovat samanmerkkisiä. LG H@JIK Lasketaan MB G ) särmän i ja seinän j B I# ) <@ LONMP)RQ%)TSNVU $'A CB A GA;W GA $'A;W SL PG, Leikkaussuoran S yhtälö M on siten missä. $@$)N (Huomaamme siis, että oikeastaan tarvitsee ratkaista GA;W vain olevasta yhtälöstä) Korvataan seinä uudella leikatulla PG. seinällä, joka on rajoitettu suoralla end B Tässä A on merkitty: $*A $.@$) katsojan paikka leikattavan seinän piste H@ ^XZY3[X]\^ XZYZ[X]\ leikattavan seinän määrittävät suuntavektorit Q@`$) leikattavan seinän normaali ) ^by[fb\^ leikattavan sei nän parametrisoitu pinta )leikkaavan tason määrittävät suuntavektorit $*EaB Q@B ) leikkaavan tason normaali $FE leikkaavan seinän parametrisoitu pinta leikkaavan särmän piste toiseksi) a n 1 n 2 x2 x 0 x 1 r 2 r 1 r 0 Kuva 1: Clipping-plane -algoritmilla ratkaistava näkyvä taso : 3
4 d f, f 2.3 Pystysuorien seinien tapaus Tässä kohdassa esitetty menetelmä soveltuu sellaisen huoneen näkyvyyskertoimien määrittämiseen, jossa seinät ovat pystysuoria ja lattia sekä katto ovat yhdensuuntaiset. Seinien ei kuitenkaan tarvitse olla tasomaisia, vaan niissä voi olla myös kaarevuutta. Huoneen geometrialle asetettavien oletusten perusteella näkyvyyskertoimia ajatellen on yhdentekevää, tarkastellaanko huonetilaa kolmessa dimensiossa vai ylhäältä 2-ulotteisena projektiona. Jälkimmäisessä tapauksessa (ylhäältä katsottaessa) seinät rajaavat tasosta alueen, jota rajaa paloittain sileä käyrä (vertaa kuva 2). y r C x Kuva 2: Seinien projektion rajaama alue ja sitä rajoittava reunakäyräd Ajatuksena on, että koska huoneen määrittävät pinnat tiedetään, myös niiden parametriesitys tunnetaan. Tästä on helppo päätellä tasoprojektiossa reunakäyrän parametriesitys. Seuraavassa $/P7 /10D/P7e82 tarkastellaan yleisyyttä rajoittamatta tilannetta, jossa tasokoordinaatiston origo sijaitsee katselupisteessä. Merkitään reunakäyränd parametriesitystä /P7Z7U. Sitä käyttämällä voidaan määrittää parametriesitys käyrälle joka rajaa origosta "line-of-sight" tyyliin nähtyä aluetta. Analyyttisesti f proseduuri on seuraava. $/P7 /f 0;/P7ef 2 d Merkitään origosta "line-of-sight" tyyliin nähdyn käyrän parametriesitystä /P7Z7U. Tarkastellaan g (<hjikml yhtälöparin 0D/P7 (<kznpoal 2 /P7 (4) 4
5 f ratkaisuja, kun parametrip (q?r l rts kulkee yli vaihteluvälinsä, eli kun kierretään reunakäyrä positiiviseen suuntaan ). Vertaa kuva 2. Ensimmäinen tapaus on, että parametriap vektoria/u0d/p7e32 (ja siten /P737U) vastaavalla kulmanl arvolla yhtälöparilla (4) on ratkaisuna ainoastaan/p(7 /P*v 0D/P7) W 2 /P7)7. Toinen tapaus on luonnollisesti se, että ratkaisuja on useita, ts. parametrinp arvoa vastaavaa kulmaal kohtaan yhtälöparilla (4) on useita ratkaisuja/p(7w%%/p]x(x7. Tämä tapaus on kuvassa 2 esitetty katkoviivan avulla; selvästi näkyvän reunakäyrän parametrisointi pitää valita origoa lähimmän reunakäyrän osan parametrisoinnista. Siten kullakinp g 0D/P7 f 2 y zy npo {'}'(%{_kznpoal~/p{(%{7 npo {F}'(%{chjikml~/P{(%{7 ratkaisee (5) ratkaisee (4):n Kun saadun käyrän epäjatkuvuuskohdat yhdistetään sopivilla (triviaaleilla) suoril- kuva 3). la, tuloksena on näkyvää aluetta rajoittava käyrä f d (vertaa y C x Kuva 3: Kuvan 2 tapauksessa origosta näkyvän alueen reunakäyrä f d Saatua käyrän f d parametriesitystä ja alkuperäisiä seinien parametriesityksiä yhdistelemällä voidaan helposti päätellä eri seinistä näkyvät alueet. Tästä päästään suoraan laskemaan seinien näkyvien osien näkyvyyskertoimia laskemalla integraalia #"ƒ$& () +.- (6) yli seinien. Koska kulmamuuttujal ja parametrip pitää diskretisoida ryhmän (4) numeerista ratkaisua varten, kyseinen integrointi voidaan approksimatiivisesti tehdä jo em. parametriesitystä laskettaessa. Tämä tapahtuu pitämällä kirjaa siitä, miltä reunakäyränd osalta ratkaisu kulloinkin löytyy. 5
6 aivan yhtä suoraviivaista. Näkyvää aluetta reunustava käyrä f d saattaa Huoneen lattian ja katon näkyvyyskertoimien laskenta ei tätä kautta sen sijaan ole rajata hyvinkin mielivaltaisen tason polygonin. Numeerinen integrointi tarjoaa ratkaisun, mutta on mahdollista edetä myös analyyttisesti käyttäen saatua informaatiota käy- Stokesin lausetta. Stokesin lauseesta on helppo todeta, #"$'& () että +ˆ z Š missä on kentänx ] vektoripotentiaali. /u Eräs käypä vektoripotentiaali on Näin ollen esimerkiksi lattian näkyvyyskertoimen laskenta palautuu kentän Tämä onnistuu jopa analyyttisesti, ainakin siinä tapauksessa, jossa huonetta rajoittavat seinät ovat tasomaisia, kuten seuraava esimerkki osoittaa. rästä f d ja vektoraalisen viivaintegraalin laskuun yli lattian reunan f d. Œ "+ˆŽ (7) /u0 ) W 2)7( 24 0 q U (8) Esimerkki 1 Koska monessa käytännön tapauksessa huonetta rajoittavat tasomaiset seinät, viivaintegraalia (7) lasketaan usein yli tason murtoviivan. Lasketaan mielivaltaisen lattian (pohjan) reunalla olevan janan vaikutus pohjan näkyvyyskertoimiin. Tätä varten edellä tarkasteltu koordinaatisto pitää upottaa 3- ulotteiseen avaruuteen. Oletetaan, että näkyvyyskulmia lasketaan korkeussuunnassa huoneen puolivälissä olevan pisteen suhteen. Jos seinien korkeus on, ja katsojan paikka on - kuten edellä - pisteessä/ qqq7, niin pohjalla5-koordinaatti $/P7 on vakio ). Pohjan reunalla $'A;W olevan janand parametriesitys on (@ A W A W Tästä suoralla laskulla todetaan, että PG P š M œ+n P ) s U P š Mžœ+N (9) (10) ŒŸ "+ Ž s /(@ A )(@ A7+P A W W /() P )7)3 m A W /(@ A W W /() P )7) A W W \ (11) joka integroituu suljetussa muodossa esimerkiksi valmisohjelmalla. Toisin sanoen lattian näkyvyyskertoimelle on tasomaisten seinien tapauksessa analyyttinen lauseke. Sama pätee tietysti myös kattoon, mikäli se on yhdensuuntainen lattian kanssa. 6
7 2.4 Säteenheittomenetelmät näkyvyyskertoimien laskemiseksi Erityisesti monimutkaisissa geometrioissa kaikkien varjostavien pintojen laskeminen voi muodostua raskaaksi tehtäväksi. Tällöin pisteeseen liittyvät näkyvyyskertoimet voidaan määrittää seuraavasti: 1. Arvotaan mielivaltainen suunta. 2. Etsitään pisteestä suuntaan lähtevän säteen leikkauspiste järjestelmään kuuluvien tasojen kanssa. 3. Valitaan leikkauspisteistä se, joka on lähinnä pistettä ja merkitään muistiin, mihin tasoista tämä kuuluu. 4. Toistetaan algoritmia rittävän monta kertaa. Näin saadaan kunkin tason näkyvyyskerroin osamääränä tähän tasoon osuneista säteistä ja kaikista lähetetyistä säteistä. Säteenheittomenetelmä muistuttaa läheisesti Monte Carlo -integrointia, joten käytettävien säteiden lukumäärän tulee olla riittävän suuri luotettavan vastauksen saamiseksi. 2.5 Pintojen kolmiointiin perustuva näkyvyyskertoimien määrittäminen Säteily- ja valaistuslaskennassa käytetään tavallisesti menetelmää, joka perustuu tarkasteltavien pintojen jakamiseen pienempiin osiin, esimerkiksi kolmioihin tai nelikulmioihin. Tällöin voidaan toimia seuraavasti: 1. Jaetaan kukin tarkasteltava pinta osaelementteihin. Olkoot nämä}* * mª Ṽ«@. 2. Lasketaan kunkin elementin approksimatiivinen kontribuutio näkyvyysker- ja tarkastelupisteen välillä näköyhteys. Mikäli näin on, lisätään näkyvyyskertoimeen elementin osalta #"$& $& välinen etäisyys sekä vastaava yksikkövektori. 7 toimeen pisteessä tarkastamalla, onko elementin keskipisteen missä( on pisteen ja elementin keskipisteen () ala/ 7e (12)
8 ². jää voidaan Näin saadaan approksimatiivinen arvo näkyvyyskertoimelle. Arvon tarkkuutta voidaan parantaa valitsemalla tiheämpi elementtijako. Myös adaptiivinen toteutus on mahdollinen. 3 Algoritmien nopeuttaminen rajoittamalla tarkasteltavien pintojen määrää Edellä esitetyissä algoritmeissa oletetaan, että kaikissa tapauksissa tarkistetaan pintojen ja säteiden kaikki mahdolliset yhdistelmät. Laskentaa voidaankin tehostaa tekemällä alustavia testejä, joiden pohjalta jätetään osa tarkasteluista tekemättä. Esimerkiksi arvottaessa säteiden suuntia Monte Carlo -menetelmissä voidaan rajoittua tarkastelemaan tasoja, jotka sijaitsevat säteen suunnassa. Myös laskettaessa tasojen heittämiä varjoja on tarpeen ottaa huomioon vain tarkastelupisteen ja -tason väliin jäävät varjostavat tasot Yksi mahdollisuus on toimia seuraavasti: Määritetään kullekin tasopinnalle= kiekko, jonka sisään kyseinen pinta kokonaisuudessaan jää. Tarkasteltaessa tietyn tason näkyvyyttä pisteeseen muodostetaan ensin kartio *, jonka määräävät piste ja kiekko. Nyt jokainen taso=, johon liittyvä kiekko ei leikkaa kartiota ' voidaan jättää tarkastelematta laskettaessa tason varjostuksia. Samaten, jotta Monte Carlo -menetelmissä heitetty säde voisi osua tasoon, on sen kuljettava kartion ' sisällä. Toisaalta voidaan ajatella, että ± kylmät, pienet, kaukaiset ja vinosti katsottavat pinnat ovat lopputuloksen kannalta merkityksettömiä. Kullekin pinnalle ~² "$'& () voidaankin laskea tunnusluku sekä$'& missä jälleen( on pisteen ja pinnan (sopivasti määrätyn) keskipisteen etäisyys vastaava yksikkövektori. Lisäksi on huomioitava pinnan lämpötila Ne pinnat, joiden tunnusluku± alle jonkin asetetun toleranssin, voidaan jättää välittömästi pois jatkotarkasteluista. Toleranssi voidaan myös laskea suhteellisena eli pintojen tunnuslukuja± verrata toisiinsa ja näin saada selville tehtävän kannalta merkittävät pinnat. ala/³ 7~ (13) 8
9 4 Viitteitä kirjallisuuteen ja ohjelmistoihin Näkyvyyskertoimien laskentaan on kehitetty valmiita menetelmiä ja ohjelmistoja. Seuraavassa mainitaan lyhyesti muutamia vaihtoehtoja. 1. ELMER on CSC:n multifysiikan laskentaohjelmisto. ELMER pystyy ratkaisemaan myös säteilytehtäviä, joten näkyvyyskertoimien laskeminen on siällytetty ohjelmistoon. ELMERin toteutus perustuu pintojen kolmiointiin FACET on Lawrence Livermore National Laboratoryn kehittämä näkyvyyskertoimien laskentaohjelma. FACET käyttää laskennallisen geometrian algoritmeja kertoimien määrittämiseen. FACETin lähdekoodi on saatavilla RadCad on kaupallinen ohjelma, joka käyttää Monte Carlo tyyppistä säteenheittomenetelmää näkyvyyskertoimien määrittämiseen. Viitteet [1] Durand, F., Drettakis, G., Puech, C.: Fast and Accurate Hierarchical Radiosity Using Global Visibility, imagis-gravir / IMAG - INRIA, [2] Glassner, A.S. (ed.): An Introduction to Ray Tracing, Academic Press, 1989, ISBN [3] O Rourke, J.: Computational Geometry in C, Cambridge University Press, 1998 [4] Preparata, F.P., Shamos, M.I.: Computational geometry: an introduction, Springer,
Taso. Hannu Lehto. Lahden Lyseon lukio
Taso Hannu Lehto Lahden Lyseon lukio Taso avaruudessa Piste P 0 ja tason normaalivektori n määräävät tason. n=a i+b j+c k P 0 (x 0,y 0,z 0 ) Hannu Lehto 17. syyskuuta 2010 Lahden Lyseon lukio 2 / 7 Taso
Suorista ja tasoista LaMa 1 syksyllä 2009
Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden
Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:
Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman
1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot
Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan
Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
Preliminäärikoe Pitkä Matematiikka 3.2.2009
Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.
( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto.
Pyramidi Analyyttinen geometria tehtävien ratkaisut sivu 7 Päivitetty 9..6 7 a) + y = 7 + y = 7 keskipistemuoto + y 7 = normaalimuoto Vastaus a) + y = ( 7 ) + y 7= b) + y+ 5 = 6 y y + + = b) c) ( ) + y
Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali
Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin
Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )
Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään
Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste
Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa
Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},
Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,
a b c d + + + + + + +
11. 11. ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÖ Ø ÙØ 014 È ÖÙ Ö ÒÑÓÒ Ú Ð ÒØ Ø ØĐ ÚĐ Ø a b c d 1. +. 3. 4. 5. 6. + + + + + + + + P1. Junan nopeus (liikkeellä) on aluksi v 0 ja matka-aika T 0. Matkan pituus s on
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?
Cantorin joukon suoristuvuus tasossa
Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja
XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut
XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut 1. Avaruusalus sijaitsee tason origossa (0, 0) ja liikkuu siitä vakionopeudella johonkin suuntaan, joka ei muutu. Tykki
c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.
MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse
10. Globaali valaistus
10. Globaali valaistus Globaalilla eli kokonaisvalaistuksella tarkoitetaan tietokonegrafiikassa malleja, jotka renderöivät kuvaa laskien pisteestä x heijastuneen valon ottamalla huomioon kaiken tähän pisteeseen
2 Pistejoukko koordinaatistossa
Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia
Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa
Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Matematiikka Sakke Suomalainen Helsingin matematiikkalukio Ohjaaja: Ville Tilvis 29. marraskuuta 2010 Tiivistelmä Harppi ja viivain
f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.
13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y
Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt
6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran
Suora. Hannu Lehto. Lahden Lyseon lukio
Suora Hannu Lehto Lahden Lyseon lukio Suuntavektori Normaalivektori Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 2 / 12 Esimerkki Suuntavektori Normaalivektori Tarkastellaan suoraa y = 2 3 x 1. kulmakerroin
T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011
T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 Vastaa kolmeen tehtävistä 1-4 ja tehtävään 5. 1. Selitä lyhyesti mitä seuraavat termit tarkoittavat tai minkä ongelman algoritmi ratkaisee
Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)
Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman
Yleistä vektoreista GeoGebralla
Vektoreita GeoGebralla Vektoreilla voi laskea joko komentopohjaisesti esim. CAS-ikkunassa tai piirtämällä piirtoikkunassa. Ensimmäisen tavan etuna on, että laskujen tueksi muodostuu kuva. Tästä on varmasti
4.3 Kehäkulma. Keskuskulma
4.3 Kehäkulma. Keskuskulma Sellaista kulmaa, jonka kärki on ympyrän kehällä ja kumpikin kylki leikkaa (rajatapauksessa sivuaa) ympyrän kehää, sanotaan kehäkulmaksi, ja sitä vastaavan keskuskulman kyljet
203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.
Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C
Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI.
39 VEKTORIANALYYI Luento 6 5. Pinnat ja pintaintegraalit Pintojen parametriesitys. Aikaisemmin käsittelimme käyrän esittämistä parametrimuodossa. iihen riitti yksi reaalinen parametri (t), joka sai aroja
y=-3x+2 y=2x-3 y=3x+2 x = = 6
MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+
Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.
Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)
1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.
Matematiikan kurssikoe, Maa4 Vektorit RATKAISUT Sievin lukio Keskiviikko 12.4.2017 VASTAA YHTEENSÄ VIITEEN TEHTÄVÄÄN! MAOL JA LASKIN/LAS- KINOHJELMAT OVAT SALLITTUJA! 1. Olkoot vektorit a, b ja c seuraavasti
Tehtävien ratkaisut
Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta
F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause
91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan
Vanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
Tekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:
Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs
Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora
Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen
Stokesin lause LUKU 5
LUU 5 Stokesin lause 5.1. Integrointi monistolla Olkoot W R k alue, W kompakti Jordan-joukko ja ω jatkuva k-muoto alueessa W, ω f dx 1 dx k. Asetetaan ω : f, t.s. f dx 1 dx k : f(x dx f(x 1,, x k dx 1
, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen
YLIOPPILASTUTKINTO 22. 3. 2000 MATEMATIIKAN KOE - PITKÄ OPPIMÄÄRÄ
INTERNETIX Ylioppilaskirjoitusten tehtävät Page YLIOPPILSTUTINTO MTEMTIIN OE PITÄ OPPIMÄÄRÄ okeessa saa vastata enintään kymmeneen tehtävään Eräät tehtävät sisältävät useita osia [merkittynä a), b) jne],
Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)
Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole
Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio
Monikulmiot 1/5 Sisältö Monikulmio Monikulmioksi kutsutaan tasokuviota, jota rajaa perättäisten janojen muodostama monikulmion piiri. Janat ovat monikulmion sivuja, niiden päätepisteet monikulmion kärkipisteitä.
Reaalilukuvälit, leikkaus ja unioni (1/2)
Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut
Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora
Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen
Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus
Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)
Opetusmateriaali. Fermat'n periaatteen esittely
Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja
Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5
Tekijä Pitkä matematiikka 6..06 8 On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 5 sivun AB pituudesta. Pitää siis osoittaa, että DE = AB. 5 Muodostetaan vektori DE. DE =
MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste
MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste Tason ja avaruuden vektorit 1. Olkoon A(, -, 4) ja B(5, -1, -3). a) Muodosta pisteen A paikkavektori. b) Muodosta vektori AB. c) Laske vektorin AB pituus.
Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan.
MAB: Koordinaatisto geometrian apuna Aluksi Geometriassa tulee silloin tällöin eteen tilanne, jossa piirroksen tekeminen koordinaatistoon yksinkertaistaa laskuja. Toisinaan taas tilanne on muuten vaan
Numeerinen integrointi
Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen
4.1 Kaksi pistettä määrää suoran
4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,
Numeeriset menetelmät Pekka Vienonen
Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin
Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen
Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen 1. Hilbertin aksioomat 1-3 Oletetaan tunnetuiksi peruskäsitteet: piste, suora ja suora kulkee pisteen
Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.
Tekijä Pitkä matematiikka 4 16.12.2016 K1 Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. 3 r s = 0 4 r+ 4s = 2 12r 4s = 0 + r+ 4s = 2 13 r = 2 r = 2 13 2 Sijoitetaan r = esimerkiksi yhtälöparin
I Geometrian rakentaminen pisteestä lähtien
I Geometrian rakentaminen pisteestä lähtien Koko geometrian voidaan ajatella koostuvan pisteistä. a) Matemaattinen piste on sellainen, millä EI OLE LAINKAAN ULOTTUVUUKSIA. Oppilaita voi johdatella pisteen
Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät
11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit
MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.
MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise
DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän
Pythagoraan polku 16.4.2011
Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,
Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 180 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio
Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 8 Päivitetty 7.5.6 Pyramidi 4 Luku 5..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 56 vastaus Pyramidi 4 Analyyttinen geometria tehtävien
Luento 6: Piilopinnat ja Näkyvyys
Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Piilopinnat ja Näkyvyys Janne Kontkanen Geometrinen mallinnus / 1 Johdanto Piilopintojen poisto-ongelma Syntyy kuvattaessa 3-ulotteista maailmaa 2-ulotteisella
Tekijä Pitkä matematiikka
Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin
Ratkaisut vuosien tehtäviin
Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2
yleisessä muodossa x y ax by c 0. 6p
MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y
Matematiikan peruskurssi 2
Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi
y 1 x l 1 1 Kuva 1: Momentti
BMA58 Integraalilaskenta ja sovellukset Harjoitus 4, Kevät 17 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Integraalit eivät tosin ole niin vaikeita etteikö niitä suurimmassa
Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.
Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän
GEOMETRIA MAA3 Geometrian perusobjekteja ja suureita
GEOMETRI M3 Geometrian perusobjekteja ja suureita Piste ja suora: Piste, suora ja taso ovat geometrian peruskäsitteitä, joita ei määritellä. Voidaan ajatella, että kaikki geometriset kuviot koostuvat pisteistä.
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta
MAA5.2 Loppukoe 26.9.2012 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Olkoon vektorit
Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
Suorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.
Suorat ja tasot, L6 Suora xyz-koordinaatistossa Taso xyz-koordinaatistossa stä stä 1 Näillä kalvoilla käsittelemme kolmen laisia olioita. Suora xyz-avaruudessa. Taso xyz-avaruudessa. Emme nyt ryhdy pohtimaan,
Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )
Kertaus K1. a) OA =- i + j + k K. b) B = (, 0, 5) K. a) AB = (6 -(- )) i + ( - ) j + (- -(- 7)) k = 8i - j + 4k AB = 8 + (- 1) + 4 = 64+ 1+ 16 = 81= 9 b) 1 1 ( ) AB = (--(- 1)) i + - - 1 j =-i - 4j AB
f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.
Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina
k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu
LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja
3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö
3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden
Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½.
MAA4 - HARJOITUKSIA 1 Esitä lauseke 3 x + x 4 ilman itseisarvomerkkejä Ratkaise yhtälö a ) 5x 9 = 6 b) 6x 9 = 0 c) 7x 9 + 6 = 0 3 Ratkaise yhtälö x 7 3 + 4x = 4 Ratkaise yhtälö 5x + = 3x 4 5 Ratkaise yhtälö
TASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.
TSON YHTÄLÖT VEKTORIT, M4 Jokainen seuraavista määrää avaruuden tason yksikäsitteisesti: - kolme tason pistettä, jotka eivät ole samalla suoralla, - yksi piste ja pisteen ulkopuolinen suora, - yksi piste
Riemannin pintojen visualisoinnista
Riemannin pintojen visualisoinnista eli Funktioiden R R kuvaajat Simo K. Kivelä 7.7.6 Tarkastelun kohteena olkoon kompleksimuuttujan kompleksiarvoinen funktio f : C C, f(z) = w eli f(x + iy) = u(x, y)
2 Yhtälöitä ja epäyhtälöitä
2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja
Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva 3), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 = 2.
Hyvän ratkaisun piirteitä: a) Neliöpohjainen rakennelma Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva ), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 =
9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa
9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.
Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)
Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori
Kenguru 2016 Student lukiosarja
sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.
VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten
Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville
Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville Tutki GeoGebralla Näkymät->Geometria a) Kuinka suuria ovat kolmion kulmat, jos sen sivut ovat 5, 7 ja 9. Vihje: Aloita kolmion piirtäminen yhdestä
Lineaarinen yhtälöryhmä
Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.
2 Osittaisderivaattojen sovelluksia
2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä
Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden
Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut
Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin
PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015
PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.
KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 11. Integrointi erillisen erikoispisteen ympäri Olkoot f analyyttinen punkteeratussa kiekossa D(z 0.r\{z 0 }. Funktiolla f on erikoispiste z 0.
Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus
Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus 2 7.2.2013 1. Matematiikan lukiokurssissa on esitetty, että ylöspäin aukeavan paraabelin f(x) = ax 2 +bx+c,a > 0,minimikohtasaadaan,kunf
Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti
Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan
3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.
3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta
Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 217 Alkuviikon harjoituksissa ratkaistaan kolme tehtävää assistentin avustuksella (läsnäololaskarit).