Puuttuvan tiedon ongelmat pitkittäistutkimuksissa

Koko: px
Aloita esitys sivulta:

Download "Puuttuvan tiedon ongelmat pitkittäistutkimuksissa"

Transkriptio

1 1/27 Puuttuvan tiedon ongelmat pitkittäistutkimuksissa Jaakko Nevalainen Tampereen yliopisto Sosiaalilääketieteen päivät

2 2/27 Sisältö 1 Johdanto ja peruskäsitteet 2 Mallintamiseen pohjautuvat menetelmät 3 Moni-imputointimenetelmät 4 Yhteenveto

3 3/27 Mitä on puuttuva data Pitkittäistutkimuksella tarkoitetaan aineistoja, joissa samoilta yksilöiltä havaitaan jono mittauksia samoista ominaisuuksista yli ajan Esimerkki: kolmelta yksilöltä mitataan pituutta vuosittain viiteen ikävuoteen asti X X X X X X X X O O X X X X X O O O Puuttuvalla tiedolla tarkoitetaan niitä havaintoja, jotka oli tarkoituskin kerätä.

4 4/27 Päätelmät puutteellisesta aineistosta Analyysin pohjalta tehtyjä johtopäätöksiä voidaan pitää valideina, mikäli: 1 aineiston pohjalta tehdyt arviot lääkkeen tai muun intervention tehosta eivät ole systemaattisesti harhaisia kumpaankaan suuntaan 2 arvion tarkkuutta kuvaava keskivirhe (sekä luottamusväli) vastaa sen todellista tarkkuutta 3 mitä suurempi aineisto, sitä lähempänä arviot intervention vaikutuksesta ovat todellista vaikutusta kohdepopulaatiossa (tilastotieteessä: tarkentuvuus) Mikäli puuttuvuutta on merkittävästi, näistä ehdoista mikään ei automaattisesti toteudu ja se on aina huolenaihe tulosten luotettavuutta arvioitaessa.

5 5/27 Täysin satunnainen puuttuvuus I engl. missing completely at random (MCAR) puuttuvuusmekanismi eli havainnon puuttuvuuden todennäköisyys on riippumaton sekä yksilön havaituista että havaitsemattomista ominaisuuksista esimerkkejä: mittauslaitteet epäkunnossa potilas estynyt tulemaan paikalle lapsen harrastuksen vuoksi muutto toiselle paikkakunnalle tällöin havaittu aineisto on yhä edustava sille populaatiolle, jota koko aineisto (so. havaittu + havaitsematta jääneet osat) olisi edustanut

6 6/27 Täysin satunnainen puuttuvuus II Kuva: Lasten keskimääräinen log BMI viiteen ikävuoteen asti (n=100). Musta viiva kuvaa täydellisesti havaittua aineistoa ja katkoviivat aineistoja, joista on täysin satunnaisesti valituilta lapsilta on havainnollistamistarkoituksessa tuhottu kolmen viimeisen aikapisteen (36, 48 ja 60kk) tiedot.

7 7/27 Täysin satunnainen puuttuvuus III n Keskiarvo Keskihajonta Keskivirhe Täysin havaittu aineisto Puutteellinen Puutteellinen Puutteellinen Puutteellinen Puutteellinen voidaan tyytyä analysoimaan vain aineiston havaittu osa ongelma: havaitun datan perusteella on mahdoton olla varma siitä, että puuttuvuusmekanismi todella on MCARtarvitaan perusteltuja oletuksia analyysin tueksi

8 8/27 Ehdollisesti satunnainen puuttuvuus I engl. missing at random (MAR) havainnon puuttuvuuden todennäköisyys on riippuu pelkästään yksilön havaituista ominaisuuksista, ja on riippumaton yksilön havaitsemattomista ominaisuuksista esimerkkejä: drop-out'n todennäköisyys riippuu sosioekonomisesta asemasta hyvin hoikkia lapsia seurataan tarkemmin kuin normaalipainoisia potilas lopettaa tutkimuslääkkeen käytön labra-arvojen noustua pahasti viitearvojen yläpuolelle tässä tärkeää: mitataan tiedot sosioekonomisesta asemasta, aiemmista mittauksista, labra-arvoista realistisempi oletus kuin MCAR

9 9/27 Ehdollisesti satunnainen puuttuvuus II Kuva: Lasten keskimääräinen log BMI viiteen ikävuoteen asti (n=100). Niillä lapsilla, joilla BMI oli hyvin alhainen kahden ikävuoden kohdalla, todennäköisyys havaita myös 3, 4 ja 5 vuoden BMI:t on selvästi korkeampi (87%) kuin muilla (n. 44%). Otoskeskiarvot puutteellisesta aineistosta ovat systemaattisesti harhaisia.

10 10/27 Ehdollisesti satunnainen puuttuvuus III Breaking news Tällöin parametreja kuten populaatiokeskiarvoja, regressiokertoimia jne. sekä niiden keskivirheitä voidaan kuitenkin arvioida esimerkiksi sellaisin uskottavuuspohjaisin menetelmin, jotka huomioivat riippuvuusrakenteet mittausten välillä moni-imputoimalla, kunhan imputointimallit on rakennettu huolellisesti

11 11/27 Ehdollisesti satunnainen puuttuvuus IV Sen sijaan complete case -analyysi tai simple & single imputation -menetelmät yhdistettynä marginaalianalyysiin ovat lähes aina harhaisia ja/tai antavat virheellisen kuvan analyysin tarkkuudesta Harhan suuruus ja suunta riippuu vieläpä täysin tilanteesta.

12 12/27 Ehdollisesti satunnainen puuttuvuus V Esimerkki Kokeessa estimoidaan lääkkeen (vs. lumelääke) tehoa luuntiheyteen, joka heikkenee tasaisesti iän myötä. Lääke todellisuudessa hidastaa heikkenemistä jonkin verran. Tehon arvioimiseksi aineiston perusteella paikataan kaikki puuttuvat arvot edellisellä havaitulla arvolla. Jos puuttuvuutta on pelkässä lumelääke-ryhmässä, lääkkeen teho näyttää huonommalta kuin se todellisuudessa onse saattaa jopa vaikuttaa lumelääkettä heikommalta. Jos puuttuvutta on pelkässä aktiivilääke-ryhmässä, lääkkeen teho näyttää paremmalta kuin se todellisuudessa on. Molemmissa tapauksissa lääkkeen tehoa kuvaava luottamusväli on paitsi väärin kohdistettu myös valheellisen kapea, koska puuttuvia arvoja käsitellään kuin ne olisivat todellisia arvoja.

13 13/27 Uskottavuuspohjaiset menetelmät I Normaalijakautumaoletuksiin pohjautuvat menetelmät kuten toistettujen mittausten ANOVA sekamallit, joiden erikoistapauksia ovat monitasomallit ja kasvukäyrämallit pyrkivät mallintamaan muutoksia ajassa määräämällä keskiarvorakenteen sekä kovarianssirakenteen (hajonnan muutos ajassa, havaintojen keskinäinen riippuvuus) Jokainen yksilö riippumatta siitä kuinka usealla aikapisteellä tätä yksilöä havaittiin vaikuttaa arvioihin keskiarvoista kaikilla aikapisteillä ehdollisen odotusarvonsa kautta. Saadaan puuttuvuuden suhteen korjattuja arvioita ja myös arvioidut keskivirheet ovat oikein.

14 14/27 Uskottavuuspohjaiset menetelmät II Kuva: Moniulotteiseen normaalijakaumaan perustuva keskiarvojen estimointi korjaa arvioita oikeaan suuntaan, eikä systemaattinen harha enää näy. Mallin vastemuuttujina log BMI vuosina 2-5 (toistettujen mittausten ANOVA).

15 15/27 Uskottavuuspohjaiset menetelmät III Tärkeää: mallipohjainen lähestymistapa toimii vain silloin kun 1 kaikki puuttuvuustodennäköisyyteen vaikuttavat havaitut muuttujat voidaan kerätä vastemuuttujiksi samaan malliin 2 niiden riippuvuusrakenne on osa mallia (esimerkiksi moniulotteisen normaalijakauman kovarianssimatriisi). Mikä tahansa tilastollinen malli ei tuota oikeita tuloksia! (joskus puuttuvuutta selittäviä tekijöitä voidaan käyttää myös kovariaatteina)

16 16/27 Moni-imputointi eli monipaikkaus I Moni-imputoinnilla eli monipaikkaukselle pyritään valideihin analyyseihin & johtopäätöksiin, ei ennustamaan yksittäisiä puuttuvia arvoja. Idea karkeasti ottaen: 1 Määrätään imputointimalli: mikä olisi puuttuvan muuttujan ehdollinen jakauma kun yksilöltä on havaittu yksi tai useampia muita muuttujien arvoja? Tämä yleensä jonkinlaisella regressiolla toteutettava malli perustuu vain täydellisesti havaittuihin yksilöihin ja näin voidaan tehdä vain kun vähintään MAR-oletus pätee.

17 17/27 Moni-imputointi eli monipaikkaus II 2 Imputointimallista generoidaan esimerkiksi viisi puuttuvan muuttujan mahdollista arvoa ja saadaan viisi täydellistä ja keskenään erilaista aineistoa.

18 18/27 Moni-imputointi eli monipaikkaus III 3 Suoritetaan suunniteltu analyysi jokaiselle aineistoista ja kerätään talteen tulokset keskivirheineen. 4 Yhdistetään tulokset keskiarvoistamalla ne. Oleellista on, että yhdistettyjen tulosten tarkkuus on imputointien sisäinen vaihtelu + imputointien välinen vaihtelu Jälkimmäinen komponentti siis kuvaa imputointiin liittyvää epävarmuutta eikä imputoituja havaintoja siten käsitellä kuten todellisia havaintoja.

19 19/27 Moni-imputointi pitkittäistutkimuksessa I Esimerkki Imputoidaan rekursiivisesti BMI 36kk jakaumasta ehdolla BMI ikähetkillä 0, 3,..., 24kk BMI 48kk jakaumasta ehdolla BMI ikähetkillä 0, 3,..., 36kk BMI 60kk jakaumasta ehdolla BMI ikähetkillä 0, 3,..., 48kk missä 36 ja 48kk:n tiedot olisi imputoitu, mutta huomaa imputointimallin (regression) perustuvan vain niihin yksilöihin joilta imputoitava muuttuja on havaittu. Tämä menettely johtaa käytännössä täysin samaan lopputulokseen kuin uskottavuuspohjainen analyysi.

20 20/27 Moni-imputointi pitkittäistutkimuksessa II Moni-imputoinneista ei ole hyötyä siinä tilanteessa, että uskottavuuspohjaisen mallin avulla voidaan ehdollistaa kaikille jakaumaan vaikuttavilla muuttujilla. Kuitenkin: Ajanhetkiä voi olla paljon. Muuttujia voi olla paljon per aikapiste ja lisäksi ne voivat olla keskenään tyypiltään erilaisia. Täydellisen uskottavuuspohjaisen mallin sovittaminen voi olla mahdotonta kun taas moni-imputointi saattaa olla mahdollista toteuttaa.

21 21/27 Moni-imputointi pitkittäistutkimuksessa III Esimerkki Lapsen BMI ajanhetkellä t assosioituu ainakin aiempiin ja myöhempiin BMI mittauksiin ruokavalioon liikuntaan perimään joihinkin sosioekonomisiin tekijöihin... Tekijöistä ruokavalio, liikunta ovat ajassa muuttuvia, kun taas perimä ja kenties SES eivät.

22 22/27 Moni-imputointi pitkittäistutkimuksessa IV Ideana imputointimallin ylisovitus kaikille imputoitaville ja mahdollisesti puuttuvuutta ennustaville tekijöille vuorotellen käyttäen iteratiivista menettelyä, ns. fully conditional specication suoraan tai two-fold FCS (Raghunathan et al., 2001; Nevalainen et al., 2009; Welch et al., 2014)

23 23/27 Moni-imputointi pitkittäistutkimuksessa V Pyritään pääsemään niin lähelle MAR oletuksen paikkansapitävyyttä kuin havaitun aineiston valossa on mahdollista. Täysin välttämätöntä on, että sekä kiinnostuksen kohteena oleva vastemuuttuja että analyysimallissa tutkittavien selittäjät (esim intervention ja ajan yhdysvaikutus) ovat osa imputointimallia Esimerkiksi R:n MICE (multiple imputation by chained equations) sekä MICEn Stata-toteutus ja SAS/IVEware (tulossa myös proc mi -proseduuriin) kykenevät sovittamaan valtavia imputointimalleja iteratiivisesti.

24 24/27 Moni-imputointi pitkittäistutkimuksessa VI Käytännössä monesti osoittautuu, että moni-imputoidut tulokset ovat lähes identtiset havaitun aineiston analyysin kanssa (Pulkki-Råback, et al., 2014 in press; Virtanen et al., 2012; Virtanen et al., 2014) Voidaan silloin nähdä tulosten validointina: puuttuvuus ei näytä aiheuttavan harhaa tuloksiin Sama tarkkuus havaitulla aineistolla ja moni-imputoidulla aineistolla ilmentää sitä, että puuttuvuuden informaatioarvo voi olla vähäinen Samankaltaisuus ei päde yleisesti (vrt. BMI esimerkki; Carpenter & Kenward, 2013)

25 25/27 Ei-satunnainen puuttuvuus Mikäli puuttuvuuden todennäköisyys riippuukin havaitsemattomista tekijöistä, puhutaan engl. missing not at random (MNAR) mekanismista Pattern mixture -mallit ovat sensitiivisyysanalyyseja, joissa analysoidaan havaittu data yhdessä puuttuvien havaintojen kanssa olettaen jälkimmäiselle jokin malli. Harhan määrää voidaan tällöin systemaattisesti arvioida. Painottamalla havaintoja sen mukaisesti kuinka vahvasti puuttuvuuden todennäköisyys riippuu vastemuuttujan arvoista voidaan myös tarkastella tulosten herkkyyttä MNAR mekanismille (Carpenter & Kenward, 2007) Oletukset molemmissa lähestymistavoissa hyvin voimakkaita.

26 26/27 Yhteenveto Arvioi puuttuvuuden määrää ja sen syitä. Tunnista puuttuvuuden tyyppi: (a) Täysin satunnainen (MCAR) pelkän havaitun aineiston analyysi riittää (b) Ehdollisesti satunnainen (MAR) valitse malli- tai imputointipohjainen lähestymistapa monimutkaisuuden asteen perusteella (c) Ei-satunnainen puuttuvuus (MNAR) mieti olisiko puuttuvuuden todennäköisyyteen vaikuttavat tekijät jotenkin saatavissa ja palattavissa tyyppiin (b) muutoin on tyydyttävä harhaisiin analyyseihin ja niiden perusteella haarukoimaan tulosten sensitiivisyyttä.

27 27/27 Avainkirjallisuutta Hyvä oppikirja (lukeminen vaatii teknistä osaamista): Carpenter JR and Kenward MG. Multiple Imputation and its Application. Wiley, Tästä saatavilla myös practical guide (online). Vuorotteleva imputointimenettely (FCS): Raghunathan TE et al. A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 2001; 27:8595. Muistilista siitä mitä puutteellisesta aineistosta tulisi raportoida: Sterne JAC et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ, 2009.

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Epävarmuuden hallinta bootstrap-menetelmillä

Epävarmuuden hallinta bootstrap-menetelmillä 1/17 Epävarmuuden hallinta bootstrap-menetelmillä Esimerkkinä taloudellinen arviointi Jaakko Nevalainen Tampereen yliopisto Metodifestivaalit 2015 2/17 Sisältö 1 Johdanto 2 Tavanomainen bootstrap Bootstrap-menettelyn

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Parametrin estimointi ja bootstrap-otanta

Parametrin estimointi ja bootstrap-otanta Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Batch means -menetelmä

Batch means -menetelmä S-38.148 Tietoverkkojen simulointi / Tulosten keruu ja analyysi 1(9) Batch means -menetelmä Batch means -menetelmää käytetään hyvin yleisesti Simulointi suoritetaan tässä yhtenä pitkänä ajona olkoon simuloinnin

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden 1 KERTAUSTA JA TÄYDENNYSTÄ Luento 30.9.2014 Olkoon satunnaisotos X 1, X 2,, X n normaalijakaumasta N(µ, σ 2 ), tällöin ~ N(µ, σ 2 /n), kaava (6). Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma

Lisätiedot

NÄYTÖN ARVIOINTI: SYSTEMAATTINEN KIRJALLISUUSKATSAUS JA META-ANALYYSI. EHL Starck Susanna & EHL Palo Katri Vaasan kaupunki 22.9.

NÄYTÖN ARVIOINTI: SYSTEMAATTINEN KIRJALLISUUSKATSAUS JA META-ANALYYSI. EHL Starck Susanna & EHL Palo Katri Vaasan kaupunki 22.9. NÄYTÖN ARVIOINTI: SYSTEMAATTINEN KIRJALLISUUSKATSAUS JA META-ANALYYSI EHL Starck Susanna & EHL Palo Katri Vaasan kaupunki 22.9.2016 Näytön arvioinnista Monissa yksittäisissä tieteellisissä tutkimuksissa

Lisätiedot

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30. FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.

Lisätiedot

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita risto.lehtonen@helsinki.fi OHC Survey Tilastollinen analyysi Kysymys: Millä

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Risto Lehtonen Helsingin yliopisto Kela 1 Tilastokeskuksen SAS-seminaari 16.11.2009 Aiheita Kelan tutkimustoiminta SAS-sovellukset vaativien

Lisätiedot

Lohkoasetelmat. Kuusinen/Heliövaara 1

Lohkoasetelmat. Kuusinen/Heliövaara 1 Lohkoasetelmat Kuusinen/Heliövaara 1 Kiusatekijä Kaikissa kokeissa kokeen tuloksiin voi vaikuttaa vaihtelu, joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla on mahdollisesti vaikutusta vastemuuttujan

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)

Lisätiedot

Seurantalaskimen simulointi- ja suorituskykymallien vertailu (valmiin työn esittely) Joona Karjalainen

Seurantalaskimen simulointi- ja suorituskykymallien vertailu (valmiin työn esittely) Joona Karjalainen Seurantalaskimen simulointi- ja suorituskykymallien vertailu (valmiin työn esittely) Joona Karjalainen 08.09.2014 Ohjaaja: DI Mikko Harju Valvoja: Prof. Kai Virtanen Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Lohkoasetelmat. Heliövaara 1

Lohkoasetelmat. Heliövaara 1 Lohkoasetelmat Heliövaara 1 Kiusatekijä Kaikissa kokeissa, kokeen tuloksiin voi vaikuttaa vaihtelu joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla mahdollisesti on vaikutusta vastemuuttujan arvoon,

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas OTOSTAMISEEN LIITTYVIÄ ONGELMIA Otostamisen ongelmat liittyvä satunnaistamisen epäonnistumiseen Ongelmat otantakehyksen määrittämisessä Väärän otantamenetelmän

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET

TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET 16..015 1. a Poliisivoimien suuruuden lisäksi piirikuntien rikostilastoihin vaikuttaa monet muutkin tekijät. Esimerkiksi asukkaiden keskimääräinen

Lisätiedot

Monitasomallit koulututkimuksessa

Monitasomallit koulututkimuksessa Metodifestivaali 9.5.009 Monitasomallit koulututkimuksessa Mitä ihmettä? Antero Malin Koulutuksen tutkimuslaitos Jyväskylän yliopisto 009 1 Tilastollisten analyysien lähtökohta: Perusjoukolla on luonnollinen

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2005) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)

Lisätiedot

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n

Lisätiedot

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen) 1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12

Lisätiedot

Harha mallin arvioinnissa

Harha mallin arvioinnissa Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen

Tilastollisten aineistojen kerääminen ja mittaaminen Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2007) 1 ja mittaaminen >> Tilastollisten aineistojen kerääminen Mittaaminen

Lisätiedot

1. Tutkitaan regressiomallia Y i = β 0 + β 1 X i + u i ja oletetaan, että tavanomaiset

1. Tutkitaan regressiomallia Y i = β 0 + β 1 X i + u i ja oletetaan, että tavanomaiset TA7, Ekonometrian johdantokurssi HARJOITUS 7 RATKAISUEHDOTUKSET 16.3.2015 1. Tutkitaan regressiomallia Y i = β 0 + X i + u i ja oletetaan, että tavanomaiset regressiomallin oletukset pätevät (Key Concept

Lisätiedot

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,

Lisätiedot

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...

Lisätiedot

Liite artikkeliin Intohimo tasa-arvoon

Liite artikkeliin Intohimo tasa-arvoon Liite artikkeliin Intohimo tasa-arvoon Menetelmäkuvaus Artikkelissa käytetty regressiomalli on ns. binäärinen logistinen monitasoregressiomalli. Monitasoanalyysien ideana on se, että yksilöiden vastauksiin

Lisätiedot

Marginaalirakennemallit epidemiologisessa tutkimuksessa. SSL seminaari / Tommi Pesonen

Marginaalirakennemallit epidemiologisessa tutkimuksessa. SSL seminaari / Tommi Pesonen Marginaalirakennemallit epidemiologisessa tutkimuksessa SSL seminaari 30.10.2014 / Tommi Pesonen Sisältö Johdanto Havainnoivat tutkimukset ja aikariippuvainen sekoittuminen Marginaalirakennemallit (Marginal

Lisätiedot

BOOTSTRAPPING? Jukka Nyblom Jyväskylän yliopisto. Metodifestivaali

BOOTSTRAPPING? Jukka Nyblom Jyväskylän yliopisto. Metodifestivaali BOOTSTRAPPING? Jukka Nyblom Jyväskylän yliopisto Metodifestivaali 28.5.2009 1 1 Mitä ihmettä on bootstrap? Webster: 1. a loop of leather or cloth sewn at the top rear, or sometimes on each side of a boot

Lisätiedot

Pakkaset ja helteet muuttuvassa ilmastossa lämpötilan muutokset ja vaihtelu eri aikaskaaloissa

Pakkaset ja helteet muuttuvassa ilmastossa lämpötilan muutokset ja vaihtelu eri aikaskaaloissa Pakkaset ja helteet muuttuvassa ilmastossa lämpötilan muutokset ja vaihtelu eri aikaskaaloissa Jouni Räisänen Helsingin yliopiston fysiikan laitos Kimmo Ruosteenoja Ilmatieteen laitos Sisältöä ACCLIM-skenaariot

Lisätiedot

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,

Lisätiedot

Mallipohjainen klusterointi

Mallipohjainen klusterointi Mallipohjainen klusterointi Marko Salmenkivi Johdatus koneoppimiseen, syksy 2008 Luentorunko perjantaille 5.12.2008 Johdattelua mallipohjaiseen klusterointiin, erityisesti gaussisiin sekoitemalleihin Uskottavuusfunktio

Lisätiedot

Laadullisen tutkimuksen luonne ja tehtävät. Pertti Alasuutari professori, Laitoksen johtaja Yhteiskuntatieteiden tutkimuslaitos

Laadullisen tutkimuksen luonne ja tehtävät. Pertti Alasuutari professori, Laitoksen johtaja Yhteiskuntatieteiden tutkimuslaitos Laadullisen tutkimuksen luonne ja tehtävät Pertti Alasuutari professori, Laitoksen johtaja Yhteiskuntatieteiden tutkimuslaitos Mitä on tieteellinen tutkimus? Rationaalisuuteen pyrkivää havainnointia ja

Lisätiedot

HAVAITUT JA ODOTETUT FREKVENSSIT

HAVAITUT JA ODOTETUT FREKVENSSIT HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies

Lisätiedot

Tulosrahoitusmittaristo ennen ja nyt mittariston ominaisuudet

Tulosrahoitusmittaristo ennen ja nyt mittariston ominaisuudet Tulosrahoitusmittaristo ennen ja nyt mittariston ominaisuudet Ammatillisen peruskoulutuksen tulosrahoitusseminaari 2010 17.9.2010 Hanna Virtanen & Mika Maliranta Mittariston kehittämishankkeet Mittariston

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu

Lisätiedot

Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun

Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun Jouni Räisänen Helsingin yliopiston fysiikan laitos 15.1.2010 Vuorokauden keskilämpötila Talvi 2007-2008

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45.

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45. Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 8.8% 8.9%.%.% 9.7%.7% Etelä Länsi Itä Oulu Lappi Ahvenanmaa Länsi Etelä Itä Oulu Lappi Ahvenanmaa Läänien

Lisätiedot

Tutkimustiedonhallinnan peruskurssi

Tutkimustiedonhallinnan peruskurssi Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,

Lisätiedot

9. laskuharjoituskierros, vko 12-13, ratkaisut

9. laskuharjoituskierros, vko 12-13, ratkaisut 9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon

Lisätiedot

Otannasta ja mittaamisesta

Otannasta ja mittaamisesta Otannasta ja mittaamisesta Tilastotiede käytännön tutkimuksessa - kurssi, kesä 2001 Reijo Sund Aineistot Kvantitatiivisen tutkimuksen aineistoksi kelpaa periaatteessa kaikki havaintoihin perustuva informaatio,

Lisätiedot

Tilastollisen tutkimuksen vaiheet

Tilastollisen tutkimuksen vaiheet Tilastollisen tutkimuksen vaiheet Jari Päkkilä Johdatus tilastotieteeseen Matemaattisten tieteiden laitos TILASTOLLISEN TUTKIMUKSEN TARKOITUS Muodostaa mahdollisimman hyvä mielikuva havaintoaineistosta,

Lisätiedot

Mittausjärjestelmän kalibrointi ja mittausepävarmuus

Mittausjärjestelmän kalibrointi ja mittausepävarmuus Mittausjärjestelmän kalibrointi ja mittausepävarmuus Kalibrointi kalibroinnin merkitys kansainvälinen ja kansallinen mittanormaalijärjestelmä kalibroinnin määritelmä mittausjärjestelmän kalibrointivaihtoehdot

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

Parametrittomat ja robustit menetelmät. Jukka Nyblom Jyväskylän yliopisto 2009

Parametrittomat ja robustit menetelmät. Jukka Nyblom Jyväskylän yliopisto 2009 Parametrittomat ja robustit menetelmät Jukka Nyblom Jyväskylän yliopisto 2009 1 Sisältö 1 Satunnaistamismalli ja permutaatiotestit 4 1.1 Täysin satunnaistettu koe, käsittely ja kontrolli 4 1.2 Vastinparivertailu,

Lisätiedot

Teema 8: Parametrien estimointi ja luottamusvälit

Teema 8: Parametrien estimointi ja luottamusvälit Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.

Lisätiedot

Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin

Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin jaetaan muut alkiot kahteen ryhmään: L: alkiot, jotka eivät suurempia kuin pivot G : alkiot, jotka suurempia kuin pivot 6 1 4 3 7 2

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 Vuorikadulla V0 ls Muuttujien muunnokset Usein empiirisen analyysin yhteydessä tulee tarve muuttaa aineiston muuttujia Esim. syntymävuoden

Lisätiedot

Pikajohdatus bayesilaiseen tilastoanalyysiin ja monimuuttuja-analyysiin

Pikajohdatus bayesilaiseen tilastoanalyysiin ja monimuuttuja-analyysiin ja monimuuttuja-analyysiin Loppuseminaari: Terveydenhuollon uudet analyysimenetelmät (TERANA) Aki Vehtari AB HELSINKI UNIVERSITY OF TECHNOLOGY Department of Biomedical Engineering and Computational Science

Lisätiedot

Kvantitatiivisen aineiston analyysi

Kvantitatiivisen aineiston analyysi Kvantitatiivisen aineiston analyysi Liiketalouden tutkimusmenetelmät SL 2014 Kvantitatiivinen vs. kvalitatiivinen? tutkimuksen lähtökohtana ovat joko tiedostetut tai tiedostamattomat taustaoletukset (tieteenfilosofiset

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen. Tilastollisten aineistojen kerääminen ja mittaaminen

Tilastollisten aineistojen kerääminen ja mittaaminen. Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2004) 1 ja mittaaminen Johdatus tilastotieteeseen ja mittaaminen TKK (c) Ilkka Mellin (2004) 2 ja mittaaminen: Mitä opimme? 1/3 Tilastollisen tutkimuksen kaikki mahdolliset kohteet

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja

Lisätiedot

1. Tutkitaan tavallista kahden selittäjän regressiomallia

1. Tutkitaan tavallista kahden selittäjän regressiomallia TA7, Ekonometrian johdantokurssi HARJOITUS 5 RATKAISUEHDOTUKSET 232215 1 Tutkitaan tavallista kahden selittäjän regressiomallia Y i = β + β 1 X 1,i + β 2 X 2,i + u i (a) Kirjoita regressiomalli muodossa

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 9. luento Pertti Palo 22.11.2012 Käytännön asioita Eihän kukaan paikallaolijoista tee 3 op kurssia? 2. seminaarin ilmoittautuminen. 2. harjoitustyön

Lisätiedot

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio 17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla

Lisätiedot

Mitä IHMEttä on MIXTURE -mallintaminen?

Mitä IHMEttä on MIXTURE -mallintaminen? JYVÄSKYLÄN YLIOPISTO Matematiikan ja tilastotieteen laitos Esko Leskinen 28.5.2009 Mitä IHMEttä on MIXTURE -mallintaminen? A-L Lyyra 2009 2 1. Taustaa mixture sekoitus (mikstuura) sekoitetut jakaumat sekoitetut

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

Hierarkkiset koeasetelmat. Heliövaara 1

Hierarkkiset koeasetelmat. Heliövaara 1 Hierarkkiset koeasetelmat Heliövaara 1 Hierarkkiset koeasetelmat Kaksiasteista hierarkkista koeasetelmaa käytetään tarkasteltaessa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tekijän

Lisätiedot

(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti.

(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti. 2. VÄLIKOE vuodelta -14 1. Liitteessä 1 on esitetty R-ohjelmalla saatuja tuloksia aineistosta, johon on talletettu kahdenkymmenen satunnaisesti valitun miehen paino (kg), vyötärön ympärysmitta (cm) ja

Lisätiedot

Johdatus regressioanalyysiin

Johdatus regressioanalyysiin Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Johdatus regressioanalyysiin TKK (c) Ilkka Mellin (2007) 1 Johdatus regressioanalyysiin >> Regressioanalyysin lähtökohdat ja tavoitteet

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Estimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1

Estimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1 Estimointi - tehdään päätelmiä perusjoukon ominaisuuksista (keskiarvo, riskisuhde jne.) otoksen perusteella - mitä suurempi otos, sitä tarkemmat estimaatit Otokseen perustuen määritellään otantajakaumalta

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Ene LVI-tekniikan mittaukset ILMASTOINTIKONEEN MITTAUKSET TYÖOHJE

Ene LVI-tekniikan mittaukset ILMASTOINTIKONEEN MITTAUKSET TYÖOHJE Ene-58.4139 LVI-tekniikan mittaukset ILMASTOINTIKONEEN MITTAUKSET TYÖOHJE Aalto yliopisto LVI-tekniikka 2013 SISÄLLYSLUETTELO ILMASTOINTIKONEEN MITTAUKSET...2 1 HARJOITUSTYÖN TAVOITTEET...2 2 TUTUSTUMINEN

Lisätiedot

Rakennusalan tarjouskilpailujen toteutus tasapuoliseksi: kokonaistaloudellisuuden arviointi hinta-laatu -menetelmällä.

Rakennusalan tarjouskilpailujen toteutus tasapuoliseksi: kokonaistaloudellisuuden arviointi hinta-laatu -menetelmällä. ARKKITEHTITOIMISTOJEN LIITTO ATL RY Rakennusalan tarjouskilpailujen toteutus tasapuoliseksi: kokonaistaloudellisuuden arviointi hinta-laatu -menetelmällä. Julkisten hankintojen tarjousten valintakriteerinä

Lisätiedot

Oppimispolku. Kesto: 2x75 min tai 3 x 75 min. Tavoitteet. Toteutus

Oppimispolku. Kesto: 2x75 min tai 3 x 75 min. Tavoitteet. Toteutus Kesto: 2x75 min tai 3 x 75 min Tavoitteet Tietotavoitteet - hahmottaa Suomen väestörakenteen isot muutokset ennen ja tulevaisuudessa - ymmärtää väestön ikääntymisestä aiheutuvat seuraukset - ymmärtää maan

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Yleinen lineaarinen malli TKK (c) Ilkka Mellin (2007) 1 Yleinen lineaarinen malli >> Usean selittäjän lineaarinen regressiomalli

Lisätiedot

Johdatus tilastotieteeseen Johdatus regressioanalyysiin. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Johdatus regressioanalyysiin. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Johdatus regressioanalyysiin TKK (c) Ilkka Mellin (2005) 1 Johdatus regressioanalyysiin Regressioanalyysin lähtökohdat ja tavoitteet Deterministiset mallit ja regressioanalyysi

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 V ls. Uusintamahdollisuus on rästitentissä.. ke 6 PR sali. Siihen tulee ilmoittautua WebOodissa 9. 8.. välisenä aikana. Soveltuvan

Lisätiedot

Estimointi. Otantajakauma

Estimointi. Otantajakauma Otantajakauma Otantajakauma kuvaa jonkin parametrin arvojen (esim. keskiarvon) jakauman kaikille tietyn kokoisille otoksille. jotka perusjoukosta voidaan muodostaa Histogrammissa otantajakauman parametrin

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

Mitä kausaalivaikutuksista voidaan päätellä havainnoivissa tutkimuksissa?

Mitä kausaalivaikutuksista voidaan päätellä havainnoivissa tutkimuksissa? Mitä kausaalivaikutuksista voidaan päätellä havainnoivissa tutkimuksissa? Mervi Eerola Turun yliopisto Sosiaalilääketieteen päivät 3.-4.11.2014 HS 27.9.2014: Juhana Vartiainen ja Kari Hämäläinen (VATT):

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

Tilastollisia peruskäsitteitä ja Monte Carlo

Tilastollisia peruskäsitteitä ja Monte Carlo Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia

Lisätiedot

Arviointi ja mittaaminen

Arviointi ja mittaaminen Arviointi ja mittaaminen Laatuvastaavien koulutus 5.6.2007 pirjo.halonen@adm.jyu.fi 014 260 1180 050 428 5315 Arviointi itsearviointia sisäisiä auditointeja ulkoisia auditointeja johdon katselmusta vertaisarviointeja

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156

Lisätiedot

Havainto uudesta 125 GeV painavasta hiukkasesta

Havainto uudesta 125 GeV painavasta hiukkasesta Havainto uudesta 125 GeV painavasta hiukkasesta CMS-koe CERN 4. heinäkuuta 2012 Yhteenveto CERNin Large Hadron Collider (LHC) -törmäyttimen Compact Muon Solenoid (CMS) -kokeen tutkijat ovat tänään julkistaneet

Lisätiedot

Lineaariset luokittelumallit: regressio ja erotteluanalyysi

Lineaariset luokittelumallit: regressio ja erotteluanalyysi Lineaariset luokittelumallit: regressio ja erotteluanalyysi Aira Hast Johdanto Tarkastellaan menetelmiä, joissa luokittelu tehdään lineaaristen menetelmien avulla. Avaruus jaetaan päätösrajojen avulla

Lisätiedot