Kuinka ravinto ja elintavat

Koko: px
Aloita esitys sivulta:

Download "Kuinka ravinto ja elintavat"

Transkriptio

1 Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3: Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3 jatkaa ravinnon ja elintapojen vaikutuksen selvittämistä MS-taudin ja siihen assosioituvien oireiden taustalla. Mitä eroa on inflammaatiolla? infektiolla ja Autoimmuunitaudin voi laukaista jokin infektio, kuten EpsteinBarr- tai herpesvirus. Inflammaatio altistaa sairastumiselle ja pahentaa immuunivälitteisten tulehduksellisten sairauksien oireita. Eräät ravintoaineet aiheuttavat oksidatiivista stressiä, joka ylläpitää ja pahentaa inflammaatiota. Infektio ja inflammaatio menevät helposti sekaisin, koska molemmat kertovat tulehduksesta. Ne eivät kuitenkaan tarkoita samaa asiaa. Infektion aiheuttama lyhytaikainen tulehdus (tartuntatulehdus) auttaa elimistöön tunkeutuneen sairastuttavan mikrobin tuhoamisessa. Jatkuva matala-asteinen tulehdus (inflammaatio) on kudoksia ärsyttävä tila, joka voi kehittyä mm. vamman, ravinnon (postbrandiaalinen tulehdus), tupakoinnin, alkoholin ja eräiden toksiinien sekä joidenkin tuntemattomien syiden seurauksena, kuten eräät autoimmuunitulehdukset (esimerkiksi reuma). Matala-asteinen tulehdus ei tavallisesti näy ulospäin tai oireile kipuna. Tutkimukset viittaavat siihen, että matalaasteinen tulehdus on kuitenkin lähes kaikkien kroonisten

2 tautien osatekijä. Ne ruoka-aineet, jotka vähentävät tulehdusta tuntuvat edistävän ihmisen terveyttä muutoinkin. Ruokavalio, joka vähentää voimallisesti tulehdusta, vähentää myös kolesterolia, verenpainetta, aterian jälkeistä hapetusstressiä, LDLkolesterolin hapettumista ja verensokeria aterian jälkeen ja paastossa sekä estää lihomista. Pronutritionist Infektio siis puolustaa elimistöä mikrobeja vastaan. Pitkään jatkuva matala-asteinen inflammaatio on elimistölle haitallinen tila, koska se voi aiheuttaa kudosvaurioita. Wikipedian mukaan autoimmuunitulehdus vahingoittaa elimistöä immuunipuolustuksen hyökätessä elimistön omia soluja vastaan. C-reaktiivinen proteiini eli CRP Elimistön tulehduksista kertoo verinäytteestä mitattava CRP eli C-reaktiivinen proteiini. CRP on maksan syntetisoima akuutin infektion proteiini, joka sitoutuu solun erilaisiin ainesosiin, kuten polysakkarideihin, lipideihin, nukleiinihappoihin, nukleotideihin sekä kationeihin kuten hepariiniin, protamiiniin ja histoineihin. CRP on komplementtijärjestelmän aktivoija, joka edistää vierasaineiden opsonisaatiota ja fagosytoosia. CRP osallistuu luontaiseen immuniteettiin ja vierasaineiden eliminointiin. Opsonisaatio on prosessi, jossa infektoivan patogeenin pintaan tarttuu siihen erikoistunut vasta-ainemolekyyli eli opsoniini, jonka avulla syöjäsolut (fagosyytit) tunnistavat ja tuhoavat patogeenit. CRP:n pitoisuus veressä nousee bakteeri-infektioiden ja muiden tulehdustilojen sekä kudosvaurion yhteydessä nopeasti. CRP:n normaali viitealue on alle 10 mg/l, mutta infektion aikana CRP:n määrä voi kasvaa jopa 1000-kertaiseksi viitealueeseen verrattuna. Ruokavalio, laihtuminen ja CRP

3 Lihavuus on matala-asteisen inflammaation yksi tärkeä syy. Laihtuminen voi laskea inflammaatiota mittaavaa CRP-arvoa jopa 80 %. Myös ruokavalio vaikuttaa tulehdusta mittaavaan CRParvoon. Terveellinen ruoka, kuten kasvikset, marjat, hedelmät ja kala voivat laskea tulehdusarvoja jopa kolmanneksella. Wikipedia kertoo, että jo muutaman päivän vesipaasto vahvistaa kehon immuunijärjestelmää taistelussa tulehduksia vastaan. Vastaavia tuloksia on saatu kerran tai kahdesti kuussa toteutettavilla nelipäiväisillä niukan ravinnon jaksoilla. Elimistö näyttäisi pääsevän paaston ja niukan dieetin avulla eroon immuunijärjestelmän vahingoittuneista ja vanhentuneista osista, joka johtaa immuunijärjestelmän uusiutumiseen (Kari Tyllilä: Yllättävä löytö voi tuoda apua syöpähoitoihin: Paasto uudistaa immuunijärjestelmää). Tulehdus ja sytokiinit Sytokiinit ovat immuunijärjestelmän säätelijöitä. Ne ohjaavat immuunijärjestelmän kaikkien solujen erilaistumista, kasvua ja toiminnallista säätelyä. Sytokiini on yleisnimitys yli sadalle pienimolekyyliselle proteiinirakenteiselle välittäjäaineelle. Valkosolut tuottavat sytokiineihin lukeutuvia interferoneja virusinfektion aikana. Interferonien tarkoituksena on estää virusten lisääntyminen infektion alkuvaiheessa. Proinflammatoristen eli inflammaatiota lisäävien interferonien (sekä happiradikaalien) ensisijaisena tehtävänä on tappaa elimistöön päässeitä viruksia, bakteereita ja ja sieniä. Jos immuunivasteeseen osallistuvia sytokiineja tai happiradikaaleja muodostuu elimistössä liikaa, ne vaurioittavat kudoksia ja altistavat sairastumiselle. Beetainterferoneja käytetään MS-taudin oireita hillitsevänä lääkkeenä. Toisaalta gammainterferoni, jota naisilla muodostuu luonnostaan miehiä enemmän, assosioituu suurina pitoisuuksina

4 MS-taudin puhkeamiseen ja pahenemiseen. Tärkeät sytokiinit Kuva sytokiinien merkityksestä ja hierarkkisista säätelyverkoista tarkentuu koko ajan. Sytokiineja on tunnistettu yli sata. Pelkästään interleukiiniperheeseen kuuluvia sytokiineja tunnetaan 29. Sytokiinien tutkimus tarjoaa uusia lähestymistapoja myös autoimmuunitautien ja syöpien hoitoon. Immuunijärjestelmän kannalta keskeisiä sytokiinejä ovat interleukiinit (IL), interferonit (IFN), tuumorinekroositekijä alfa (TNF-α), ja solutyyppispesifiset kasvutekijät, kuten granulosyyttikasvutekijä (G-CSF) ja erytropoietiini (EPO). Sytokiinien eritys lisääntyy infektion aikana, mikä vahvistaa elimistön puolustautumista taudinaiheuttajia vastaan. Immuunivasteeseen ja infektion torjuntaan osallistuvat ainakin proinflammatoriset sytokiinit, kuten IL-1, IL-6, TNF- α. IL-17 on nopeasti kasvava sytokiiniperhe, jonka jäsenet eroavat rakenteellisesti muista sytokiineista. IL-17 on keskeinen sytokiini MS-taudin patogenesissä (Gold & Lühder, Interleukin-17 Extended Features of a Key Player in Multiple Sclerosis). Monet sytokiinit aiheuttavat ja ylläpitävät elimistön matalaasteista tulehdusta. Toisaalta sytokiinit voivat olla myös inflammaatiota vähentäviä eli anti-inflammatorisia, kuten mm. IL-4, IL-10 ja TGF- β. Sytokiinien säätelyverkot Sytokiinit muodostavat toiminnalllisia verkostoja. Yksittäinen sytokiini vaikuttaa tavallisesti useisiin solutyyppeihin, mutta sen aikaansaamat vasteet eri soluissa voivat olla täysin erilaiset.

5 Monissa immuunivälitteisissä tulehduksellisissa sairauksissa aktivoituu osin samanlainen sytokiiniverkosto, mutta yksittäisen sytokiinin merkitys eri sairauksien patogeneesissa voi vaihdella paljonkin. Yhtenä esimerkkinä tuumorinekroositekijä (TNF-α), joka vaikuttaa mm. nivelreuman, selkärankareuman, tulehduksellisten suolistotautien ja psoriaasin patogeneesissa. Sytokiinit toimivat ajallisesti ja paikallisesti tarkan säätelyn alaisina hierarkkisina säätelyverkostoina. Jos säätely jostakin syystä pettää, sytokiinien ylituotanto voi toimia laukaisevana mekanismina monissa sairauksissa, kuten autoimmuunitaudeissa. Sytokiinireseptoreiden signalointi Sytokiinien biologiset vaikutukset välittyvät solun pinnalla sijaitsevien erityisten reseptoreiden kautta. Interferonien, useimpien interleukiinien kasvutekijöiden (EPO, TPO, ja solutyyppispesifisten GM-CSF, G-CSF) reseptorit välittävät vaikutuksensa hematopoieettiseen sytokiinireseptoriperheeseen kuuluvien reseptoreiden kautta. Kaikkien reseptroreiden aktivaatiomekanismi on samankaltainen: sytokiinin sitoutuminen reseptorin solunulkoiseen osaan saa aikaan ketjuen pariutumisen ja johtaa reseptoriin kiinnittyneiden JAK-tyrosiinikinaasien (JAK1-3 ja TYK2) aktivaatioon ja signaalinvälitykseen erikoistuneiden proteiinien fosforylaatioon sekä muutoksiin mm. DNAsynteesissä ja transkriptiossa (Levy ja Darnell 2002, O Shea ym. 2002). Luettavaa sytokiineista Researchers Identify 2 Cytokines Responsible for Chronic Flares in Autoimmune Diseases Cytokines in Multiple Sclerosis Possible Targets for Immune Therapies

6 Cytokine Profile in Patients with Multiple Sclerosis Following Vitamin D Supplementation Uutta sytokiineistä, Olli Silvennoinen ja Mikko Hurme Wikipedia: Cytokine Cytokines, Inflammation and Pain Kuinka elimistö tulehdukseen? reagoi Elimistö reagoi tulehdukseen tavallisesti verisuonimuutoksilla sekä kudosnesteen ja tulehdussolujen kertymisellä tulehdusalueelle. Verisuonimuutosten seurauksena hiussuonten seinämät muuttuvat läpäisevimmiksi ja tulehdusalueelle kertyy proteiineja ja nestettä. Tulehdusreaktio houkuttelee paikalle myös valkosoluja, kuten syöjäsoluja, joiden tehtävänä on puolustaa elimistöä ulkoisilta taudinaiheuttajilta ja siivota tulehdusaluetta vaurioituneista soluista. Tulehduksien aiheuttama märkä muodostuu tulehdussoluista, taudinaiheuttajista, osin tuhoutuneesta kudoksesta ja kudosnesteestä. Tulehduksen oireet ovat rubor, tumor, calor, dolor ja functio laesa eli punoitus, turvotus, kuumotus, kipu ja toimintakyvyn heikkeneminen. Ravinto ja inflammaatio Pitkään jatkuva matala-asteinen tulehdus kasvattaa sairastumisen riskiä. Tutkimusten mukaan inflammaatio on useimpien kroonisten sairauksien taustatekijä. Inflammaatio altistaa mm. autoimmuunitaudeille, sydänja verisuonitaudeille, syöville, tyypin 2 diabetekselle, lihavuudelle ja Alzheimerin taudille. Rasvakudos erittää runsaasti erilaisia tulehdussytokiineja, joten lihavuus ylläpitää ja lisää inflammaatiota.

7 Laihduttaminen voi merkittävästi vähentää elimistöä rasittavaa matala-asteista tulehdusta. Aterianjälkeinen (postbrandiaalinen) verensokerin nousu kasvattaa oksidatiivista stressiä muodostamalla happiradikaaleja. Oksidatiivinen stressi pahentaa inflammaatiota. Mitä korkeammaksi verensokeri nousee, sitä enemmän muodostuu happiradikaaleja. Ravinto vaikuttaa inflammaatioon monin tavoin. Ravinto voidaan jakaa karkeasti tulehduksia aiheuttaviin, neutraaleihin ja tulehduksia hillitseviin ravintoaineisiin. Ravintoaineiden aiheuttamaan tulehdusvasteeseen vaikuttavat mm. ravinnon määrä ja muut samaan aikaan nautitut ravintoaineet. Rasvat ovat tavallisilla annoksilla tulehduksen kannalta yleensä neutraaleja. Värikkäiden marjojen, hedelmien ja kasvisten syöminen lievittää tulehdusta. Imeytymättömät proteiinit voivat lisätä suoliston tulehduksia, mutta lihan, kanan ja äyriäisten tulehdusvaikutuksista on hyvin vähän tutkittua tietoa. Tulehduksia vähentäviä (anti-inflammatorisia) ruokia ovat mm. Rasvainen kala Neitsytoliiviöljy Kala Mantelit ja pähkinät Marjat ja hedelmät Monet kasvikset Appelsiinimehu Granaattiomena Kaakao Punaviini Inflammaation kannalta neutraaleja ruokia ovat mm.

8 Rypsiöljy Margariini Voi Soija ja palkokasvit Meijerituotteet Kananmunat Eräät täysjyvätuotteet Monet kasvikset Tumma pasta Peruna Leipä Vihreä tee Kahvi Valkoviini Maito ja piimä Tulehduksia lisääviä ruokia ovat mm. Kerma suurina annoksina Makkarat ja lihajalosteet Runsas sokeri Runsas fruktoosi (fruktoosisiirappi?) Lue lisää: Pronutritionist: Anti-inflammatorinen eli tulehdusta vähentävä ruokavalio Inflammaation vaikutus RRMS- ja PPMStautien oireisiin Tulehdustekijät ovat havaittavissa aaltoilevasti etenevän RRMS-taudin patologiassa ja assosioituvat selkeästi taudin oireisiin. RRMS-tautimuodossa keskushermostossa ilmenevät tulehduspesäkkeet (leesiot) ovat yhteydessä taudinkuvaan liittyviin kliinisiin pahenemisvaiheisiin. Inflammaation helpottuminen ilmenee remissiona, jolloin taudin oireet paranevat joko osittain tai lähes täysin etenkin taudin

9 varhaisvaiheessa. Progressiivinen MS-tauti Ensisijaisesti etenevä MS-tauti (primaarisprogressiivinen, PPMS) on MS-taudin alatyyppi, jossa oireet ja invaliditeetti lisääntyy sairauden alusta alkaen tasaisesti ilman selviä inflammaatioon assosioituvia pahenemisvaiheita, RRMS etenee toissijaisesti eteneväksi (SPMS) taudiksi yleensä noin parin vuosikymmenen aikana. läheisesti toisiaan. SPMS ja PPMS muistuttavat hyvin PPMS-potilailla yleisimmät taudin alkuoireet olivat motoriset-, pikkuaivo- ja tuntohäiriöt. Motorisen toiminnan häiriöt olivat yleisimmät löydökset kliinisessä neurologisessa tutkimuksessa. Kaikilla PPMS-potilailla oli virtsaustoiminnan häiriöitä, joista tihentynyt virtsaamistarve ja siihen liittyvä virtsan karkailu olivat yleisimmät oireet. Urodynaamisen tutkimuksen yleisimmät löydökset olivat virtsarakon seinämälihaksen yliaktiivisuus (detrusor hyperrefleksia) sekä seinämälihaksen ja virtsaputken sulkijalihaksen koordinoimaton supistelu (detrusor sphinkterin dyssynergia, DSD). Maritta Ukkonen: Primaarisprogressiivinen MS-tauti, kliininen, immunologinen ja radiologinen kuva Tulehduksen vaikutusta ei ole poissuljettu myöskään etenevässä MS-taudissa. Inflamaation voi aiheuttaa autoimmuunitulehdus tai solujen (oligodendrosyyttien) rappeutumisen eli sytodegeneraation aiheuttama neurologinen tulehdus. Adheesiomolekyylien ja joidenkin sytokiinien ilmentymisen lisääntyminen viittaa siihen, että tulehduksellista aktiviteettia esiintyy pidemmälle edenneessä PPMStaudissakin. Maritta Ukkonen: Primaarisprogressiivinen MStauti, kliininen, immunologinen ja radiologinen kuva

10 Tutkimukselliset löydöt Etenevissä MS-taudeissa on havaittavissa runsaasti molekyylija solutason muutoksia, jotka selittävät taudinkuvaan liittyvää neurologista rappeutumista (neurodegeneraatiota). Tällaisia neurologiseen rappeutumiseen assosioituvia muutoksia ovat mm. keskushermoston syöjäsoluina toimivien mikrogliasolujen aktivoituminen kroonisen hapettumisreaktion aiheuttamat vauriot keskushermoston soluissa mitokondrioihin kumuloituvat vauriot keskushermoston viejähaarakkeissa ikään liittyvä atrofia viejähaarakkeiden signaalinvälityksen havaittava heikkeneminen. Tällaiset patologiset muutokset voivat johtua autoimmuunitulehduksen aiheuttamista viejähaarakkeiden eristekalvojen vaurioista (demyelinaatio), mutta syynä voi olla myös tautiin liittyvä keskushermoston solujen (neuronien ja oligodendrosyyttien) primaari rappeutuminen. Mahdollisesti moolemmat, sekä inflammaatio että keskushermoston solujen rappeutuminen (sytodegeneraatio) vaikuttavat etenevien MS-tautimuotojen patogeneesiin. Patologiset mekanismit, jotka ylläpitävät neurodegeneraatiota ja aiheuttavat PPMS-ja SPMS-potilaille kudosvaurioita, tunnetaan huonosti. Nämä tekijät liittyvät ilmeisesti perifeerisen immunologisen toleranssin virheelliseen toimintaan. Taudin aiheuttamasta neurodegeneraatiosta on esitetty (ainakin) kaksi hypoteessia: inside-out-hypoteesi ja outsidein-hypoteesi. Inside-out hypoteesin mukaan taudin alusta alkaen etenevä

11 keskushermoston solujen rappeutuminen on kaikkien tautiin liittyvien prosessien selittävä tekijä. Outside-in hypoteesi olettaa, että taudin varhaisvaiheessa ilmenevät inflammaatioon assosioituvat demyelinoivat prosessit laukaisevat joukon keskushermostoa rappeuttavia tapahtumaketjuja. Osallistuuko suoliston mikrobiomi autoimmuunitaudin patogeneesiin? Viime aikoina on saatu viitteitä siitä, että suoliston mikrobiomin hyvinvoinnilla on tärkeämpi rooli etenevän MStaudin taudinkuvassa kuin on aiemmin oletettu. Tieto mikrobiomista ja sen merkityksestä isäntäorganismille täsmentyy koko ajan. Vagus-hermo välittää tietoa ruoansulatuselimistön tapahtumista aivoille. Se toimii suorana välittäjänä mikrobiomin ja keskushermoston välillä. Mikrobiomi vaikuttaa keskushermostoon muokkaamalla signaalireittejä aivo-suolisto-akselilla. Tämä kaksisuuntainen kommunikaatioverkko hermoston ja suoliston välillä aktivoi hermoston makrofageja ja vaikuttaa neurologisiin tapahtumiin säätelemällä hermoston immuuniaktiivisuutta. Mikrobiomin merkitys BBC kirjoittaa, että kehon solujen kokonaismäärästä 43 % on ihmisen omia soluja. Suurin osa kehossamme elävistä soluista kuuluu kuitenkin mikrobiomin bakteereille, arkeille, viruksille ja sienille. Ihmisen DNA:ssa on noin proteiineja koodaavaa geeniä. Geenit säätelevät solujemme, kudostemme ja elimistömme rakennetta. Geenien väliset alueet ohjaavat geenien toimintaa. Oman genomin lisäksi kehossamme on mikrobiomin geneettistä materiaalia, joka koostuu 2-20 miljoonasta geenistä.

12 DNA, mutaatiot variaatiot ja yhden emäksen Ihmisen DNA on noin 3 miljardia emästä pitkä kaksoisjuoste. DNA:n rakenteessa toistuu neljä emästä, joita kuvataan kirjaimilla A (adeniini), T (tymiini, C (sytosiini) ja G (guaniini). A ja T sekä C ja G muodostavat DNA:n kaksoisjuosteessa emäspareja. Geenit eli perintötekijät muodostuvat eri mittaisista DNAjaksoista Solun jakautuminen edellyttää DNA:n kahdentumista. Prosessi on hyvin täsmällinen, mutta aika ajoin siinä tapahtuu virheitä ja DNA-juosteen alkuperäinen emäsjärjestys muuttuu. Tällaiset virheet aiheuttavat geenimutaatioita. Geenimuutosten kolme lähdettä ovat vanhemmilta saatu perimä, elintapojen ja ympäristön tuoma altistus (myrkyt, patogeenit, ravinto jne.) sekä sattumanvaraiset DNA:n kopioitumisvirheet. Kopioitumisvirheitä tapahtuu jatkuvasti. Aina, kun solu jakaantuu, aiheutuu DNA:han keskimäärin kolme virhettä. Tällaiset geenimutaatiot voivat käynnistää syövän. Pistemutaatiot eli yhden emäksen variaatiot (Single Nucleotide Polymorphism), joissa esimerkiksi DNA:n emäsjuosteen jonkin geenin emäsparissa adeniini muuttuu sytosiiniksi, ovat hyvin yleisiä. Yleensä nämä ovat neutraaleja, mutta jotkin yhden nukleotidin polymorfismit assosioituvat lisääntyneeseen sairastumisriskiin. Toinen genomi Professori Sarkis Mazmanian (Caltech) kertoi BBC:lle, että periaatteessa meillä on kaksi toisiinsa vuorovaikuttavaa genomia. Ne kommunikoivat keskenään kemiallisten signaalien välityksellä. Tällaisia mikrobiomin tuottamia hermostoon vaikuttavia välittäjäaineita ova esimerkiksi eräät mikrobien

13 aineenvaihduntatuotteet, kuten dopamiini, serotoniini ja GABA. Mikrobiomin tuottamat kemialliset signaalit voivat vaikuttaa myös epigeneettisesti ihmisen omaan genomiin. Tämä tapahtuu esimerkiksi siten, että johonkin geenin emäksistä kiinnittyy ympäristötekijöiden säätelemänä geenin transkriptioon vaikuttava metyyliryhmä. Mikrobiomiin vaikuttavat ympäristötekijät voivat olla viruksia, bakteereita, sieniä, tietyn kemiallisen koostumuksen omaavia ravintoaineita sekä toksisia tai inflammatorisia kemikaaleja. Nämä voivat heikentää immuunijärjestelmän säätelyä ja edesauttaa epigeneettisten muutosten, pistemutaatioiden ja geenimutaatioiden kehittymistä DNA:han. Yhden nukleotidin polymorfismit (single nucletide polymorphism, SNP) assosioituvat moniin sairauksiin, kuten syöpiinn ja autoimmuunitauteihin. Esimerkiksi tyypin 1 diabeteksessa ja MS-taudissa tällaisia tautiin assosioituvia yhden nukleotidin polymorfismeja on tunnistettu muun muassa geenin CYP27B1 eri lokuksissa. Geenit eivät ole täysin muuttumattomia. Ympäristötekijät vaikuttavat geenien toimintaan. Myös epigeneettinen muutos, jossa geenin yhden tai useamman emäksen päälle on kiinnittynyt metyyliryhmä vaikuttaa geenin ekspressioon ja transkriptioon. Kuinka mikrobiomi elimistöön? vaikuttaa Suoliston mikro-organismit estävät vieraiden ja mahdollisesti haitallisten mikrobien pesiytymisen suolistoon ja pääsyn suoliston kautta verenkiertoon. Mikrobiomi vaikuttaa myös ruoansulatukseen, aineenvaihduntaan, immuunijärjestelmän säätelyyn sekä eräiden vitamiinien ja

14 muiden tärkeiden yhdisteiden, kuten dobamiinin, GABAn ja serotoniinin synteesiin ja edelleen keskushermoston toimintaan mm. vagus-hermon välityksellä. Onko antibiooteilla ja rokotuksilla vaikutuksia mikrobiomiin? Antibiootit ja rokotukset ovat pelastaneet kymmeniä tai satoja miljoonia ihmishenkiä viimeisen vuosisadan aikana, mutta joidenkin tutkijoiden mukaan mikrobiomin lajikirjo on pienentynyt infektioilta suojaavan taistelun seurauksena ja tämä on heikentänyt mikrobiomin vaikutusta immuunijärjestelmän säätelyyn. Hypoteesin vaikuttaa mukaan mikrobiomin lajikirjon pienentyminen immuunijärjestelmän säätelyn kautta sairastumissalttiuden lisääntymiseen. Erityisesti sairastumisalttiuden lisääntyminen vaikuttaa allergioihin ja autoimmuunitauteihin. Professori Ruth Ley (Max Planck Institute) totesi BBC:lle, että vaikka olemmme taistelleet menestyksekkäästi infektioita vastaan, autoimmuunitautien ja allergioiden määrä on kääntynyt selvään kasvuun. Tulkitsen tämän niin, että koska mikrobiomi yleensä periytyy äidiltä lapselle, voivat pienet mikrobiomin lajikirjon muutokset kumuloitua sukupolvien aikana ja heikentää pitkällä aikajänteellä immuunijärjestelmän säätelyä. Se voisi selittää väestötasolla eräiden tautien yleistymisen. Rokotukset ja antibiootit eivät kausaalisesti aiheuta autoimmuunitauteja, mutta ovat voineet useiden sukupolvien aikana vaikuttaa autoimmuunitautien kehittymisen kannalta otollisemman immunologisen ympäristön rakentumiseen. Tällainen spekulaatio kuulostaa ihan järkeenkäyvältä. Näkökulma: Rokotteiden sisältämät viruksen proteiinit toimivat

15 autoimmuunitaudin laukaisijoina minimaalisen pienellä todennäköisyydellä, mutta näin kävi surullisessa narkolepsiaepidemiassa. Yleisesti ottaen rokotteet ovat hyvin turvallisia. Virus, jolta rokote suojaa voi laukaista autoimuunitaudin myös rokottamattomilla. Rokottaminen voi laukaista vakavan allergisen reaktion tai sairauden, mutta todennäköisyys sellaiselle on häviävän pieni. Myös rokotteen sisältämien tehoste- ja säilöntäaineiden pelko on aiheeton; hengittämällä elimistöön kulkeutuu taajamaalueilla jo yhdessä päivässä rokotteisiin verrattuna moninkertainen määrä teollisuudesta ja liikenteestä peräisin olevia haitallisia mikropartikkeleita. Hengitysilman pienhiukkaset kulkeutuvat keuhkoista verenkiertoon ja vaikuttavat siten terveyteen. Maailmanlaajuisesti ilmansaasteet tappavat vuosittain miljoonia ihmisiä. Suurin ongelma on Aasiassa ja Afrikassa. Tämä on rokotteita todellisempi ja akuutimpi uhkakuva myös Euroopassa. Teollinen ruoka yksipuolisti mikrobiomia Mikrobiomin heikentymiseen on vaikuttanut myös viime vuosisadalla alkanut ravinnon teollistuminen. Teollisesti valmistetut vähemmän ravinteita ja enemmän energiaa sisältävät ruoat ja rasvat sekä runsas sokereiden käyttö ovat syrjäyttäneet luonnnollisemmat ravinnonlähteet. Lihan ja sokereiden määrä ravinnossa on lisääntynyt samaan aikaan, kun hapatettujen ruokien ja kasvisten saanti on vähentynyt. Punainen liha, lihajalosteet, transrasvat ja sokerit assosioituvat tutkimuksissa heikentyneen suolistoterveyden ja suoliston tulehdusten kanssa; nämä heikentävät immuunijärjestelmää ja sen säätelyä. Punainen liha ja suoliston terveys Runsaan proteiinien saannin kohdalla ongelmia aiheuttaa se,

16 että vaikka proteiinit pilkotaan tärkeiksi aminohapoiksi ja peptideiksi ohutsuolessa, osa proteiineista ei imeydy ohutsuolesta elimistön hyödynnettäväksi, vaan päätyy paksusuoleen, jossa ne ravitsevat mikrobiomin huonoja bakteereita. Imeytymättömän proteiinin vaikutuksesta paksusuoleen syntyy imeytymätöntä rautaa, ammoniakkia, amiineja, sulfideja ja haaraketjuisia rasvahappoja (BCFA). Erityisesti lihan paistamisen yhteydessä Mailard-reaktiossa (ruskistumisessa) syntyy sokeroituneita proteiineja, jotka eivät imeydy ohutsuolessa, vaan kulkeutuvat paksusuolen bakteerien fermentoitavaksi (Tuohy et al. 2006). Lähde: Pronutritionist Ravitsemuksessa tapahtunut muutos ei tietenkään ole yksiselitteisesti huono asia. Ravintoa on enemmän ja monipuolisemmin tarjolla kuin koskaan aiemmin historiassa. Samaan aikaan pikaruoka- ja herkuttelukulttuurilla on kuitenkin hintansa: immuunijärjestelmän toiminnan säätelyyn osallistuvan mikrobiomin heikentyminen on ehkä mahdollistanut aiemmin harvinaisten tautien ja oireyhtymien yleistymisen. Autoimmuunitautien, allergioiden ja autismin lisääntyminen voisi siis selittyä väestötasolla tapahtuneilla mikrobiomin pitkän aikavälin muutoksilla. Tämä on mielenkiintoinen ajatus. Ymäristömuuttujat ja terveys Evoluutio on tehnyt meistä ympäristön muutoksiin hyvin sopeutuvan lajin. Ympäristön muuttuminen mm. ravinnon ja erilaisten kemikaalien osalta on nykyään kuitenkin niin nopeaa, ettei ihmisen aineenvaihdunta ja immuunijärjestelmä ehdi sopeutua muutoksiin. Kun ihmiset aiemmin sairastuivat ja kuolivat infektioihin, nyt infektioita suurempia uhkia ainakin kehittyneissä maissa ovat

17 elintapoihin assosioituvat kardiometaboliset oireyhtymät, sydän- ja verisuonitaudit, diabetes, syövät jne. Ravintoaineiden puutokset ja ympäristön myrkyt altistavat sairastumiselle Välttämättömien ravintoaineiden puutos ei välittömsti johda sairastumiseen, sillä keho varastoi jonkin verran välttämättömiä vitamiineja ja mineraaleja. Elimistössä on simerkiksi B12-vitamiinia yleensä riittävästi kattamaan muutaman vuoden tarpeen, vaikka sitä ei ravinnosta saisikaan. Vakavien puutosoireiden kehittyminen edellyttää pidempiaikaista vitamiinien tai mineraalien puutosta. Elimistöllä on elintoimintoja myös monia aineenvaihduntamekanismeja ylläpitävien elinten energiansaannin turvaamiseksi. Solut saavat rasvoista ja proteiineista. energiaa hiilihydraateista, Kun ravintoa ei ole saatavilla, elimistö muuttaa varastorasvoja ketoaineiksi ja glukoneogeneesissä ketoaineita edelleen glukoosiksi tai soluissa energiaksi. Kun elimistön glykogeenit ja rasvavarastot loppuvat, elimistö alkaa tuottaa ketoaineita vapaista proteiineista ja rasvahapoista. Ravinnon jatkuva puutos saa aineenvaihdunnan pilkkomaan lihaksia aminohapoiksi, joita voi käyttää ketoaineina. Näiden selviytymismekanismien ansiosta terve ihminen voi elää jopa kuukauden pelkällä vedellä. Toksisten aineiden kumuloituminen elimistöön ja välttämättömien ravinteiden puutokset altistavat kuitenkin pitkään jatkuessaan sairastumiselle. Ravinto ja suolisto Yksipuolinen ravinto, liiallinen hygienia, runsas alkoholi, tupakointi sekä eräät lääkkeet voivat heikentää suoliston mikrobiomia. Tälla on vaikutuksia terveyteen, koska suoliston mikribiomia tarvitaan mm. suojaamaan suolistoa ulkoisilta

18 taudinaiheuttajilta, vähentämään suolistotulehdusten vaaraa, ehkäisemään suolistosyöpää ja pilkkomaan ravinnon sulamattomia kuituja. Monista hedelmistä, kasveista, marjoista, tummasta suklaasta ja kahvista saatavilla polyfenoleilla on suoliston mikrobiomille ja painonhallinnalle ilmeisen myönteisiä vaikutuksia. Ne tukevat suoliston terveyttä ylläpitävien bifidobakteerien kasvua. Punaisesta lihasta saatava hemirauta voi pahentaa suoliston tulehduksia, mutta samaan aikaan saatava resistentti tärkkelys vähentää inflammaatiota. RRSM ja PPMS MS-taudin kaksi yleisintä mutoa ovat taudinkuvaltaan ja patologisilta mekanismeiltaan hyvin erilaisia tauteja. On ehkä aiheellista harkita sellaista vaihtoehtoa, että RRMS ja PPMS ovat kaksi erillistä sairautta tai monitekijäistä oireyhtymää. Ne muistuttavat monin tavoin toisiaan, mutta näiden kahden MStaudin patogeneesi poikkeaa toisistaan merkittävällä tavalla. RRMS on tulehduksellinen autoimmuunitauti, jossa keskushermoston tulehdukset laukaisevat MS-tudille ominaisen demyelinoivan autoimmuunireaktion. PPMS on sairauden alusta alkaen neurodegeneratiivinen, hermoston soluja rappeuttava sairaus, jossa oligodendrosyyttien tuhoutumista ja atrofiaa tapahtuu tasaisesti ilman inflmaatioon assosioituvia pahenemisvaiheita. Tällaista hypoteesia tukee kliinisten löydösten ohella myös se, että anti-inflammatoriset ja immunosupressiiviset lääkkeet eivät toimi toivotulla tavalla etenevissä MS-taudeissa, vaikka nillä saadaan hyviä hoitotuloksia aaltoilevaa tautimuotoa sairastavilla. Myöskään kantasoluhoidosta ei löydy apua etenevään MS-tautiin. Kantasoluhoidossa potilaalta kerätään kantasoluja, joita kasvatetaan petri-maljoissa. Kantasolujen keräämisen jälkeen

19 potilaan virheellisesti toimiva immuunijärjestelmä tuhotaan voimakkaalla kemoterapialla. Viimeisessä vaiheessa kantasoluista istutetaan potilaalle uusi immuunijärjestelmä. Kaiken kaikkiaan kantasoluhoito kestää noin kuukauden ja sillä on saatu hyviä hoitotuloksia RRMS-potilailla. PPMS- ja SPMSpotilaille kantasoluhoito ei ainakaan nykyisellään sovellu. Immuunijärjestelmää hillitsevillä lääkkeillä ja kantasoluhoidolla ei ole toivottua vaikutusta etenevässä MStaudissa, koska immuunijärjestelmän virheellinen toiminta ei ole oireiden ensisijainen syy. Etenevä MS-tauti ei myöskään ole ensisijaisesti tulehduksellinen sairaus, koska tulehduksia vähnetävillä lääkkeillä ei saada toivottua vastetta. Tästä hypoteesista ei vallitse tietellistä konsensusta, mutta etenevien MS-tautien tutkimus on lisääntynyt ja viime aikoina on saatu selkeitä viitteitä siitä, että PPMS on osin virheellisesti ymmärretty sairaus; sen sekoittaminen relapsoivaan-remittoivaan MS-tautiin vain pahentaa tilannetta ja hidastaa tutkimustyötä. Niin tai näin, molemmissa MS-taudin muodoissa ravinto ja elintavat vaikuttavat taudin etenemiseen, mutta erilaisten patologisten prosessien ja aineenvaihduntakanavien kautta. Ehkäpä MS-taudin yksilölliset oireet ja taudinkulku eri potilailla selittyy sillä, että kahteen yleisimpään MS-taudin muotoon vaikuttavat erilaiset geenivariaatiot, geenien alleelit, yhden nukleotidin polymorfismit ja epigeneettiset muutokset. MS-tautiin assosioituvia geenejä on tunnistettu noin 200, mutta yksikään potilaista ei varmasti kanna kaikkia mahdollisia MS-tautiin liittyviä geenimuutoksia. Tämä monimuotoisuus selittää sen, miksi MS-tautiin on äärimmäisen vaikeaa löytä parantavaa ja kaikille potilaille soveltuvaa hoitoa.

20 Oksidatiiviseen ainnenvaihduntaan vaikuttavia tekijöitä: PPAR, sirtuiinit ja AMPK Palataan hapetusreaktioihin, sillä ne vaikuttavat solujen aineenvaihduntaan mm. ravintoaineiden kautta. Oksidatiivinen stressi ja matala-asteinen tulehdus heikentävät elimistön terveyttä ja altistavat kroonisille sairauksille. Immuunivälitteisissä tulehduksellisissa sairauksissa oksidatiivinen stressi ja inflammaatio ylläpitävät ja pahentavat taudin oireita. Happiradikaalit kaappaavat elektroneja muilta molekyyleiltä Oksidatiivisella stressillä tarkoitetaan solujen ja laajemmin koko elimistön hapetus-pelkistystilan epätasapainoa. Kun hapettavia tekijöitä on liikaa suhteessa pelkistäviin tekijöihin, oksidatiivinen stressi välittyy reaktiivisten happi- ja typpiradikaalien kautta muihin molekyyleihin. Reaktiivinen happiradikaali (ROS) on hapesta muodostunut yhdiste, joka sisältää parittoman elektronin. Se pyrkii parilliseen elektronimäärään reagoimalla läheisyydessään olevien muiden yhdisteiden kanssa. Tämä johtaa eräänlaiseen dominoefektiin, jossa happiradikaali vaurioittaa kohtaamansa molekyylin rakennetta ja/tai toimintaa. Oksidatiivisen metabolismin vaikutusta tehostaa kaksi entsyymiä ja tumareseptori. Entsyymit ovat AMP-aktivoidut proteiinikinaasit: AMPK (Steinberg and Kemp, 2009) sekä sirtuiinit (SIRT), jotka ovat joukko NAD + -vaikutuksesta aktivoituvia histonideasetylaaseja (Zhang et al., 2011; Rice et al., 2012). Vaikuttava tumareseptori on PPAR-isotyyppi (peroxisome proliferator-activated receptors) Desvergne and Wahli, 1999; Burns and VandenHeuvel, 2007).

21 Rasvojen energiantuotanto Keho säilyttää energiaa rasvahappoina, koska rasvahapoissa on hiilihydraatteihin nähden yli kaksinkertainen määrä energiaa painoyksikköä kohden. Rasvahappoja muutetaan energiaksi mitokondrioissa tapahtuvassa beeta-oksidaatiossa: Aluksi rasvat hajotetaan rasvahapoiksi ja glyseroliksi. Esimerkiksi triglyseridissä on kolme rasvahappoketjua, jotka ovat kiinnittyneenä glyseroliosaan. Glyseroli hapetetaan solulimassa glyseraldehydi-3fosfaatiksi, joka voidaan käyttää energiantuotantoon (n. 5 % triglyserideistä saatavasta energiasta) tai glukoosin tuottamiseen glukoneogeneesissä. Glukoneogeneesi käyttää glukoosimolekyylin tuottamiseen enemmän energiaa kuin syntyvästä glukoosimolekyylistä vapautuu glykolyysissä ja soluhengityksessä. Rasvahapot hapetetaan mitokondrioissa tapahtuvassa beeta-oksidaatiossa (β oksidaatiossa). Rasvahapot aktivoidaan edelleen mitokondrion ulkokalvolla kiinnittämällä rasvahapon karboksyyliryhmään koentsyymi A. Näin muodostunut asyyli-koa kulkee mitokondrion sisäkalvon läpi aktiivisella kuljetuksella. Soluliman asyyli-koa:lla ja mitokondrion asyyli KoA:lla on eri tehtävät: solulimassa rakentava anabolia ja mitokondriossa hajottava katabolia. Mitokondrion matriksissa rasvahappo hajotetaan kaksihiilisiksi pätkiksi (asetyyli-koa). Asetyyli KoA (asetyylikoentsyymi A) hapetetaan edelleen sitruunahappokierrossa. Elimistön energiantuotannon lopputuotteena syntyy vettä ja hiilidioksidia, jotka poistuvat kehosta mm. hengityksen ja hikoilun kautta. Mitokondrioissa ja peroksisomeissa tapahtuvaa rasvahappojen beetaoksidaatiota tehostavat PPAR-isotyypit.

22 Beetaoksidaatiossa ravinnon tai kehon varastoimia rasvahappoja käytetään energianlähteenä. PPAR-isotyypit säätelevät beetaoksidaatioon liittyvien geenien transkriptiota ja muodostavat AMPK-sirtuiinipolkuja. Vähäenerginen ravinto ja liikunta aktivoi AMPK-sirtuiini-PPAR-polun aineenvaihduntaa AMPK-sirtuiini-PPAR-polku aktivoituu vähäenergisen ravinnon ja fyysisen harjoittelun seurauksena. Aktivaatiota tehostavat kasvisten ja hedelmien sisältämät polyfenolit ja pitkäketjuiset monityydyttämättömät rasvahapot (omega-3). Ligandin aktivoimat PPAR-isotyypit muodostavat kahdesta erilaisesta osasta koostuvia (heterodimeerisiä) komplekseja RXR-reseptorin kanssa. Käytännössä: Vähäenerginen, omega-3-rasvahappoja ja polyfenoleita sisältävä ravinto tehostaa aineenvaihduntaprosessia, jossa rasvahappoja muutetaan energiaksi beeta-oksidaatiossa. Vastaavasti runsasenerginen ravinto tehostaa anabolista aineenvaihduntaa ja lipogeneesiä, jossa verenkierrossa olevia sokereita muutetaan varastorasvoiksi. Energiatiheät ravintoaineet edistävät solujen kasvua aktivoimalla SREBP-1c ja SREBP-2 proteiineja (sterol regulatory element-binding proteins), Xu et al., 2013, ja ChREBP (carbohydrate responsive element-binding protein), Xu et al., LXR tumareseptorit kontrolloivat SREBP-1c ja SREBP-2proteiineja, Mitro et al., 2007; Nelissen et al., Oksysterolit ja glukoosi puolestaan aktivoivat SREBP-1c- ja SREBP-2-proteiineja, jotka osallistuvat lipidien, triglyseridien ja kolesterolin synteesiin.

23 MS ja inflammaatio: NF-kB ja AP-1) Ravinnon, inflammaation ja MS-taudin yhteyden kannalta merkityksellisiä ovat kaksi transkriptiotekijää, jotka osallistuvat inflammaatioon ja autoimmuunireaktioihin. Nämä ovat tuman transkriptiotekijä-kb (NF-kB) ja aktivaattoriproteiini (AP-1; Yan and Greer, 2008). MS-taudissa sekä NF-kB ja AP-1 aktivoituvat vaikuttaen useiden proinflammatoristen geenien ekspressioon ja proinflammatoristen molekyylien tuotantoon. Aktivoitumisen mekanismia ei täysin tunneta, mutta on todennäköistä, että aktivaatioon vaikuttaa virusten, sytokiinien ja oksidatiivisen stressin lisäksi eräät ravintoaineet, kuten tyydyttyneet rasvat, transrasvat. Tumareseptoreiden aktivaatio Kaikkien tumareseptoreiden (PPAR, LXR ja VDR) on aktivoiduttava erityisten ligandien avulla. Nämä ligandit voivat olla spesifejä ravintotekijöitä, mikä osoittaa, kuinka solut reagoivat ravintoaineisiin ja säätelevät energian homeostaasia. Samalla tämä mekanismi on kuin molekylaarinen avain, joka auttaa ymmärtämään kuinka ravintoaineet vaikuttavat tulehduksellisten sairauksien etenemiseen (Heneka et al., 2007; Zhang-Gandhi and Drew, 2007; Krishnan and Feldman, 2010; Cui et al., 2011; Schnegg and Robbins, 2011; Gray et al., 2012). Therefore, each of the three nuclear receptors PPAR, LXR, and VDR competes for the binding to RA-RXR and forms heterocomplexes that can inhibit NF-kB and exert a tight control over the expression of inflammatory genes, thus integrating metabolic and inflammatory signaling. It is clear that there is competition between the three receptors PPAR, LXR, and VDRD, for the binding with RA-RXR, but this competition should have an influence only on metabolism and not on inflammation, because it is not yet known which of the three heterodimers is

24 more effective in inhibiting NF-kB. Proinflammatoristen molekyylien tuotanto MS-taudin pahenemisvaiheen aikana on biosynteettinen prosessi, jota ylläpitää ja pahentaa runsasenerginen ruokavalio. Toisaalta inflammaatioon assosioituvan relapsin oireita ja kestoa voi helpottaa vähäenergisellä ruokavaliolla. In principle, what favors anabolism will promote the inflammatory processes, while what favors catabolism will contrast them. Kuvan lähde: g / Tästä artikkelisarjasta on tullut sellainen iisakin kirkko, joka ei näytä koskaan valmistuvan. Aihe on älyttömän

25 kiinnostava. Jatkan tästävielä neljännessä osassa. Käänteentekevä brittiläinen syöpätutkimus kertoo, että lasten akuutti lymfoplastileukemia on ehkä ehkäistävissä! Noin kolmannes lasten syövistä on leukemioita ja yleisin niistä on akuutti lymfoblastileukemia. Lymfaattisen leukemian hoitoennuste on hyvä % sairastuneista paranee pysyvästi. Tuore brittiläinen tutkimus havaitsi, että akuutti lymfoblastileukemia (ALL) voi olla ehkäistävissä. Leukemia Leukemia on verisyöpä, jossa luuytimen tuottamat valkosolujen esiasteet muuttuvat pahanlaatuisiksi syöpäsoluiksi. Valkosolujen esiasteiden lisääntynyt jakautuminen täyttää veren ja luuytimen syöpäsoluilla. Tämä aiheuttaa punasolujen, verihiutaleiden ja muiden kuin syöpävalkosolujen eli blastien vähenemistä veressä. ALL eli akuutti lymfoblastileukemia on yleisin lapsilla tavattava leukemia. Suomessa siihen sairastuu lasta vuosittain. Noin yhdellä kahdestakymmenestä lapsesta on geenimuunnos, joka altistaa akuutille lymfoblastileukemialle, mutta vain noin prosentille geenimuutoksen kantajista kehittyy leukemia.

26 Leukemian oireet ovat usein epämääräisiä. Tyypillisiä oireita ovat väsymys, kalpeus ja pitkittyneet infektiot, mustelmat ja ihottumat. Luusäryt ovat myös tavallisia. Akuutti lymfoblastileukemia (akuutti lymfaattinen leukemia) eli ALL puhkeaa äkisti ja etenee nopeasti. Sairastuminen on tavallisinta pienillä lapsilla. Leukemia johtuu perimäaineksen vaurioista, jotka aiheuttavat verisolujen muuttumisen pahanlaatuisiksi. Perimäaineksen muutokset ovat monenlaisia yksittäisistä emäsjärjestyksen vaihdoksista geenien ja kromosomien muutoksiin, kopioihin ja translokaatioihin (Duodecim). Tutkimus väittää, lymfoblastileukemia ehkäistävissä. että voi akuutti olla Brittiläisen tutkijaryhmän tutkimuksen on julkaissut Nature Reviews Cancer. Tutkimuksen mukaan, sairastuminen leukemiaan edellyttää geneettisen alttiuden (geenimuutoksen) lisäksi jonkin laukaisevan ympäristötekijän. Nyt johtavat syöpätutkijat Englannissa uskovat selvittäneensä, mikä sairauden laukaisee ja miksi monet lapset sairastuvat akuuttiin lymfoblastileukemiaan. Uusi näkökulma leukemiaan Professori Mel Greaves (Institute of Cancer Research), on analysoinut tehtyjä syöpätutkimuksia 30 vuoden ajalta. Greavesin tutkimuspaperi avaa uuden näkökulman leukemian syistä. Analysoituaan useita tutkimuksia hiirikokeista laajoihin väestötutkimuksiin viimeisten 30 vuoden ajalta, Professori Greaves vakuuttui siitä, että lapsilla, joilla on leukemialle altistava geenimuutos, leukemian laukaisee jokin tavallinen

27 bakteeri- tai virusinfektio. Tämän mielenkiintoisen englantilaisen tutkimuksen mukaan yleiset infektiot voivat laukaista akuutin lymfoplastileukemian (ALL) lapsilla, joilla on leukemialle altistava geenimuutos, ja jotka ovat eläneet hyvin hygieenisessä ympäristössä ensimmäisen elinvuotensa. Greaves löysi viimeisten 30 vuoden aikana tehdyistä tutkimuksista asettamaansa hypoteesia tukevaa tutkimusnäyttöä. Yksi Greavesin näkemystä tukeva havainto oli sikainfluenssaan liittyvä piikki lasten leukemiatilastoissa. Esimerkiksi Milanossa seitsemän sikainfluenssaan sairastunutta lasta sairastui infektion jälkeen leukemiaan. ALL on yleisin 2-5 -vuotiailla. Tämä tilastollinen fakta pätee tosin vain kehittyneisiin ja rikkaisiin maihin, joissa vauvat eivät tavallisesti altistu infektioita aiheuttaville patogeeneille ensimmäisen elinvuotensa aikana. Englantilaistutkijoiden hypoteesi olettaa, että immuunijärjestelmän ja immuniteetin kehittymättömyyden vuoksi verenkiertoon muodostuu liikaa valkosolujen pahanlaatuisia esiasteita. Tutkimus tyrmää aiemmat hypoteesit, joiden mukaan leukemian laukaisee sähköverkkojen sähkömagneettinen säteily, ympäristön kemikaalit tai saasteet. Professori Greavesin mukaan tällaisille väitteille ei tutkimuksista löydy tieteellistä tukea. Greavesin päätelmä on, että vauvojen pitäisi olla enemmän tekemisissä muiden lasten kanssa ja altistua harmittomille patogeeneille ja ympäristön mikrobeille. Tällainen mikrobeille altistuminen kehittää vauvojen immuunijärjestelmää ja antaa immuniteetin joitain patogeenejä vastaan. Ilman riittävää immuniteettia immuunijärjestelmä tuottaa liikaa valkosoluja (lymfosyyttejä), ja tämä voi johtaa

28 leukemiaan. Greaves uskoo, että vauvan altistaminen harmittomille pöpöille niin hullulta kuin se kuulostaakin voi suojata lapsia akuutilta lymfoplastileukemialta. Suunnitteilla on leukemiaa ehkäiseviä hoitoja. Greavesin mukaan vauvojen altistaminen harmittomille ja tavallisille mikrobeille on turvallinen tapa ehkäistä leukemiaa. Kehityksen paradoksi Professori Greavesin mielestä kehityksen paradoksi on se, että mitä enemmän pienet lapset altistuvat infektoiville patogeeneille, sitä useammin he sairastavat vakavia tauteja. Mutta Greavesin mukaan infektioiden aiheuttamat taudit ei ole ongelma, vaan infektioiden puute, koska kehittymätön immuniteetti altistaa vakavammille sairauksille. Aiemmissa tutkimuksissa on havaittu, että päivähoidossa olevien ja rintaruokittujen lasten suoja akuuttia lymfoblastileukemiaaa vastaan on hyvä. Greaves päätteli, että tämä johtuu patogeenialtistuksen vahvistamasta immuniteetista. Lapset ovat altistuneet päiväkodeissa ympäristön patogeeneille ja saaneet vahvan immuunisuojan äidinmaidosta. Altistuminen on kehittänyt immuunijärjestelmää. Samaa mekanismia on pohdittu tyypin 1 diabeteksen ja eräiden allergioiden laukaisijaksi. Pitäisikö vauvat pöpöttää? Be less fussy about common or trivial infections and encourage social contact in the first year of life with as many children as possible and actually contact with older children is probably a good thing, Greaves said. Sinänsä pöpöttämisen idea ei ole uusi. Suomessakin lapsia kehotettiin vielä viime vuosisadalla leikkimään lantakasoissa. Liian hygieeninen ympäristö jättää immuunijärjestelmän

29 haavoittuvaksi, koska hygieenisessä ympäristössä immuniteetti ei kehity infektoivia taudinaiheuttajia vastaan. Greaves painottaa, että harmittomien mikrobien välttely ja turha hössötys on haitallista lapsen immuunijärjestelmän kehitykselle. Idea vaikuttaa nurinkuriselta ja kaikki tutkijat eivät ole vakuuttuneita Greavesin hypoteesista. Mutta toisaalta samankaltaista mekanismia hyödynnetään rokotteissa: kun heikennetty taudinaiheuttaja esitellään rokotteen avulla immuunijärjestelmälle, elimistö kehittää immuniteetin ko. taudinaiheuttajaa vastaan. Pöpöille altistuminen vahvistaa immuunijärjestelmää. Ehkä se voi vahvistaa myös immuunijärjestelmän säätelyä ja ehkäistä valkosolujen hallitsematonta lisääntymistä Aiheesta tarvitaan lisää tutkimuksia. leukemiassa. Immuunijärjestelmän virheellinen toiminta aiheuttaa oireita autoimmuunitaudeissa, joiden laukaisijaksi arvellaan infektioita, kuten Epstein-Barr ja herpesvirus. Ymäristötekijöiden aiheuttamat yhden nukleotidin polymorfismit geeneissä assosioituvat moniin syöpiin, joten ehkäpä Greavesin hypoteesi vahvistuu tulevissa tutkimuksissa. The most important implication is that most cases of childhood leukaemia are likely to be preventable, said Professor Greaves. Lähde: Independent

30 Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 2 Tulehdusten vaikutus neurodegeneratiivisiin tapahtumiin assosioituu vahvasti kaikkiin MS-taudin muotoihin. Aktiiviset leesiot liittyvät yleensä inflammaatioon. Tästä syystä MShoitojen kohdentaminen tulehduksellisiin tekijöihin on aiheellista. (Frischer et al., 2009; Lassmann, 2013, Kutzelnigg and Lassmann, 2014). Inflammaatio ja sen merkitys MS-taudissa jatkaa edellisen artikkelin aloittamaa syvempää tutustumista MS-tautiin vaikuttaviin tekijöihin. MS on ongelmallinen sairaus. Tautiin vahvasti assosioituvia geenivariantteja tunnetaan Näistä useimmat osallistuvat immuunijärjestelmän toimintaan. Monitekijäiseen tautiin vaikuttaa vaihtelevien ympäristö- ja geenitekijöiden lisäksi myös eräät aineenvaihduntaan kytkeytyvät tekijät. (Ascherio, 2013) Ravinnolla on kiistattomia vaikutuksia terveyteen. Jotkin ravintoaineet altistavat lihomiselle, matala-asteiselle tulehdukselle ja sairastumiselle, mutta toiset ehkäisevät tulehduksia, ylläpitävät kehon normaalia aineenvaihduntaa ja terveyttä. Ravintoaineet osallistuvat solujen ja suoliston mikrobiomin kautta aineenvaihduntaan tulehduksellisissa taudeissa, kuten MS-taudissa. Ravintoaineet voivat siis hillitä tai pahentaa tulehdusreaktioita. Jatketaan tässä artikkelissa Paolo Riccion ja Rocco Rossanon laajan ravintoa ja tulehdustekijöitä käsittelevän tutkimuskatsauksen avaamista.

31 Inflammaatio ja sen merkitys MS-taudissa 1. Ravinnon määrä ja laatu vaikuttavat mm. entsyymien, transkriptiotekijöiden sekä solun tuman reseptorien toiminnan kautta aineenvaihduntaan. Ravintoaineet myös ohjaavat soluja joko anaboliseen tai kataboliseen aineenvaihduntaan sekä säätelevät tulehduksellisia ja immunologisia vasteita elimistössä. (Desvergne et al., 2006). 2. Ravinto ja elintavat osallistuvat monella tavalla suolistoflooran hyvinvointiin. Ihminen on eräänlainen metaorganismi, joka elää mutualistisessa taikka symbiottisessa suhteessa kehon mikrobiomin kanssa.mikrobiomi muodostuu biljoonista mikrobeista (1014), jotka voivat edustaa satoja tai jopa yli tuhatta bakteerilajia. Mikrobiomin merkitystä korostaa lisäksi se, että kehossa mikrobien soluja on arvioiden mukaan

32 kymmenkertainen määrä kehon omiin soluihin nähden.tämä monimutkainen ekosysteemi on keskeinen osa ihmistä, ja se vaikuttaa sekä aineenvaihdunnan että immuunijärjestelmän kautta elimistön toimintaan. Osallistuva mikrobiomi Keho toimii mutualistisessa tai symbioottisessa suhteessa mikrobiomin hyvien mikrobien kanssa. Mutualismilla tarkoitetaan biologiassa kahden osapuolen välistä fysiologista suhdetta, joka on kummallekin myönteinen. Eubioosi ja dysbioosi Suolistoflooralla on useita metabolisia tehtäviä; se tärkeitä immunologisia ja mm. suojelee elimistöä enteropatogeeneiltä ja osallistuu moniin immuunijärjestelmän normaaleihin toimintoihin. Suolisto on ihmisen suurin immunologinen elin ja monilla sairauksilla on yhteys ruoansulatuksen ja suoliston toimintaan. Eubioottinen suoliston mikrobiomi on terve ja tasapainoinen. Terve ja tasapainoinen, eubioottinen mikrobiomi voi muuttua oireilevaksi, dysbioottiseksi mikrobiomiksi, jos patogeenisten mikrobikantojen määrä suoliston mikrobien tarkoitetaan suoliston (Chassaing and Gewirtz, Dysbioosi kuten: voi pääsee lisääntymään ja horjuttamaan herkkää tasapainoa. Dysbioosilla bakteerikannan haitallisia muutoksia. 2014) aiheuttaa Vatsan turvotus Aivosumu Akne Ripuli monenlaisia oireita,

33 Ummetus Ihon kutina Heikot kynnet Väsymys Ahdistus Painonnousu Dysbioosin aiheuttamiin oireisiin vaikuttaa se, mitkä suoliston bakteerikannat ovat epätasapainossa. Tutkimuksissa on havaittu, että suolistoflooran dysbioosi assosioituu mm. tulehduksellisiin suolistosairauksiin (IBD), ärtyneen suolen oireyhtymään (IBS), allergioihin, astmaan, sydän- ja verisuonitauteihin, metaboliseen oireyhtymään, autoimmuunitauteihin ja ylipainoon. Dysbioosiin vaikuttavia tekijöitä Suolistofloora on herkästi haavoittuva mikrobien ekosysteemi. Dysbioosi voi kehittyä suolistoon mm. antibioottien käytön, stressin ja epäterveellisen, paljon sokeria, valkoisia jauhoja, huonoja rasvoja, alkoholia sekä punaista lihaa sisältävän ruokavalion seurauksena. Toisaalta dysbioosia voi ehkäistä ruokavalion avulla. Runsaskuituinen, proja prebiootteja sisältävä, kasvisvoittoinen hapatettuja ruokia sisältävä ruokavalio ylläpitää suolistoflooran hyvinvointia. Suolistoflooran kannalta hyviä ravintoaineita ovat: Juurekset Tummanvihreät lehtikasvit, kuten pinaatti Sipulit Palkokasvit Kaalit Hapatetut ruoat (hapankaali, jogurtti, viili ja piimä) Täysjyväviljat suolakurkut, kimchi,

34 Ravinnon vaikutukset suolistoflooran tasapainoon perustuvat siihen, että eri ravintoaineet ruokkivat erilaisia mikrobipopulaatioita suolistossa. Ruokavalio voi johtaa yhtä hyvin elimistölle hyödyllisten tai haitallisten bakteerikantojen lisääntymiseen ja siten vaikuttaa suolistoflooran tasapainoon. Yksipuolinen ravinto yksipuolistaa myös suoliston mikrobiomia ja heikentää siten immuunijärjestelmän toimintaa. Runsaasti prosessoituja ravintoaineita, sokereita, huonoja rasvoja, punaista lihaa ja alkoholia sisältävä dysbioosia edistävä ravinto altistaa suoliston inflammaatiolle. Suoliston tulehdukset ja immuuunijärjestelmän toiminnan muutokset kasvattavat systeemisen inflammaation ja kroonisten tulehdussairauksien riskiä. Suoliston hyvät mikrobit hyödyntävät ruoansulatuskanavassa sulamatonta kuitua ja vapauttavat elimistöön ihmiselle tärkeitä lyhytketjuisia rasvahappoja. Lyhytketjuiset rasvahapot vahvistavat suolen pintakerroksia, hillitsevät tulehduksia sekä säätelevät kylläisyyttä ja rasvan kertymistä kehoon. FODMAP Aina suolistobakteereita hyödyttävä sinänsä terveellinen ravinto ei toimi toivotulla tavalla. Ärtyvän suolen oireyhtymää (IBS) sairastavilla huonosti ohutsuolesta imeytyvät lyhytketjuiset ns. FODMAP-hiilihydraatit voivat aiheuttaa oireita, kuten turvotusta, vatsakipuja ja ilmavaivoja. FODMAP-nimitys tulee hiilihydraattien englanninkielisistä nimistä fermentable oligo-, di- and monosaccharides and polyols. FODMAP-hiilihydraatteja ovat fruktaanit, galaktaanit, raffinoosit, fruktoosi, laktoosi ja polyolit eli sokerialkoholit.

35 FODMAP-hiilihydraattien on todettu aiheuttavan vaikeita oireita suurimmalle osalle IBS:stä kärsivistä. Osalla ärtyvän suolen oireyhtymän oireita voi aiheuttaa FODMAPhiilihydraattien sijaan stressi ja muut elintavat. Kuvan lähde: Valio Metabolia: Ravintoaineet vaikuttavat aineenvaihduntaan ja soluihin sekä säätelevät tulehdusreaktiota Aineenvaihdunta on kaksisuuntainen biologinen prosessi. Ravinto pilkotaan ruoansulatuskanavassa imeytyvään muotoon eli ravinnon perusmolekyyleiksi (aminohapot, rasvahapot, sokerit, suojaravinteet ja vesi), joita elimistö voi käyttää energiaravinteina sekä elimistön uusiutumisen ja veren, lihasten, luiden, entsyymien, hormonien ja ruoansulatusnesteiden tarvitsemina rakennusaineina.

36 Aineenvaihdunta jaetaan kahteen toimintamekanismiin: anaboliseen ja kataboliseen aineenvaihduntaan. Anaboliset reaktiot ovat energiaa kuluttavia reaktioita, joissa yksinkertaisista lähtöaineista valmistetaan monimutkaisempia yhdisteitä. Kataboliset reaktiot ovat energiaa tuottavia reaktioita, joissa suuret molekyylit pilkotaan yksinkertaisemmiksi yhdisteiksi. Ravintoaineiden pilkkomisen seurauksena energiaravinteista (hiilihydraatit, rasvat ja proteiinit) vapautetaan energiaa elimistön käyttöön. Esimerkiksi: Anabolisissa reaktioissa yksinkertaisista lähtöaineista rakennetaan monimutkaisempia makromolekyylejä: Solun rakennuspalikat suuremmat yksiköt Sokerit Polysakkaridit Rasvahapot Rasvat, lipidit, solukalvot Aminohapot Proteiinit Nukleotidit Nukleiinihappo Solurakenteen > > > > Anaboliset reaktiot kuluttavat energiaa ATP:n tai NADH:n (ja NADPH:n) muodossa. ATP > ADP + Pi NADH + H+ > NAD+ Aineenvaihdunnan proteiinisynteesi kuluttaa runsaasti energiaa. Myös glukoosia muodostava glukoneogeneesi kuluttaa enemmän energiaa kuin mitä se tuottaa glukoosina solujen glykolyysissä ja soluhengityksessä.

37 Anabolinen ja katabolinen aineenvaihdunta vuorottelevat elimistössä päivittäisten rutiinien lisäksi myös iän ja elämäntilanteen mukaan. Fyysinen harjoittelu ja sairaudesta toipuminen kallistavat aineenvaihduntaa anaboliseksi, jolloin aineenvaihdunta rakentaa esimerkiksi lihaskudosta tai korjaa sairauden aiheuttamia vaurioita. Myös kasvavien lasten aineenvaihdunta painottuu anabolisen metabolian puolelle. Minulla ja uskoakseni monella MS-tautia sairastavalla aineenvaihdunta on katabolisessa tilassa. Se osaltaan selittää lihaskatoa. Aineenvaihduntaan vaikuttavia tekijöitä Aineenvaihduntaan vaikuttaa useita tekijöitä, kuten ravinnon määrä ja laatu, makroravinteet, ravinnon sisältämät suojaravinteet (vitamiinit ja mineraalit), stressi, nestetasapaino, maksan, suoliston ja haiman terveys, geenit, hormonit, insuliinisensitiivisyys, leptiinisensitiivisyys, liikunta, ja uni jne. Entsyymit ja transkriptiotekijät Kuinka ravintomolekyylit vaikuttavat solujen metaboliaan? Tämän ymmärtämiseksi täytyy määritellä kataboliaan ja anaboliaan vaikuttavien entsyymien ja transkriptiotekijöiden merkitys.

38 Yksinkertaistettu kaavio osoittaa miten luonnolliset ravintotekijät säätelevät solumetaboliaa oksidatiiviseen aineenvaihduntaan (vasemmalla), biosynteesiin (oikealla) ja NF-kB-välitteiseen inflammaatioon (alla keskellä) sitoutumalla tumareseptoreihin, transkriptiotekijöihin sekä vuorovaikutteisiin entsyymeihin. Kuvan lähde: Agonisti ja antagonisti Agonisti eli reseptorinaktivoija on kemiallinen yhdiste, joka rakenteensa perusteella eli ligandina ja elimistön viestimolekyylien tavoin aktivoi kohdereseptoriaan ja käynnistää siihen kytkeytyvän solun fysiologisen signaalinvälitysmekanismin. Agonistin vaikutus voidaan kumota agonistin kanssa samaan reseptoriin sitoutuvalla antagonistilla eli reseptorinsalpaajalla.

39 Tumareseptori Tumareseptorit sijaitsevat joko tumassa DNA:han kiinnittyneinä tai solun sytoplasmassa. Ne aktivoituvat solukalvon läpäisevän, hydrofobisen viestimolekyylin sitouduttua niihin. Tällaisia viestimolekyylejä ovat mm. monet hormonit (tyroksiini, estradioli, testosteroni, kortisoli, retinoli ja D-vitamiini), jotka reseptoriinsa sitouduttuaan vaikuttavat suoraan solun geeniekspressioon. Kaikkien tumareseptorien rakenteeseen kuuluu: Transkriptiota säätelevä alue DNA:han sitoutuva alue Ligandia sitova alue. Transkriptio Transkriptio on biologinen prosessi, jossa DNA-templaatin avulla valmistetaan yhdelle DNA-juosteelle komplementaarinen RNA-molekyyli. Transkriptiossa RNA-polymeraasi kopioi DNA:ssa olevaa geneettistä koodia RNA:ksi. Se on proteiinisynteesin ensimmäinen vaihe. Transkriptiossa syntyy myös lähetti-rna-, ribosomaalinen-rnaja siirtäjä-rna-molekyylejä. Lähetti-RNA:ta käytetään proteiinisynteesin mallina translaatiossa, siirtäjä-rna:t kuljettavat aminohappoja translaatiossa käytettäväksi ja ribosomaalinen RNA muodostaa yhdessä ribosomaalisten proteiinien kanssa ribosomeja, jotka toimivat translaatiossa moottoreina. RNA-polymeraasi RNA-polymeraasi on entsyymi, joka aukaisee kaksijuosteista DNA:ta lyhyeltä matkalta ja liittää nukleotidejä toisen DNAjuosteen (templaatin) pariksi muodostuvaan RNA-molekyyliin. Templaattina toimivaa DNA-juostetta kutsutaan (-)-juosteeksi

40 ja koodaavaa juostetta (+)-juosteeksi (koodaavassa juosteessa siis sama emäsjärjestys kuin muodostuvassa RNA-molekyylissä). Toisin kuin DNA-polymeraasi, RNA-polymeraasi ei tarvitse aluketta, vaan voi aloittaa RNA:n synteesin suoraan DNA:n ja nukleotidien (A, U, C, G) avulla. RNA-polymeraasi tarvitsee kuitenkin erityisiä DNA-sekvenssejä, promoottoreita, joiden kohdalle polymeraasi sitoutuu. Lähde: Solunetti Kuvan lähde: Wikipedia Transkriptiotekijät Transkriptiotekijät eli transkriptiofaktorit ovat proteiineja, jotka tunnistavat DNA:ssa promoottoreita ja tehostajia ja säätelevät geenin transkriptiota. Transkriptiotekijöiden on tunnistettava ja liityttävä DNA:n aloituskohtaan, ennen kuin

41 RNA-polymeraasi voi liittyä jaetaan kolmeen luokkaan: siihen. Transkriptiotekijät 1. Yleiset transkriptiotekijät, jotka ovat transkriptiolle välttämättömiä proteiineja. Yhdessä RNA-polymeraasin kanssa ne muodostavat perustranskriptiokoneiston. 2. Ylävirran transkriptiotekijät ovat säätelyn ulkopuolisia proteiineja, jotka kiinnittyvät DNA:han geenin aloituskohdasta ylävirtaan ja säätelevät transkriptiota. 3. I n d u s o i v a t transkriptiotekijät ovat ylävirran transkriptiofaktoreiden kaltaisia, mutta ne edellyttävät aktivointia tai inhibointia. Yleisten transkriptiotekijöiden (TFIIA, TFIIB, TFIID, TFIIE, TFIIF) läsnäolo geenien käynnistäjien TATA-alueella on välttämätöntä, jotta transkriptio lähtee alkuun. Sinkkisormet, leusiinivetoketjut, ja heliksi-mutka-heliksin sisältävät proteiinit (engl. homeodomain) ovat tavallisimman tyyppiset transkriptiota säätelevät proteiinit. Lähde: Internetix Ligandi Ligandi on molekyyli tai ioni, joka on koordinoitunut keskusioniin ja sitoutunut siihen koordinatiivisella sidoksella. Sidoksen muodostuessa keskusioni toimii Lewisin happona ja ligandit Lewisin emäksinä. Ligandeja kutsutaan yksi-, kaksi-, kolme-, neljä- tai kuusihampaisiksi riippuen siitä kuinka monta elektroniparin luovuttajaksi soveltuvaa luovuttaja-atomia sen rakenteessa on. Reseptorit voivat olla entsyymejä tai ne voivat aktivoida entsyymejä. Entsyymejä aktivoivien (tai entsyymeinä toimivien) reseptoreiden rakenteessa on ligandia sitovan solun ulkopuolisen osan lisäksi katalyyttinen tai entsyymiä sitova solunsisäinen osa. Entsyymireseptorien ligandina toimii usein kasvutekijä.

42 Entsyymejä aktivoivat reseptorit ovat toimintansa perusteella tyrosiinikinaasireseptorit tyrosiinikinaaseja aktivoivat reseptorit tyrosiinifosfataasireseptorit seriini/treoniinikinaasireseptorit guanylaattisyklaasireseptorit histidiinikinaasia aktivoivat reseptorit Entsyymit ja substraatit Entsyymit ovat biologisia katalyyttejä eli ne nopeuttavat kemiallisia reaktioita. Entsyymit ovat tavallisesti proteiineja, mutta myös RNA-molekyylit voivat olla entsyymejä, jolloin puhutaan ribotsyymeistä. Monissa proteiinientsyymeissä aktiivinen keskus koostuu muusta kuin aminohapoista, usein aminohappoihin koordinoituneesta yhdestä tai useammasta metalli-ionista. Näitä entsyymiä auttavia ryhmiä kutsutaan kofaktoreiksi ja tavallisimpia ovat kupari-, rauta- ja sinkki-ionit. Jos kofaktori on orgaaninen molekyyli, puhutaan koentsyymistä. Molekyyliä, johon entsyymin toiminta kohdistuu, kutsutaan substraatiksi. Entsyymien katalyyttinen toiminta perustuu niiden kykyyn alentaa substraattiin kohdistuvan reaktion aktivaatioenergiaa. Tämä tapahtuu siten, että entsyymi pakottaa substraatin kohti siirtymätilaa muodostamalla sen kanssa heikkoja vuorovaikutuksia. Heikkojen vuorovaikutusten ja siirtymätilan uusien sidosten syntyminen vapauttaa energiaa, nopeammin. jka sysää katalysoitavan reaktion liikkeelle Ilman entsyymejä kemialliset reaktiot tapahtuisivat soluissa liian hitaasti, eikä elämä olisi mahdollista. Entsyymit nopeuttavat reaktioita vähintään tuhatkertaisesti, joskus jopa kertaisesti. Nopeimmat entsyymit muuttavat jopa 40

43 miljoonaa molekyyliä reaktiotuotteiksi yhdessä sekunnissa. Alla lista tulehduksia säätelevistä agonisteista (+) ja antagonisteista (-) sekä eräistä tavallisista lääkkeistä, entsyymeistä, tumareseptoreista ja transkriptiotekijöistä. Useimmissa tapauksissa agonistit hillitsevät ja antagonistit edistävät inflammaatioita. Joissain tapauksissa tilanne näyttää kuitenkin olevan päinvastainen. Tämä on melko sekavaa, mutta ehkä tästä jonkinlaisen yleiskuvan saa: AMPK AMP-aktivoitu proteiinikinaasi. Proteiinikinaasit ovat kinaasientsyymeitä, joiden substraatti on proteiini. Kinaasit ovat tärkeä tekijä solunsisäisessä viestinnässä. Fosfaattiryhmän siirtämällä proteiinikinaasit tyypillisesti aktivoivat tai deaktivoivat substraattinsa. Yksi proteiinikinaasi voi fosforyloida useita substraattimolekyylejä. AMPK (5-adenosiinimonofosfaatti-aktivoitu proteiinikinaasi) osallistuu solujen energiatasapainon säätelyyn. AMPK:ta esiintyy mm. maksa-, aivo- ja lihaskudoksissa. (+) Agonistit Inflammaatiota vähentävät tekijät Kaloreiden rajoittaminen; vähäenerginen ravinto. Liikunta AMP: Adenosiinimonofosfaatti eli adenyylihappo on nukleotidi. Se muodostuu adenosiinikukleosidistä ja siihen liittyneestä fosfaattiryhmästä. Adenosiinimonofosfaatilla on tärkeä rooli aineenvaihdunnassa. se aktivoi useita tärkeitä reaktioita esimerkiksi glykolyysissä, glykogenolyysissä ja rasvahappojen hapettamisessa. Greliini: Growth hormone release inducing, eli KHreliini tai GH-reliini on pääasiassa mahalaukun

44 limakalvolta erittyvä 28 aminohapon mudostama peptidihormoni, joka lisää kasvuhormonin eritystä aivolisäkkeestä. Sen lisäksi greliini stimuloi ruokahalua ja nopeuttaa mahalaukun tyhjenemistä. Greliini vaikuttaa kasvuun aiheuttamalla ruokahalun lisäyksen kautta elimistöön kasvun mahdollistavan anabolisen tilan. Alfa-lipoiinihappo: LA; Antioksidantti ja koentsyymi hapetus-pelkistysreaktiossa. Lipoiinihappo on yleinen lisäravinne, joka tutkimuksissa on alentanut MS-tautia sairastavien tulehdusreaktioita. Adiponektiini: Rasvasolujen erittämä hormoni, jonka vähäinen määrä veressä korreloi monien sairauksien kanssa. Flavonoidit: Kasveissa esiintyviä yhdisteitä, jotka vaikuttavat makuun, väriin, koostumukseen ja säilyvyyteen sekä toimivat antioksidantteina. Flavonoidit voivat vaikuttaa veren hyytymiseen ehkäistä syöpiä. Flavonoideja tunnetaan yli Nonflavonoidit: Polyfenoleita, jotka erityisesti suoliston hyviä mikrobeja. ja hyödyttävät Metformiini: Metformiini on suun kautta otettava diabeteslääke, joka parantaa solujen insuliinivastetta. Metformiini voi hillitä inflammaatiota, mutta pitkäaikainen käyttö on yhdistetty kohonneisiin homokysteiinitasoihin sekä B 12 -vitamiinin imeytymisen heikkenemiseen. Salisyylaatit: Salisylaatit ovat salisyylihapon suoloja ja estereitä ( ) Antagonistit Inflammaatiota lisäävät tekijät Dysbioottinen eli epätasapainoinen suoliston mikrobiomi. Leptiini: Leptiini on rasvakudoksen vereen erittämä kylläisyyshormoni, joka säätelee ruokahalua ja elimistön energiankäyttöä. Leptiini kertoo hypotalamuksen kautta keskushermostolle kehon varastorasvan määrästä. Kun

45 leptiinin määrä lisääntyy, ruokahalu vähenee ja päinvastoin: leptiinin vähäinen määrä aiheuttaa näläntunnetta.leptiini vaikuttaa aktiivisuuteen yhdessä insuliinin ja melatoniinin kanssa. Se hillitsee ruokahalua ja vaikuttaa tyreotropiinin (TSH) ja kortikotropiinin (ACTH) erittymiseen aivolisäkkeestä, mikä puolestaan vaikuttaa aineenvaihdunnan vilkkauteen. Sirtuiinit Ihmisen histonideasetylaaseja kutsutaan sirtuiineiksi ja niillä on seitsemän alatyyppiä. Histonideasetylaasit (HDAC) ovat entsyymejä, jotka toimivat asetyyliryhmän poistajina. Esimerkiksi SIRT 1 säätelee useita keskeisiä metabolisia prosesseja ja sillä on suuri merkitys myös energiaaineenvaihdunnan säätelyssä. SIRT 1 säätelee mm. mitokondrioiden biogeneesiä sekä energiametaboliaa ja vaikuttaa mm. diabetekseen ja lihavuuteen. SIRT 1 osallistuu myös rasvametaboliaan ja oksidatiivisen stressin säätelyyn. Sitoutumalla NF-kB:en se todennäköisesti säätelee tulehdusvasteita ja kudosten atrofioitumista. SIRT 2 vaikuttaa mm. solun jakautumisen säätelyyn. (+) Agonistit Inflammaatiota vähentävät tekijät VDR-D: D-vitamiini ja solujen D-vitamiinireseptorit. Kaloreiden rajoittaminen; vähän energiaa sisältävä ravinto. Alfa-lipoiinihappo (LA): Antioksidantti ja koentsyymi hapetus-pelkistysreaktiossa. Lipoiinihappo on yleinen lisäravinne, joka tutkimuksissa on hillinnyt MS-tautia sairastavien tulehdusreaktioita. Resveratroli: Resveratroli on useissa kasveissa esiintyvä fenoliyhdiste, jolla uskotaan olevan terveyttä hyödyttäviä ominaisuuksia, kuten syöpiä, virustauteja, vanhenemista ja tulehdusta ehkäiseviä sekä hermosoluja suojaavia vaikutuksia.resveratrolia on erityisesti

46 punaisissa ja sinisissä viinirypäleissä sekä viininlehdissä ja karpaloissa, mutta sitä on myös punaviinissä. Erään tutkimuksen mukaan resveratroli suojaa diabetekselta ja ylipainolta aktivoimalla aineenvaihdunnan säätelyyn vaikuttavaa Sirt1-geeniä. Toisessa tutkimuksessa punaviinillä saatiin hiirikokeissa anti-inflammatorisia vaikutuksia, mutta vastaavien hyötyjen saamiseksi punaviinillä, ihmisen pitäisi juoda 400 lasia punaviinia päivässä.resveratrolin terveysvaikutuksiin kannattaakin suhtautua varauksella. Tutkimus on hyvin keskeneräistä ja resveratrolin pitkäaikaisvaikutuksia ihmiselle ei tunneta. Niasiini (B 3 -vitamiini): Niasiini on yhteisnimitys nikotiiniamidille ja nikotiinihapolle. Niasiinin johdannaiset ovat elintärkeitä solun aineenvaihdunnalle. Puutos aiheuttaa vakavaa puutostautia pellagraa.kaikki B-vitamiinit ovat entsyymien tarvitsemien koentsyymien esiasteita. niasiinia tarvitaan etenkin

47 nikotiiniamidiadeniinidinukleotidien (NAD + ja NADP + ) valmistukseen.niasiinia saa eläuinperäisestä ravinnosta, kuten lihasta, sisäelimistä, kalasta, kananmunista, maitovalmisteista sekä kokojyväviljoista, pähkinöistä ja lehtivihanneksista. TRP (Transient receptor potential channel): TRP-kanavat ovat joukko ionikanavareseptoreita. Ionikanavareseptorit ovat perustilassaan suljettuja. Kun reseptoriin sitoutuu ligandi, kanava avautuu ja ionit pääsevät kulkeutumaan muodostuneen vesihuokosen kautta kalvon läpi konsentraatiogradienttinsa suuntaisesti. Tapahtuma on nopea ja lyhytkestoinen (transient).monet hermovälittäjäaineiden reseptorit ovat ionikanavareseptoreita. Ionikanavareseptorin kautta kulkeutuvat ionit vaikuttavat hermosoluissa sijaitsevien jänniteherkkien kanavien toimintaan ja voivat synnyttää tai ehkäistä aktiopotentiaalin muodostumista. Ionikanavareseptorien vaikutus solujen ionitasapainoon on nopeampaa kuin esimerkiksi G-proteiinien välityksellä aktivoituvien ionikanavien. Lähde: Solunetti NAD + : Nikotiiniamidiadeniinidinukleotidi on kaikista elävistä soluista löytyvä kahdesta nukleotidista koostuva koentsyymi. Nikotiiniamidiadeniinidinukleotidi osallistuu hapetus-pelkistysreaktioon siirtämällä + elektroneja reaktioiden välillä.nad on hapettava tekijä eli se vastaanottaa elektroneja muilta molekyyleiltä ja pelkistyy. Reaktiossa syntyy NADH, joka toimii pelkistävänä tekijänä luovuttaen elektroneja vastaanottaville molekyyleille. ( ) Antagonistit Inflammaatiota lisäävät tekijät Alkoholi Tupakointi Nikotiiniamidi: Tämä on mielenkiintoista. Vaikuttaa siltä, että eräät niasiinien ryhmään kuuluvat B-

48 vitamiinit hillitsevät tai lisäävät inflammaatiota. PPAR alfa/gamma PPAR säätelee rasva-aineenvaihduntaa. PPAR-agonistit ovat metabolisen oireyhtymän hoidossa käytettäviä lääkkeitä, jotka kohdistuvat PPAR-reseptoriin (peroxisome proliferatoractivated receptor). Peroksisomit ovat yksinkertaisen lipidikalvon ympäröimiä soluelimiä, joita on melkein kaikissa aitotumallisten soluissa. Peroksisomit osallistuvat tärkeisiin solun aineenvaihdunta- ja signalointitehtäviin. PPAR-reseptorit ovat joukko tumareseptoriproteiineja, jotka toimivat transkriptiotekijöinä ja säätelevät geenien ilmentymistä (gene expression). Geenin ilmentyminen tarkoittaa geneettisen infromaation lukemista DNA:sta uuden proteiinin valmistuksen yhteydessä. (+) Agonistit Inflammaatiota vähentävät tekijät Polyfenolit: Polyfenolit ovat kasveissa esiintyviä antioksidantteja. Monet polyfenoleja runsaasti sisältävät ravintoaineet yhdistyvät sekä väestötutkimuksissa että satunnaistetuissa välimuuttujatutkimuksissa hyvään terveyteen. Tällaisia polyfenoleja ovat mm. neitsytoliiviöljy (fenoliset alkoholit: hydroksityrosoli, tyrosoli), omena (kversetiini: flavonoli), soija (genisteiini: isoflavoni), mustikka (antosyaanit, ferula- ja kahvihapot: fenolisia happoja), kahvi (klorogeenihappo: fenolinen happo). Sirtuiinit; kahvin sisältämä yhdiste hydroksyyli hydrokinoni (HHQ): We show that coffee component HHQ has significant apoptotic effect on MDA-MB-231 and MCF-7 cells in vitro, and that ROS generation, change in mitochondrial membrane permeability, upregulation of Bax and Caspase-8 as well as down regulation of PGK1 and

49 PKM2 expression may be important apoptosis-inducing mechanisms. The results suggest that PPARγ ligands may serve as potential therapeutic agents for breast cancer therapy. HHQ was also validated as a ligand for PPARγ by docking procedure. Thiazolidinedione (TZD): TZD aktivoi PPAR-reseptoreita. Vapaat rasvahapot (FFA) ja eikosanoidit ovat reseptorien endogeenisiä (luonnostaan esiintyviä) ligandeja. Aktivoitu reseptori kiinnittyy DNA:han kompleksina, johon kuuluu toinen tumareseptori eli RXR-reseptori (retinoid X receptor). Aktivaatio lisää eräiden spesifien geenien transkriptiota ja vähentää toisten geenien transkriptiota.keskeinen vaikutus on eräiden spesifien geenien ekspression ja repression säätely, jolloin rasvahappojen varastoiminen rasvasoluihin (adiposyytteihin) tehostuu ja vapaat rasvahapot vähenevät verenkierrosta.tämän seurauksena solujen energiantuotanto hiilihydraattien glukoosin oksidaatiosta tehostuu. ja erityisesti Kannabinoidiagonistit: Kannabinoidireseptoreja esiintyy kaikkialla elimistössä osana endokannabinoidijärjestelmää. Tämä järjestelmä vaikuttaa moniin fysiologisiin mekanismeihin, kuten ruokahaluun, kivun aistimiseen, mielialaan ja muistiin.kannabinoidiagonistit aktivoivat CB1- ja CB2reseptoreita ja niitä käytetään lääkkeinä mm. kivun, anoreksian sekä oksentelun ja pahoinvoinnin hoidossa.kannabinoidiagonisteja ja -antagonisteja käytetään lääkkeinä. Esimerkiksi Sativex, jota käytetään neuropaattisten kipujen lieventämiseen MS-taudissa. 15d PGJ2 eli anti-inflammatorinen prostaglandiini. Eikosanoidit ovat solujen välisessä parakriinisessä signaloinnissa toimivia molekyylejä. Eikosanoidit valmistetaan arakidonaatista, monityydyttämättömästä rasvahaposta, jota nisäkkäät tuottavat kasviravinnosta saatavasta linolaatista.esimerkiksi hermoärsytys voi

50 aiheuttaa sen, että fosfolipaasi alkaa hajottaa fosfolipidejä ja vapauttaa samalla arakidonaattia. ser:n entsyymit muuttavat arakidonaatin prostaglandiinien ja tromboksaanien yhteiseksi esiasteeksi ja edelleen prostaganiideiksi, jotka ovat tulehdusreaktioissa toimivia signalointimolekyylejä. Esimerkiksi ibuprofeenin ja aspiriinin toiminta perustuu näiden ser:llä tapahtuvien reaktioiden estämiseen. In particular, 15d-PGJ2 is recognized as the endogenous ligand for the intranuclear receptor PPARgamma. This property is responsible for many of the 15d-PGJ2 antiinflammatory functions. In this review, we summarize the current understanding of 15d-PGJ2 synthesis, biology and main effects both in molecular physiology and pathological states. NF-kB NF-kB (nuclear factor kappa-light-chain-enchancer of activated B cells) on proteiinikompleksi, joka säätelee DNA:n transkriptiota, sytokiinien tuotantoa ja solun elinkaarta. NFkB löytyy lähes kaikista soluista. Se osallistuu soluvasteisiin mm. sytokiinien, stressin, vapaiden happiradikaalien, raskasmetallien, ultraviolettisäteliyn, hapettuneen LDL-kolesterolin sekä patogeenien stimuloimana. NF-kB on keskeinen vaikuttaja infektioiden aiheuttamassa immuunivasteessa. Häiriintynyt NF-kB:n toiminta assosioituu syöpiiin, tulehduksellisiin sairauksiin, autoimmuunitauteihin, virusinfektioihin, septiseen shokkiin sekä immuunijärjestelmän kehityshäiriöihin. NF-kB saattaa vaikuttaa myös synaptiseen plastisuuteen sekä muistiin. NF-kB on merkittävä immuunijärjestelmään transkriptiotekijä synnynnäiseen liittyviä ja adaptiiviseen geenejä säätelevä Koska NF-kB ohjaa monia inflammaatioon liittyviä geenejä, ei

51 liene yllätys, että NF-kB on erityisen aktiivinen monissa tulehduksellisissa sairauksissa. It is important to note though, that elevation of some NF-κB activators, such as osteoprotegerin (OPG), are associated with elevated mortality, especially from cardiovascular diseases. Elevated NF-κB has also been associated with schizophrenia. Recently, NF-κB activation has been suggested as a possible molecular mechanism for the catabolic effects of cigarette smoke in skeletal muscle and sarcopenia. Lähde: Wikipedia Kuvan lähde: Wikipedia (+) Agonistit: NF-kB-agonistit assosioituvat inflammaatioon Tyydyttyneet (kovat) rasvat ja transrasvat. Onkoproteiinit: Onkogeenien koodaamat proteiinit eli

52 onkoproteiinit säätelevät solukasvua ja erikoistumista. NF-kB aktivoi onkoproteiineja, jotka altistavat syövälle. Onkogeenit ovat mutatoituneita geenejä, jotka voivat saada solun muodostamaan kasvaimen. Onkogeenit saavat kasvaimia aiheuttavat ominaisuutensa mutaatioiden kautta.onkoproteiineja ovat: Kasvutekijän kinaasireseptorit, jotka muodostavat autofosforyloivia dimeerejä sopontaanisti ilman ligandia. Sytoplasman tyrosiinikinaasit, jotka fosforyloivat ylitehokkaasti. ROS (Reactive oxygen species): Reaktiiviset happiradikaalit ovat hapesta muodostuvia yhdisteitä, jotka sisältävät parittoman elektronin ja ovat siksi hyvin reaktiivisia. Energiataloudellisesti parittomat elektronit ovat epäedullisia ja yhdiste pyrkii parilliseen elektronimäärään reagoimalla läheisyydessä olevien muiden yhdisteiden kanssa. Happiradikaali vaurioittaa kohtaamansa molekyylin rakennetta ja/tai toimintaa.happiradikaaleja soluhengityksessä, kun syntyy erityisesti mitokondrioiden elektroninsiirtoketju käytää happea energiantuotannossa. Soluhengitys kuluttaa suurimman osan hengitysilman mukana elimistöön tulevasta hapesta, mutta sivutuotteena prosessista syntyy superoksidianionia sekä pieniä määriä muita happiradikaaleja. Myös hapetus-pelkistysreaktioita katalysoivien oksidoreduktaasien sekä elimistölle haitallisia aineita tuhoavien sytokromi P450-entsyymien toiminta tuottaa jonkin verran reaktiivisia happiradikaaleja. TNF-α: Tuumorinekroositekijä alfa on tulehdusreaktion syntyyn vaikuttava välittäjäaine eli sytokiini. TNF-alfa on lähinnä makrofagien erittämä proteiini, joka osallistuu tulehdusreaktion ohella monenlaisiin biologisiin prosesseihin, kuten solunjakautumiseen, solujen erilaistumiseen, apoptoosiin (ohjattuun solukuolemaan), rasva-aineiden metaboliaan ja

53 verihyytymän muodostukseen. TNF-alfalla on havaittu olevan osuutta mm. autoimmuunisairauksissa, insuliiniresistenssissä ja syövässä. TNF-alfan vastaaine on infliksimabi. TNF-alfa sekä sen solukalvon läpäisevä TNF-alfareseptori ovat kolmesta osasta kohdistuvia eli trimeerisiä proteiineja. TNF-alfan sitoutuminen solukalvon pinnalla olevaan TNFalfareseptoriin johtaa reseptorin soluliman puoleisten osien asennon Tällöin soluliman puoleiset osat voivat aktivoida erilaisia viestimekanismeja, jotka johtavat edelleen seriini/treoniinikinaasien aktivoitumiseen. Aktivoituneet seriini/treosiinikinaasit fosforyloivat IκB-kinaasin (IKK), jolloin se aktivoituu. Fosforyloitu IκB-kinaasi liittää IκB-proteiinin kahteen seriinitähteeseen fosfaattia. Tämä fosforylaatio johtaa ubikitiinin liittämiseen IκB-proteiiniin. Proteasomit tunnistavat ubikitinoidun IκB:n ja hajottavat sen. Tällöin IκB:n solulimaan sitoma NFκB-proteiini vapautuu sen otteesta ja kulkeutuu tumaan. Tumassa NFκB yhdessä muiden proteiinien kanssa lisää kohdegeeniensä luentaa eli transkriptiota. Lähde: Wikipedia IL-1b: Interleukiini 1 sytokiiniproteiini, jota Interleukiini 1 beeta makrofagien erittämä beeta koodaa (IL1β) on IL1B geeni. on merkittävä aktivoitujen tulehdusvälittäjäaine. Se osallistuu solujen säätelyyn, kuten lisääntymiseen (proliferaatio), erikoistumiseen ja apoptoosiin.interleukiinit ovat proteiineja ja peptidejä, jotka auttavat valkosoluja kommunikoimaan. Interleukiineja tuottavat pääasiassa auttaja-t-solut, monosyytit, makrofagit ja endoteelisolut. Interleukiinit edistävät T- ja B-solujen lisääntymistä ja vaikuttavat immuunivasteeseen. Toisaalta interleukiinit edistävät inflammaatiota ja aiheuttavat suurina määrinä kuumeen.interleukiini 1 (IL-1) on makrofagien, fibrosyyttien ja T-lymfosyyttien tuottama pieni proteiini, jonka tehtävänä on vahvistaa makrofagien

54 kykyä tappaa mikro-organismeja ja aktivoi auttaja-tlymfosyyttejä. IL-1 vaikuttaa myös elimistön lämmönsäätelykeskukseen, jossa se saa aikaan ruumiinlämmön kohoamisen. Indusoi akuuttia tulehdusta.interleukiini 1 beeta ja IL-1 antagonistireseptori (IL-1RN) geenin polymorfismit assosioituvat haavaiseen paksusuolen tulehdukseen. LPS (Lipopolysaccharides): Lipopolysakkaridit tunnetaan myös polyglykaaneina ja endotoksiineina. Ne ovat suuria lipidistä ja polysakkarideista muodostuvia molekyylejä.endotoksiinit ovat gramnegatiivisten bakteerien ulkokalvon sisältämiä myrkkyaineita, jotka vapautuvat bakteerin hajotessa. Endotoksiineilla viitataan usein lipopolysakkaridiin (LPS), jonka lipidi A-osa aiheuttaa infektion aikana isäntäelimistössä toksisia reaktioita: kuumetta, valkosolujen ja verihiutaleiden niukkuutta sekä mahdollisesti shokin (endotoksiinishokki).endotoksiineja ovat myös Bacillus thuringiensis-bakteerin delta-endotoksiinit, jotka ovat kiteisiä proteiineja. Virusten aiheuttamat infektiot: Infektiotaudit ovat virusten, bakteerien tai sienten aiheuttamia tulehdustiloja. Infektiotauteja ei aiheuta kylmettyminen, vetoisuus, stressi, valvominen, vitamiinipuute tai huono ruokavalio; infektiotauteja aiheuttavat aina mikrobit.infektiotaudeille on ominaista tulehdusreaktion syntyminen. Tulehdusreaktioon liittyy valkosolujen ilmaantuminen ja lisääntyminen infektiokohdassa ja verenkierrossa. Valkosolut erittävät tulehdushormoneja, sytokiinejä, jotka saavat aikaan yleisoireina esimerkiksi kuumeen nousun, lihassärkyä ja huonon olon. Oireet eivät niinkään johdu itse mikrobista, vaan sen aiheuttamasta elimistön reaktiosta.virukset ovat millimetrin tuhannesosan kokoisia proteiineista ja geeneistä muodostuvia rakenteita, jotka esimerkiksi hengitysteihin tai suolistoon tunkeuduttuaan aihauttavat tulehdusreaktion.

55 Virusten infektoimat solut alkavat infektion seurauksena erittää tulehdusvälittäjäaineita, mikä aiheuttaa nuhaa, yskää, ripulia tai oksentelua. Limakalvon soluissa virukset monistuvat ja syntyvät uudet virukset leviävät verenkiertoon ja infektoivat uusia soluja. Antibiootit eivät tehoa viruksiin.bakteerit ovat yleensä satoja kertoja viruksia suurempia ja muistuttavat rakenteeltaan ihmisen omia soluja. Bakteerit eroavat ihmisen omista kudoksista mm. vahvan, bakteeria suojaavan seinämän perusteella. Monet antibiootit tuhoavat bakteereita tuhoamalla bakteerien vahvan seinän. Tavallisimpia infektioita aiheuttavia bakteereita on alle kymmenen eri lajia. Yleisimmät infektioita aiheuttavat bakteerit ovat: pneumokokki, hemofilus, streptokokki, stafylokokki ja branhamella. ( ) NF-kB-antagonistit hillitsevät inflammaatiota Kaloreiden rajoittaminen eli vähäenerginen ravinto Polyfenolit n-3 PUFA: Monityydyttämättömät (PUFA) omega-3 rasvahapot eli alfalinoleenihappo. Butyraatti: Suoliston hyvät mikrobit, kuten bifidobakteerit ja laktobasillit tuottavat kaasua syömällä imeytymättömiä fermentoituvia hiilihydraatteja. Kaasua synnyttävässä prosessissa syntyy suolisto- ja kokonaisterveyttä edistäviä lyhytketjuisia rasvahappoja (SCFA). Näitä ovat asetaatti, propionaatti ja butyraatti. Lyhytketjuisilla rasvahapoilla on havaittu suoliston inflammaatiota, infektioita ja syöpiä ehkäiseviä vaikutuksia. Ne myös auttavat suoliston pintaa uusiutumaan ja pysymään terveenä. Sirtuiinit LXR (Liver X receptor) LXR on tumareseptori ja transkriptiotekijä. Se muistuttaa läheisesti PPAR-, FXR ja RXR-reseptoreita. LXR-reseptorit

56 osallistuvat kolesterolin, homeostaasin säätelyyn. rasvahappojen ja glukoosin (+) LXR-Agonisteja Omega-6 monityydyttämättömät rasvahapot (PUFA):Omega-6 eli linolihappo on toinen kehon välttämättä tarvitsemista rasvahapoista. Toinen on omega-3 eli alfalinoleenihappo. Elimistö tarvitsee linolihappoa mm. ihon kunnon ylläpitämiseen. Sekä omega-6 että omega-3 rasvoja tarvitaan solukalvojen rakennusaineina sekä eikosanoidien lähtöaineina. Eikosanoidit ovat yhdisteitä, jotka säätelevät elimistössä esimerkiksi verenpainetta, veren hyytymistä, immuunivastetta ja tulehdustilaa.matala-asteinen tulehdus assosioituu moniin sairauksiin. Monet omega-3 rasvahapoista tuotettavat eikosanoidit lievittävät tulehdusreaktioita, kun taas omega-6 rasvahapoista tuotettavat eikosanoidit osallistuvat veren hyytymisen säätelyyn sekä tulehdustilan ylläpitoon. Toisaalta omega-6 rasvat voivat myös hillitä tulehdusreaktioita. Ylenmääräinen omega-6 rasvahappojen saanti suhteessa omega-3 rasvahappojen saantiin tai toisinpäin voi mahdollisesti estää toisen ryhmän rasvahappojen hyödyntämistä elimistössä. Näiden syiden takia on ajateltu, että runsas omega-6 rasvahappojen saanti voisi edistää tulehdusreaktioita. Tutkimuksissa runsas omega-6 rasvahappojen saanti ei ole kuitenkaan johdonmukaisesti johtanut tulehdustekijöiden lisääntymiseen tai vähenemiseen. Lisäksi on viitteitä siitä, että paitsi omega-3 rasvahappojen saanti myös linolihapon saanti ja omega-6 rasvahappojen riittävä pitoisuus verenkierrossa ovat yhteydessä pienempään sydänja verisuonisairauksien riskiin. Omega-3 ja omega-6 rasvahappojen saannin suhteella ei ole havaittu yhteyttä sydänsairauksien riskiin. Lähde: Sydän.fi

57 Kuvan lähde: Wikipedia Oxysterolit: Oxysterolit muodostuvat hapettuneesta kolesterolista. Niiden uskotaan vaikuttavan mm. ateroskleroosiin syntyyn ja etenemiseen. Oxygenated derivatives of cholesterol (oxysterols) present a remarkably diverse profile of biological activities, including effects on sphingolipid metabolism, platelet aggregation, apoptosis, and protein prenylation.the most notable oxysterol activities center around the regulation of cholesterol homeostasis, which appears to be controlled in part by a complex series of interactions of oxysterol ligands with various receptors, such as the oxysterol binding protein, the cellular nucleic acid binding protein, the sterol regulatory element binding protein, the LXR nuclear orphan receptors, and the low-density lipoprotein receptor. Identification of the endogenous oxysterol ligands and elucidation of their enzymatic origins are

58 topics of active investigation. PubMed ( ) LXR-antagonisteja Omega-3 monityydyttämättömät rasvahapot (PUFA). Omega-3 eli alfalinoleenihappo on monien eikosanoidien esiaste ja sillä uskotaan olevan inflammaatiota hillitseviä vaikutuksia. SREBP-1c (Sterol protein 1) regulatory element-binding Proteiini, jota ihmisillä koodaa kromosomissa 17 sijaitseva SREBF1-geeni. SREBF1-geenin transkriptiovariantit koodaavat kahta erilaista isoformia: SREBP-1a ja SREBP-1c. Geenin koodaamat proteiinit ovat transkripitotekijöitä, jotka kiinnittyvät DNA:n promoottorisekvenssiin (sterol regulatory element-1; SRE1). SREBP-1c säätelee geenejä, joita tarvitaa glukoosin aineenvaihdunnassa ja lipidien valmistuksessa. Sen ilmenemistä säätelee insuliini. SREBP-1a säätelee geenejä, jotka liittyvät lipidien ja kolesterolin valmistukseen; sem aktiivisuutta säätelee solun sterolitasot. Insulin, cholesterol derivatives, T3 and other endogenous molecules have been demonstrated to regulate the SREBP1c expression, particularly in rodents. Serial deletion and mutation assays reveal that both SREBP (SRE) and LXR (LXRE) response elements are involved in SREBP-1c transcription regulation mediated by insulin and cholesterol derivatives. Peroxisome proliferation-activated receptor alpha (PPARα) agonists enhance the activity of the SREBP-1c promoter via a DR1 element at -453 in the human promoter. PPARα agonists act in cooperation with LXR or insulin to induce lipogenesis. Lähde: Wikipedia SREBF1 vuorovaikuttaa ainakin seuraavien kanssa:

59 CREB-binding protein, DAX1 LMNA TWIST2 BHLHE40 BHLHE41 (+) SREBP-1c-agonisteja LXR: LXR-reseptorit osallistuvat kolesterolin, rasvahappojen ja glukoosin homeostaasin säätelyyn. Suoliston dysbioosi Alkoholi Insuliini ( ) SREBP-1c-antagonisteja n-3 PUFA: Omega-3 rasvahapot Metformiini: Diabeteslääke, inflammaatiota. Sirtuiinit AMPK SREBP-2 (sterol proteins) joka regulatory voi hillitä myös element-binding SREBP-2 on transkriptiotekijä, joka säätelee kolesterolin aineenvaihduntaan osallistuvia tarvitaan kolesterolisynteesiin. geenejä. SREB proteiineja This gene encodes a ubiquitously expressed transcription factor that controls cholesterol homeostasis by stimulating transcription of sterol-regulated genes. The encoded protein contains a basic helix-loop-helix leucine zipper (bhlh-zip) domain. Various single nucleotide polymorphisms (SNPs) of the SREBF2 have been identified and some of them are found to be associated with higher risk of knee osteoarthritis. SREBF2 has been shown to interact with INSIG1 and CREB-binding protein. Lähde: Wikipedia

60 ( ) SREBP-2-antagonisteja LXR Statiinit ChREBP (Carbohydrate-responsive protein) element-binding ChREBP eli MLXIPL on proteiini, jota ihmisillä koodaa MLXIPLgeeni. ChREBP vuorovaikuttaa hiilihydraatteja säätelevään DNA-sekvenssiin. ChREBP siirtyy solun tumaan ja kiinnittyy DNA:han fosforylaation jälkeen. Although the regulation of ChREBP remains unknown in detail, the transactivity of ChREBP is partly regulated by a phosphorylation/dephosphorylation mechanism. During fasting, protein kinase A and AMP-activated protein kinase phosphorylate ChREBP and inactivate its transactivity. During feeding, xylulose-5-phosphate in the hexose monophosphate pathway activates protein phosphatase 2A, which dephosphorylates ChREBP and activates its transactivity. ChREBP controls 50% of hepatic lipogenesis by regulating glycolytic and lipogenic gene expression. In ChREBP (-/-) mice, liver triglyceride content is decreased and liver glycogen content is increased compared to wild-type mice. These results indicate that ChREBP can regulate metabolic gene expression to convert excess carbohydrate triglyceride rather than glycogen. PubMed into Liiallinen hiilihydraattien saanti johtaa rasvan kerääntymiseen ja insuliiniresistenssiin. Glukoosi ja insuliini säätelevät glukoosin de novo lipogeneesiä maksassa. Insuliini aktivoi useita transkriptiotekijöitä, kuten SREBP1c ja LXR. ChREBP kiinnittyy DNA:ssa hiilihydraatteja säätelevän sekvenssin (ChoRE) promottorialueelle, jossa sen kohteena on glykolyysiä, lipogeneesiä ja glukoneogeneesiä säätelevät geenit

61 This gene encodes a basic helix-loop-helix leucine zipper transcription factor of the Myc / Max / Mad superfamily. This protein forms a heterodimeric complex and binds and activates, in a glucose-dependent manner, carbohydrate response element (ChoRE) motifs in the promoters of triglyceride synthesis genes. (+) ChREBP-agonisteja Glukoosi ( ) ChREBP-antagonisteja LXR Statiinit PPAR = peroxisome proliferator-activated receptor; LXR = liver X receptor; RXR = retinoid X-receptor; NF-kB = nuclear transcription factor-kb; SREBP = steroid regulatory element-binding protein; ChREBP = carbohydrate responsive element-binding protein; Sirtuins = SIRT-1/2, deacetylating enzymes; AMPK = AMP-activated protein kinase; n-3 PUFA = omega-3 polyunsaturated fatty acids. Selityksiä: rajoittaminen kaloreiden Sirtuiinit löydettiin tämän vuosituhannen alussa. Jo 1930luvulta asti on tosin tiedetty, että ravinnosta saatavan energian rajoittaminen pidentää jyrsijöiden elinikää. Energiamäärä, joka on % normaalista suotuisasti elimistön toimintaan. vaikuttaa Sirtuiinit Energiansaannin rajoittaminen laskee kehon lämpötilaa,

62 pudottaa painoa ja rasvamäärää sekä vähentää insuliini- ja glukoosipitoisuutta. Saadun energian määrällä vaikuttaa olevan suurempi merkitys kuin sillä mistä energia saadaan. (Guarante ja Picard, 2005). Vähäinen energiansaanti vaikuttaa oksidatiivista stressiä hillitsevästi. Eläinkokeissa energiansaannin rajoittaminen on suojannut laboratorioeläimiä monilta ikään liittyviltä sairauksita sekä diabetekselta ja syöviltä. Vaikuttaa siltä, että vähäinen energiansaanti johtaa aineenvaihdunnan sopeutumismekanismeihin, joissa SIR2-geeni (silent information regulator 2, sirtuiini) on keskeisessä osassa. Sirtuiinit ovat NAD+:sta riippuvaisia proteiiniasetylaaseja. Nämä entsyymit pidentävät hiivojen elinikää 70 %, matojen elinikää %, hyönteisten elinikää 30 % ja hiirien elinikää 30 % (Denu 2005). Sirtuiinit säätelevät myös solujen ohjattua kuolemaa eli apoptoosia, tulehdusvastetta, solujen elämänkaarta, geenitranskriptiota ja aineenvaihduntaa. Sirtuiineja on seitsemän: SIRT1: Tumassa sijaitseva deasetylaasi, joka säätelee aineenvaihduntaa ja elinikää. SIRT2: Solulimassa sijaitseva deasetylaasi, joka vaikuttaa syövän syntyyn. SIRT3: Mitokondrioissa sijaitseva deasetylaasi, joka osallistuu aineenvaihduntaan. SIRT4: Mitokondrioissa sijaitseva deasetylaasi, joka osallistuu aineenvaihduntaan ja säätelee aminohappovälitteistä insuliinin eritystä. SIRT5: Mitokondriossa sijaitseva deasetylaasi. SIRT6: Tumassa esiintyvä sirtuiini. SIRT7: Tumassa esiintyvä sirtuiini. Entiten tutkitulla SIRT1-sirtuiinilla on huomattava rooli aineenvaihdunnan kannalta tärkeissä kudoksissa, kuten haimassa, maksassa ja rasvakudoksessa. SIRT1 säätelee

63 erityisesti mekanismeja, jotka liittyvät ikääntymiseen ja energiansäätelyyn paaston tai niukkaenergisen ruokavalion aikana. SIRT1-aktivaatio voi lisätä insuliiniherkkyyttä sekä laskea insuliini- ja glukoosipitoisuuksia. SIRT1 on PPARϓ:n estäjä, joka aiheuttaa lipolyysin kiihtymisen rasvakudoksessa ja vähentää näin rasvakudoksen määrää. SIRT1 lisää insuliinin eritystä haimasta ja suojaa haiman beetasoluja oksidatiiviselta stressiltä (Moynihan ym. 2005). Maksassa SIRT1:n aktivaatio lisää glukoosin uudismuodostusta PCG-1α:n aktivoitumisen kautta. Lähde: Sirtuiinit energiatasapainon ja glukoosimetabolian uudet molekyylit, Markku Laakso Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3 julkaistaan Ruokasodassa huhtikuun vaihteen tienoilla. Tässä lienee pureskeltavaa vähäksi aikaa. Probiootit Näkökulma: Probiootit vahvistavat mikrobiomin hyvää bakteerikantaa. Suoliston pinta-alaltaan lähes kahden tenniskentän kokoisella alueella elää arviolta yli 100 miljardin mikro-organismin muodostama monimutkainen ekosysteemi. Jopa tuhannesta bakteerilajista muodostuva mikrobiomi on jokaisella ihmisellä yksilöllinen ja se vaikuttaa aineenvaihdunnan ja immuunijärjestelmän välityksellä vastustuskykyyn ja terveyteen. Kun jokin mikrobipopulaatio suolistossa kuolee, sen elintilan kolonisoi nopeasti jokin toinen hyvä tai paha bakteerikanta. Suolistossa käydäänkin

64 jatkuvasti hyvien ja pahojen bakteerien välistä taistelua. Ravinnosta ja lisäravinteista saatavat probiootit ovat eläviä mikro-organismeja, joilla uskotaan olevan suolistoflooran hyvinvoinnille suotuisia vaikutuksia. Ne vahvistavat suoliston hyvää mikrobikantaa ja suojelevat elimistöä haitallisilta taudinaiheuttajilta. Ovatko probiootit huijausta? Erilaisten lisäravinteiden hyödyistä käydään kiivasta keskustelua. Ovatko pillerit, pallerot ja kapselit vain tapa kusettaa hölmöiltä rahat, vai onko niistä oikeasti jotain hyötyä? Kysymys on ihan aiheellinen, sillä terveyttä edistävillä tuotteilla on valtava markkinapotentiaali. Tällä hetkellä vitamiini- ja lisäravinteet muodostavat noin 100 miljardin euron maailmanlaajuiset markkinat. Monenlaisia vitamiini-, mineraali- ja probioottivalmisteita myydään ja markkinoidaan aggressiivisesti terveyttä edistävinä ja kehon hyvinvointia ylläpitävinä lisäravinteina. Ovatko ne sellaisia? Keho on temppeli, jota kannattaa suojella ulkoisilta taudinaiheuttajilta. Suojelevatko probiootit kehoa taudinaiheuttajilta? FDA ja EFSA sekä eräät tutkijat eivät ole täysin vakuuttuneita probioottien hyödyistä. FDA ja EFSA suhtautuvat probiootteihin kriittisesti Terveyshyötynäkökulman esiintuominen markkinoinnissa on probioottien osalta estetty USA:ssa, jossa Yhdysvaltain elintarvike- ja lääkevirasto FDA katsoo, ettei yhdestäkään probioottituotteiden terveyshyödystä ole vielä riittävän vahvaa tieteellistä näyttöä.

65 Samanlainen kriittinen kanta on Euroopan elintarviketurvallisuusvirasto EFSA:lla, joka ei salli probiootteihin liittyvien terveysväittämien käyttöä elintarvikkeiden markkinoinnissa. Jopa pelkkä probiootti sanan käyttäminen voidaan tulkita kielletyksi terveysväittämäksi. Probioottien terveyshyödyistä ei siis vallitse täysin aukotonta tieteellistä yksimielisyyttä. Esimerkiksi seuraavat raportit kyseenalaistavat probiootteihin liitettyjä väitteitä: Rijkers GT, de Vos WM, Brummer RJ, Morelli L, Corthier G, Marteau P (2011). Health benefits and health claims of probiotics: Bridging science and marketing. British Journal of Nutrition. Slashinski MJ, McCurdy SA, Achenbaum LS, Whitney SN, McGuire AL (2012). Snake-oil, quack medicine, and industrially cultured organisms: biovalue and the commercialization of human microbiome research. BMC Medical Ethics. Ovatko probiootit siis vedätys, jolla tehdään valtavasti rahaa? Kyllä, mutta käytännössä ei sittenkään. Lisäravinteiden myynnissä pyörii isot rahat, mutta myös tieteellinen näyttö niiden hyödyistä on varsin kattava. Eräillä spesifeillä mikrobikannoilla on runsaan tutkimusnäytön perusteella suotuisia terveysvaikutuksia. Toisaalta terveysväittämät vaikuttavat toteutuvan sairailla, kun taas hyötyjä ei ole terveillä osoitettu. Mitään spesifejä terveysväittämiä ei voi aukottomasti kytkeä kaikkiin probiootteina kaupattaviin lisäravinteisiin tai yleensäkään kaikkiin lisäravinteisiin. Lisäravinteiden laaduissa on suuria eroja, ja sinänsä hyvätkin valmisteet voivat kärsiä pitkästä varastoimisesta, lämpötilaeroista ja

66 kuljetuksista. Kaupan hyllyltä kotiin lähtevän probioottivalmisteen sisältämien mikrobien määrästä on valmistajan takeet, mutta voiko niihin aina luottaa? Valmistettaessa probiootti on voinut olla erinomainen ja runsaan mikrobipopulaation sisältävä lisäravinne, mutta täyttääkö se lupaukset viikkoja, kuukausia tai vuosia myöhemmin? Vastaus on: Kyllä lähes aina. Probiootit käyvät läpi hyvin tiukan seulan. Mutta kriittiset kysymykset ovat aiheellisia Kuinka monta elävää mikro-organismia Yhdysvalloissa valmistetussa probiootissa on sen jälkeen, kun se on valmistajan varastoista rahdattu Suomeen ja varastoitu odottamaan kuljetuksia myymälöihin? Tätä ei juurikaan valvota, mutta lisäravinteita kuluttavan väestön luottamus on vahva. Jos kaikki on mennyt oikein, probiootit eivät ehkä ole kärsineet lainkaan kuljetusten ja varastoimisen aiheuttamista lämpötilojen vaihteluista. Probiootit voivat olla yhtä elinvoimaisia kuin valmisteessa luvataan. Mutta toisinkin voi käydä; kuluttaja ei voi mitenkään tarkistaa, kuinka paljon eläviä mikrobeja probioottikapseli sisältää. Pilleri tai kapseli näyttää aivan samalta riippumatta siitä onko sen sisällä eläviä mikro-organismeja tai ei. Oletusarvoisesti hyvän probiootin tulisi sisältää vähintään 500 miljoonaa elävää mikrobia. Joissain tapauksissa probiootissa on eläviä mikrobeja kuitenkin vain murto-osa luvatusta määrästä. Sellaisen probiootin käytännön merkitys suoliston hyvinvoinnille voi olla vähäinen ja useimmissa tapauksissa olematon.

67 Mutta Asian voi kääntää niinkin, että historian viisastuttamina tiedämme kuinka aggressiivisesti elintarvikeja lääketeollisuuden lobbaajat pyrkivät vaikuttamaan lääke- ja elintarvikevirastojen ohjeisiin. Ehkäpä kusetus syntyykin siitä, että syömällä probiootteja ihmisen immuunijärjestelmä toimii paremmin ja hän tarvitsee vähemmän tai harvemmin lääkkeitä, kuin syömättä probiootteja, mikä ei tue lääketeollisuuden etuja. Yleensä tällaiset vedätykset paljastuvat vasta vuosikymmenien kädenväännön jälkeen, kuten tupakka- ja sokeriteollisuuden vääristelemät tutkimukset, joita löydetään vähän väliä arkistoista. Tai ehkäpä totuus on jälleen jotain siltä väliltä: jospa lääketeollisuus vähättelee ja elintarvikeja lisäravinneteollisuus liioittelee. Ei sekään täysin mahdotonta olisi. Luultavasti totuus probiooteista menee jotenkin näin. Suoliston terveys ja ihmisen terveys kulkevat käsikkäin, mutta ehkä mitään ohituskaistoja ei suoliston terveydelle ole. Tutkimusten mukaan Melko varmasti tiedetään, että ainakin tiettyjen elintarvikkeiden luonnollisen hapatusprosessin myötä kehittyneet probioottipopulaatiot ovat suoliston terveydelle suotuisia. Tähän viittaa laboratoriotutkimusten ohella myös suurten ihmispopulaatioiden laajat ravitsemustottumuksia käsittelevät tutkimukset. Ne viittaavat vahvasti siihen suuntaan, että probiootit hyödyttävät terveyttä. Mitä probiootit ovat? Maailman terveysjärjestön (WHO) vuoden 2002 määritelmän mukaan probiootit ovat eläviä organismeja, jotka ovat oikein annosteltuna hyödyksi terveydelle. Tunnetuimmat ja tutkituimmat probiootit ovat Lactobacillus GG- ja Bifido-

68 mikrobit. Probiootteja on kuitenkin useita ja ne toimivat hieman eri tavoin. Élie Metchnikoff Teorian probiooteista määritteli Élie Metchnikoff vuonna Käsitteenä probiootti on syntynyt paljon myöhemmin luultavasti lisäravinteiden markkinointitarkoituksiin. Käsitteessä yhdistyvät latinan pro- ja kreikan biōtikos, joilla tarkoitetaan jotakuinkin elämää ylläpitävää. Probiootti määritellään usein antibiootin vastakohdaksi. Metchnikoff päätteli, että jogurttia syövät bulgarialaiset talonpojat olivat keskimääräistä terveempiä ja pitkäikäisempiä jogurtin sisältämien suolistoflooraa hyödyttävien mikrobien ansiosta. Tämä selittyi hänen mukaansa sillä, että jogurtin hyvät mikrobit korvaavat suolistossa haitallisia bakteereita. Probioottien hyväksytty määritelmä This first global effort was further developed in 2010; two expert groups of academic scientists and industry representatives made recommendations for the evaluation and validation of probiotic health claims. The same principles emerged from those groups as the ones expressed in the Guidelines of FAO/WHO in This definition, though widely adopted, is not acceptable to the European Food Safety Authority because it embeds a health claim that is not measurable. Monien käsitteen sisältöä täsmentävien tieteellisten paneelien jälkeen on yleisesti hyväksytty, että probioottien on ehdottomasti oltava eläviä mikro-organismeja. One of the concerns throughout the scientific literature resides in the viability and reproducibility on a large scale of the observed results, as well as the viability and

69 stability during use and storage, and finally the ability to survive in stomach acids and then in the intestinal ecosystem Probiooteilta edellytetään valvottua arviointia ja testejä, jossa terveysväittämät voidaan tieteellisesti dokumentoida. Niinpä probiootti-termiä voivat käyttää vain sellaiset eläviä mikrobeja sisältävät ravintoaineet ja lisäravinteet, joiden terveyshyödyistä on saatu tieteellistä näyttöä. Probioottien on oltava myös sellaisia mikrobeja, jotka voidaan tieteellisesti luokitella taksonomisiin ryhmiin suvun, lajin jne. perusteella. Probioottien käytön on luonnollisesti oltava turvallista ohjeenmukaisella annostuksella. Eräitä ovat: hyödyllisiä probiootteja Lactobacillus acidophilus: Ehkäisee iholla ja kynsissä elävien Candida-sienten leviämistä. Asidofilus-bakteerit vähentävät ripulia, kramppeja ja suolistokaasujen muodostumista. Lactobacillus plantarum: Suojelee paksusuolen limakalvoja sekä ylläpitää suoliston läpäisevyyttä säätelevää epiteelistä muuria. Lactobacillus plantarum ehkäisee ummetusta ja ripulia ja on resistentti useimmille antibiooteille. Bifidobacterium bifidum: Muodostavat populaatioita paksusuoleen, jossa nämä probiootit vievät elintilaa haitallisilta bakteereilta immuunijärjestelmän toimintaa. ja tehostavat Lactobacillus fermentum: Osallistuu immuunijärjestelmän ylläpitoon ja suojelee ohutsuolen pintaa. Lactobacillus fermentum absorboi kolesterolia ja pitää

70 immuunijärjestelmän vahvana. Bifidobacterium longum: Ehkäisee tulehduksia laukaisevia bakteereita, auttaa helpottamaan ripulin ja laktoosiintoleranssin oireita. Probiootit stimuloivat suolistossa ruoansulatuksen kannalta välttämättömiä ruoansulatusnesteitä ja entsyymejä ja estävät suoliston limakalvoilla taudinaiheuttajien lisääntymistä ja kehittymistä. Kaikki probiootteihin liitettävät terveysväittämät käyvät läpi tarkan tieteellisen seulan. Mikä tahansa väite ei mene tästä seulasta läpi ja probiootti-käsitettä saa käyttää vain tuotteista, jotka on valvotusti testattu, ja jotka täyttävät probiooteille määritellyt täsmälliset kriteerit. Suositellun annosmäärän probioottituotetta tulee sisältää viimeiseen käyttöpäivään saakka terveysvaikutuksiin vaadittava määrä probioottisia mikrobeja. Tällä perusteella myös lisäravinteina myytäviin probioottivalmisteisiin voi luottaa. Kysymys mahahapoista Mahahapot pilkkovat ravinnosta ruokasulaa, joka kulkeutuu mahalaukusta ohutsuoleen ja sieltä edelleen imusuonten ja verisuonten kautta ravitsemaan elimistöä. Mahahapoilla on toinenkin tärkeä tehtävä: ne toimivat osana toimivaa immuunijärjestelmää ja estävät elävien mikroorganismien, kuten sairastuttavien bakteerien pääsyn ravinnosta suolistoon. Jotkin bakteerit, kuten E.coli, ovat niin vahvoja, että ne selviävät mahahapoista suolistoon. Myös Lactobacillus- ja Bifido-bakteerit säilyvät elossa mahahapoista huolimatta. On havaittu, että maito suojaa maitohappobakteereita tehokkaasti. Probioottien syöminen tarkoittaa elävien bakteerien syömistä. Ne ovat muutoksille herkkiä mikro-organismeja, joiden on

71 selvittävä elävinä ruoansulatuskanavaa pitkin suolistoon ohutja paksusuoleen. Vakavin uhka probioottien elämälle ovat mahahapot. Maitohappobakteerit pääsevät suolistoon, koska maito suojaa niitä. Pilleri- ja kapselimuotoisilla probiooteilla pitää olla sellainen kalvo, joka kestää mahahapot; muuten ne ovat hyödyttömiä. Lisäravinteiden tarpeellisuudesta Lisäravinteet ovat tarpeen, jos ravinnosta ei muuten saa riittävästi välttämättömiä ravintoaineita. D-vitamiinilisä on suositeltava kaikille suomalaisille lyhyen kesän vuoksi. B12 on vitamiini, jota vegaanit eivät välttämättä saa riittävästi, koska sitä saa käytännössä vain eläinperäisestä ravinnosta. Probiootit ovat hyödyllisiä etenkin, jos ravinto on kovin yksipuolista, alkoholipainotteista tai jos ihminen käyttää paljon lääkkeitä. Antibiootit tappavat sekä tautia aiheuttavia bakteereita että suoliston hyviä mikrobeja. Sen sijaan ei ole tarkoituksenmukaista korvata monipuolista ravintoa erilaisilla monivitamiini- ja mineraalivalmisteilla, vaikka onkin totta, että tehotuotettu nykyravinto sisältää vähemmän ravinteita kuin mitä ravinto aiemmin sisälsi. Liikaa käytettynä erilaiset monivitamiinit ja muut lisäravinteet ovat terveysriski, sillä ne vaikuttavat aineenvaihduntaan ja elimistön tasapainoiseen toimintaan. Probioottien terveysvaikutukset Probiootit tehostavat ihmisen omaa vastustuskykyä viemällä elintilaa sairastuttavilta bakteereilta. Yksilöllinen mikrobiomi ja suolistofloora kehittyvät syntymästä alkaen ja kehitys jatkuu koko elämän ajan. Lapsi perii äidiltään mikrobiomin, jota rintaruokinta vahvistaa. Lapsesta alkaen ravinto ja antibiootit sekä ympäristön

72 patogeenit ja myrkyt vaikuttavat suoliston mikrobiomin kautta vastustuskykyyn ja terveyteen. Probiootit suojaavat elimistöä ympäristön taudinaiheuttajilta, vahvistavat ruoansulatuskanavan toimintaa, parantavat ravinteiden imeytymistä, tehostavat aineenvaihduntaa ja vahvistavat immuunijärjestelmää Maitohappobakteerien säännöllinen käyttö ehkäisee tutkimusten mukaan lapsilla rota-viruksia ja korvatulehduksia. Terve mikrobiomi voi helpottaa myös painonhallinnassa. Tuoreissa tutkimuksissa on saatu vahvaa näyttöä siitä, että probiootit osallistuvat aineenvaihduntaan ja voivat auttaa merkittävästi painonhallinnan ylläpidossa. Tutkimuksissa on havaittu, että ne lapset, joiden suolistossa esiintyi vähiten Bifido-bakteereja, lihoivat todennäköisimmin hieman vanhempina. Eräiden probioottisten elintarvikkeiden, kuten jogurttien syöminen raskauden aikana auttaa tutkimusten mukaan äitejä karistamaan raskauskilot synnytyksen jälkeen. Odottavan äidin kannattaa syödä probiootteja myös siksi, että sen on havaittu suojaavan syntyvää lasta allergioilta, ihottumilta ja atooppiselta iholta Probiootit voivat lievittää stressiä ja masennusta Tutkimuksissa on saatu viitteitä myös siitä, että probiootit voivat lievittää kroonista väsymysoireyhtymää potevien oireita. Suoliston mikrobit osallistuvat aineenvaihduntaan ja tuottavat elimistöön mm. dopamiinia ja serotoniinia. Vaikka on epäselvää, kuinka paljon suoliston tuottamista mielialahormoneista ja hermovälittäjäaineista pääsee veriaivoesteen läpi keskushermostoon, tiedetään, että ne

73 osallistuvat muihinkin aineenvaihduntaprosesseihin. elimistön tärkeisiin Lactobacillus GG lyhentää vauvojen ja lasten ripulin kestoa Lactobacillus GG on ilmeisesti kaikkein tutkituin probiootti. Sen on osoitettu helpottavan ja lyhentävän vauvojen ja lasten tulehduksellista ripulia. Samaa ei ole kuitenkaan osoitettu aikuisten potilaiden kohdalla. Kaksi laajaa seurantatutkimusta osoitti, että probiootit vähentävät antibioottiripulia 60 % tehokkaammin kuin lumelääkkeet. Mihin probiootit vaikuttavat? Suolistoflooran hyvinvointi vaikuttaa ihmisen terveyteen monin tavoin immuunijärjestelmän ja aineenvaihdunnan kautta. Monet taudit ja terveysongelmat on tutkimuksissa yhdistetty suoliston mikrobeihin ja suolistoflooran tasapainoon. Harvard.edu raportoi, että probiooteilla on saatu tutkimuksissa suotuisia vaikutuksia seuraavien oireiden ja tautien hoidossa tai ehkäisyssä. Ripuli IBS eli ärtyvän suolen oireyhtymä Paksusuolen tulehdus Crohnin tauti H. pylori Vaginan tulehdukset Virtsatien tulehdukset Virtsarakon syöpä Ruoansulatuskanavan tulehdukset, Clostridium difficile Lasten ihottumat joita Probiootit saattavat myös vaikuttaa suotuisasti: aiheuttaa

74 Ahdistukseen Masennukseen Suolistosyöpien ehkäisyyn Reuman oireisiin Vuotavan suolen oireyhtymään (LGS) Sairaalloiseen väsymykseen (fatiikki) Lihomiseen Diabetekseen Allergioihin Probiootit ravinnosta Probiootit toimivat parhaiten, jos ne saa elintarvikkeiden mukana. Tämä perustuu siihen, että tabletit, kapselit ja jauheet on monella tapaa käsiteltyjä, ja käsittelyprosessissa probiootit ovat voineet menettää tehoaan. Hapanmaitotuotteet sekä muut luonnollisesti hapatetut elintarvikkeet auttavat immuunijärjestelmää suojautumaan monilta taudinaiheuttajilta kolonisoimalla suoliston limakalvoja ja estämällä haitallisten bakteerien lisääntymistä. Probiootteja ei ole elintarvikkeissa itsestään, mutta niitä lisätään moniin ravintoaineisiin, kuten jogurtteihin, mehuihin, rahkoihin ja juustoihin. Lisäksi probiootteja syntyy joihinkin elintarvikkeisiin, kuten kefiiriin ja hapankaaliin perinteisessä hapatusprosessissa. Vielä 1950-luvun alussa osa ruoasta tehtiin kotona hapattamalla säilyvyyden lisäämiseksi. Hapatetussa ruoassa on luonnostaan paljon probiootteja. Siitä lähtien kun jääkaapit yleistyivät ja hapatettujen elintarvikkeiden käyttö alkoi vähentyä, ihmisen luontainen mikrobisto ei ole saanut ravinnosta tarvitsemaansa täydennystä. Hyvä Terveys Se, mistä ravinnosta probiootit saa, ei ole yhdentekevää,

75 sillä mahahapot tappavat tehokkaasti mahaan tulleita vieraita mikrobeja. Hapanmaitotuotteissa mikrobit säilyvät elävänä suolistoon asti, koska maito suojaa mikrobeja mahahapoilta. Hapanmaitotuotteet sisältävät myös monia probioottien vaikutuksia tehostavia bioaktiivisia yhdisteitä kuten: kalsium oligosakkaridit flykosfingolipidit laktoferriini immunoglobuliinit Näillä bioaktiivisilla yhdisteillä on antimikrobisia, antikarsinogeenisia ja prebioottisia sekä immuunijärjestelmää sääteleviä vaikutuksia. Kalsium tehostaa lisäksi probioottien tarttumista suoliston limakalvoon. Maito: tavallinen maito ei sisällä probiootteja Maidon terveyshyötyjä korostetaan usein suomalaisille. Viime aikoina perinteisiä pastöroituja maitoja on kuitenkin myös kritisoitu. Puolet maailman ihmisistä eivät juo normaalisti maitoa imetysajan jälkeen, koska heidän elimistönsä ei tuota laktaasia, jota tarvitaan pilkkomaan maitosokeria eli laktoosia. Laktaasi-entsyymin puutos aiheuttaa laktoosiintoleranssia. Maidosta tapetaan kaikki mikro-organismit pastöroimalla, eli kuumentamalla. Raakamaidossa on hyviä mikrobeja ja entsyymejä, kuten laktaasia, mutta mikrobit tuhoava pastörointi ja molekyylirakenteita pilkkova homogenointi muuttavat maidon kivennäisten, vitamiinien ja proteiinien suhteita, mikä aiheuttaa monilla imeytymisongelmia ja vatsavaivoja. Maidosta saa todennäköisemmin vatsanpuruja kuin terveyttä edistäviä mikrobeja. Kefiiri on yksi eniten eläviä mikro-organismeja sisältävistä ruoista

76 Kefiiri on hapatettua lehmän- tai vuohenmaitoa, jonka hapan maku johtuu hapatusprosessista, joka vähentää maidon sisältämiä sokereita. Kefiiri vahvistaa suoliston hyvää mikrobikantaa ja säännöllisesti nautittuna vähentää suolistossa eläviä taudinaiheuttajia. Hapankaali parantaa suolistobakteerien laatua Hapankaali on hapatettua kaalia, joka sisältää runsaasti Lactobacillus- ja Bifido-bakteereja. Hapankaalin sisältämät hyvät mikrobit kolonisoivat suoliston limakalvoja ja estävät näin taudinaiheuttajien leviämistä. Hapankaali myös auttaa palauttamaan ohutsuolen ph-tason, tehostaa ruoansulatusta ja auttaa ravintoaineiden imeytymisessä. Hapankaalissa on lisäksi paljon A-, B1, B2- ja C-vitamiineja sekä hivenaineita, kuten rautaa, kalsiumia, fosforia ja magnesiumia. Muita hyviä probioottien lähteitä ovat: kreikkalainen jogurtti, misokeitto, kombutsa-juoma, oliivit ja tumma suklaa. Probiootteja jälkeen antibioottikuurin Probioottien terveysvaikutuksia terveillä on vaikea arvioida. Se kuitenkin tiedetään, että antibioottikuuri tappaa myös suoliston hyviä bakteereita ja suoliston terveen mikrobiomin palautuminen antibioottikuurista voi viedä kuukausia tai jopa vuosia. Niinpä antibioottikuurin jälkeen probiootteja kannattaa syödä ainakin hyvinvointi palautuu. kuukauden ajan, että suoliston Probioottitutkimuksiin liittyy myös eräs merkittävä ongelma: hyvät tutkimustulokset on usein saatu tutkimalla sairaita ihmisiä. EU-lainsäädännön mukaan elintarvikkeiden terveysväittämien tulisi kuitenkin päteä keskivertokuluttajaan, joka on usein aika terve. Hyvä

77 Terveys

78

79 Kuvan alkuperä: Huffington Post Immuunijärjestelmän toimintamekanismit Immuunipuolustus rakentuu kahden toisiaan täydentävän immuunijärjestelmän varaan. Nämä ovat adaptiivinen eli hankittu immuunijärjestelmä ja luontainen (synnynnäinen) immuunijärjestelmä. Hankittu immuunijärjestelmä Adaptiivisen immuunijärjestelmän toiminta perustuu immunologiseen muistiin ja imusoluihin eli lymfosyytteihin. Imusolut ovat valkosoluihin (leukosyytteihin) kuuluvia soluja, jotka osallistuvat elimistön immuunivasteeseen ja pitävät yllä immuunijärjestelmän toimintaa. Imusolut erikoistuvat luuytimen kantasoluista ja niillä on kaksi pääluokkaa: B- ja Tlymfosyytit. Sekä B-, että T-soluilla on huomattava merkitys adaptiivisessa immuunijärjestelmässä ja autoimmuunitautien patogeneesissä. Adaptiivinen eli hankittu immuunijärjestelmä kehittää immunologisen muistin kohtaamistaan taudinaiheuttajista eli patogeeneistä. Näin hankittu immuunijärjestelmä mukautuu ja kehittyy ensimmäisistä elinvuosista alkaen lähes koko elämän ajan. Adaptiivisen immuunijärjestelmän vahvuus on siinä, että se tallentaa kohtaamiensa taudinaiheuttajien spesifin rakenteen immunologiseen solumuistiin, jolloin se tunnistaa taudinaiheuttajan herkemmin, toimii nopeammin ja

80 aggressiivisemmin, kun solumuistissa oleva tunnistettu taudinaiheuttaja uhkaa seuraavan kerran elimistöä. Tämä mekanismi mahdollistaa immuniteetin kehittämisen eri taudinaiheuttajia vastaan. Rokotuksissa hyödynnetään adaptiivista immuunijärjestelmää Rokotuksissa hyödynnetään tätä adaptiivisen immunijärjestelmän mekanismia siten, että taudinaiheuttamiskyvyltään keikennetyt virukset, bakteerit tai niiden rakenne esitellään adaptiiviselle immuunijärjestelmälle, joka tuottaa vereen sellaisia lymfosyyttejä, jotka muistavat niille esitellyn taudinaiheuttajan. Näin immuunijärjestelmä oppii aktivoitumaan taudinaiheuttajaan ja ihminen saa immuniteetin kyseistä taudinaiheuttajaa vastaan. Antigeenin esittely dendriittisolujen kautta voi tulevaisuudessa vahvistaa rokotteiden tehoa. Tavalliset rokotteet tarjoavat tehokkaan suojan useita taudinaiheuttajia vastaan. Tämä suoja perustuu siihen, että rokotteet stimuloivat hyvin B-lymfosyyttejä ja indusoivat siten tehokkaasti vasta-ainetuotantoa. Kroonisen infektion, kuten HIV-infektion, aikana suojaavan immuunivasteen muodostuminen edellyttää todennäköisesti myös sytotoksisten T-solujen aktivaatiota. Liittämällä rokotteisiin esimerkiksi dendriittisolujen kasvutekijää adjuvantiksi (GM-CSF) tai stimuloivaa sytokiinia (esim. IL-12) voidaan lisätä sytotoksista T-soluvastetta rokotteeseen. Elävän (heikennetyn) viruksen käyttö rokotteena on toinen strategia, jolla rokoteantigeenit voidaan kohdentaa sytotoksisia T-soluja stimuloiviksi. Kolmas vaihtoehto on käyttää rokotteena puhdistettua DNA:ta, joka proteiinisynteesin kautta aikaansaa ohimenevän antigeenin esittelyn dendriittisolussa. Terveillä koehenkilöillä on saatu aikaan tehokkaat rokotevasteet käsittelemällä heistä eristettyjä dendriittisoluja eri antigeeneillä ja injektoimalla ne takaisin elimistöön. Erityisen kiinnostavia ovat olleet syövän

81 immunologinen hoito ja syöpärokotteet. Immuunivasteen herättäminen syöpäkudosta vastaan edellyttää tuumorispesifisten antigeenien olemassaoloa. Tuumoriantigeenejä tunnetaan runsaasti eri syövissä, ja niiden tiedetään syntyvän mutaatioiden, sikiöaikaisen proteiinien aberrantin ilmenemisen tai tiettyihin syöpiin liittyvien virusinfektioiden seurauksena. Menetelmän peruskaava on yksinkertainen: Sairastuneen dendriittisoluja viljellään yhdessä tuumoriantigeenin kanssa ja ruiskutetaan takaisin syöpää sairastavan elimistöön. Näiden menetelmien eläinkokeet ovat antaneet lupaavia tuloksia. Syövän immunologinen hoito dendriittisolupohjaisten syöpärokotteiden avulla vaatii toisaalta vielä runsaasti lisätutkimuksia. Luontainen immuunijärjestelmä Hankitun immuunijärjestelmän rinnalla toimii synnynnäinen eli luontainen immuunijärjestelmä. Luontaisen immuunijärjestelmän aktivaatio ei edellytä aiempaa kontaktia mahdollisen patogeenin kanssa, vaan se reagoi patogeeneihin yleisellä tasolla, eli se tunnistaa tietyt mikrobiryhmät tunnusomaisten yleisten rakenteiden perusteella. Luontainen immuunijärjestelmä ei ylläpidä pitkäkestoista immuniteettia spesifeille taudinaiheuttajille, kuten hankittu immuunijärjestelmä. Ennen hankitun immuunijärjestelmän kehittymistä, lapsen puolustautuminen taudinaiheuttajia vastaan tapahtuu luontaisen immunijärjestelmän avulla sekä mm. äidinmaidosta saatavien vasta-aineiden välityksellä. Ihmisen luontaista immuunijärjestelmää tukevat myös mm. seuraavat epäspesifiset puolustuskeinot: Terve iho ja ihon alhainen ph ehkäisevät mikrobien kasvua.

82 Liman tuotto ja värekarvat (ruoansulatuskanavassa, hengitysteissä ja sukuelinten alueella); lima pysäyttää mikrobien ja muiden partikkelien liikkumisen ja suojaa näin elimistöä taudinaiheuttajilta. Aivastus- ja yskärefleksi poistaa liman mukana myös elimistöä uhkaavia mikrobeja. Mahan hapan ph suojaa elimistöä ravinnon mukana tulevilta mikrobeilta tappaen lähes kaikki patogeenit. Ruoansulatuskanavassa on ravintoaineita pilkkovia entsyymejä, jotka tuhoavat myös mikrobeja. Nestevirtaus elimistön eri osissa rajoittaa mikrobien kasvua; esim. kyynelneste pitää silmän pinnan puhtaana myös mikrobeista. Syljessä ja kyynelnesteessä on bakteereja hajottavaa lysotsyymia ja muita vastaavia proteiineja. Normaalimikrobisto: Iholla ja suolistossa elää normaaliflooraksi kutsuttu mikrobilajisto, jonka lajit eivät aiheuta ihmisellä sairauksia, vaan estävät muiden hyödyllisten ominaisuuksiensa ohella tautia aiheuttavien bakteerien pääsyä elimistöön. Fagosyytit ja fagosytoosi Luonnollisen immuniteetin puolustusmekanismeihin kuuluu soluja (fagosyytteja), jotka kykenevät fagosytoimaan eli nielemään elimistöön pyrkiviä taudinaiheuttajia. Fagosyytit jaetaan kahteen perusteella. Nämä ovat Monosyytit Granulosyytit eosinofiiliset) pääluokkaan (basofiiliset, rakenteensa neutrofiiliset ja Monosyytit ja granulosyytit ovat sellaisia veren valkosoluja, joilla on kyky siirtyä verenkierrosta verisuonen seinämän läpi kudosnesteeseen. Tämä tapahtuu tulehduspaikalta leviävien, valkosoluja houkuttelevien aineiden eli kemokiinien avulla.

83 Sekä monosyytit (kudoksissa kypsyviä monosyyttejä kutsutaan makrofageiksi) että granulosyytit tunnistavat taudinaiheuttajan tai sen erittämän tuotteen mikrobien pinnassa olevien yleisten rakenteiden perusteella. Esimerkiksi bakteerien soluseinä eroaa rakenteeltaan ihmisen omien solujen solukalvoista; näin fagosytoivat solut osaavat erottaa taudinaiheuttajat elimistön omista rakenteista. Fagosyytit eivät tunnista yksittäisiä mikrobilajeja, eikä niillä ole immunologista muistia, kuten adaptiivisella immuunijärjestelmällä. Fagosyytit reagoivat taudinaiheuttajiin seuraavalla tavalla: 1. fagosyytti tunnistaa taudinaiheuttajan olevien reseptoriproteiinien avulla pinnallaan 2. fagosyytin pintaan muodostuu kuoppa, johon fagosytoiva (tuhottava) mikrobi painuu 3. fagosyytti sulkee mikrobin kokonaan sisäänsä ja tuhoaa mikrobin pumppaamalla sitä ympäröivän kalvon sisälle ph:ta laskevia vetyioneita 4. kalvon sisäpuolen ph:n laskun seurauksena eräät entsyymit aktivoituvat ja alkavat hajottaa mikrobin proteiineja, nukleiinihappoja ja muita rakenteita. Makrofagi Makrofagit, eli suursyömärit ovat elimistön syöjäsoluja, jotka syövät vieraiksi tunnistettuja mikrobeja ja vierasaineita. Makrofagin solulimassa on atsurofiilisia jyväsiä. Nämä sisältävät fagosytoosin toiminnan kannalta tärkeitä lysomaalisia entsyymejä ja myeloperoksidaaseja. Kun makrofagi syö patogeenin, se joutuu fagosomin sisälle, joka sitten fuusioituu lysosomin kanssa. Fagolysosomin sisällä entsyymit ja toksiset peroksidit sulattavat patogeenin. Makrofagit voivat sulattaa yli 100 bakteeria ennen kuolemistaan hajoamistuotteisiin. Makrofagit kehittyvät veressä kiertävistä monosyyteistä ja asettuvat kudoksiin ja

84 niitä on erityisen runsaasti lymfaattisissa kudoksissa, kuten imusolmukkeissa. Makrofagit tuhoavat tehokkaasti solunsisäisiä mikrobeja, mutta niillä on tärkeä tehtävä myös soluvälitteisessä immuunipuolustuksessa, jossa ne toimivat antigeenia esittelevinä soluina (APC). Makrofagi syömässä patogeenia: a. Syöjäsolu nielaisee patogeenin fagosytoosilla. Fagosytoottinen vesikkeli eli fagosomi muodostuu. b. Lysosomit fuusioituvat fagosomin kanssa muodostaen fagolysosomin; patogeeni pilkotaan entsyymeillä. c. Jätteet poistuvat tai assimiloidaan (ei kuvassa). Osat: 1. Patogeenit 2. Fagosomi 3. Lysosomit 4. Jätteet 5. Sytoplasma 6. Solukalvo

Käänteentekevä brittiläinen syöpätutkimus kertoo, että lasten akuutti lymfoplastileukemia on ehkä ehkäistävissä!

Käänteentekevä brittiläinen syöpätutkimus kertoo, että lasten akuutti lymfoplastileukemia on ehkä ehkäistävissä! Käänteentekevä brittiläinen syöpätutkimus kertoo, että lasten akuutti lymfoplastileukemia on ehkä ehkäistävissä! Noin kolmannes lasten syövistä on leukemioita ja yleisin niistä on akuutti lymfoblastileukemia.

Lisätiedot

Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3:

Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3: Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3: Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3 jatkaa ravinnon ja elintapojen vaikutuksen selvittämistä MS-taudin

Lisätiedot

Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3:

Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3: Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3: Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3 jatkaa ravinnon ja elintapojen vaikutuksen selvittämistä MS-taudin

Lisätiedot

Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3:

Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3: Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3: Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3 jatkaa ravinnon ja elintapojen vaikutuksen selvittämistä MS-taudin

Lisätiedot

Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3:

Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3: Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3: Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3 jatkaa ravinnon ja elintapojen vaikutuksen selvittämistä MS-taudin

Lisätiedot

Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3:

Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3: Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3: Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 3 jatkaa ravinnon ja elintapojen vaikutuksen selvittämistä MS-taudin

Lisätiedot

RUOANSULATUS JA SUOLISTON KUNTO. Iida Elomaa & Hanna-Kaisa Virtanen

RUOANSULATUS JA SUOLISTON KUNTO. Iida Elomaa & Hanna-Kaisa Virtanen RUOANSULATUS JA SUOLISTON KUNTO Iida Elomaa & Hanna-Kaisa Virtanen Edellisen leirin Kotitehtävä Tarkkaile sokerin käyttöäsi kolmen päivän ajalta ja merkkaa kaikki sokeria ja piilosokeria sisältävät ruuat

Lisätiedot

Immuunijärjestelmän toimintamekanismit

Immuunijärjestelmän toimintamekanismit Ravinto & Terveys Immuunijärjestelmän toimintamekanismit Immuunipuolustus rakentuu kahden toisiaan täydentävän immuunijärjestelmän varaan. Nämä ovat adaptiivinen eli hankittu immuunijärjestelmä ja luontainen

Lisätiedot

Suolisto ja vastustuskyky. Lapin urheiluakatemia koonnut: Kristi Loukusa

Suolisto ja vastustuskyky. Lapin urheiluakatemia koonnut: Kristi Loukusa Suolisto ja vastustuskyky Lapin urheiluakatemia koonnut: Kristi Loukusa Suoliston vaikutus terveyteen Vatsa ja suolisto ovat terveyden kulmakiviä -> niiden hyvinvointi heijastuu sekä fyysiseen että psyykkiseen

Lisätiedot

Autoimmuunitaudit: osa 1

Autoimmuunitaudit: osa 1 Autoimmuunitaudit: osa 1 Autoimmuunitaute tunnetaan yli 80. Ne ovat kroonisia sairauksia, joiden syntymekanismia eli patogeneesiä ei useimmissa tapauksissa ymmärretä. Tautien esiintyvyys vaihtelee maanosien,

Lisätiedot

RAVINTO JA SUOLISTO. Fit4Life. Folasade A. Adebayo M.Sc., Doctoral Student Division of Nutrition University of Helsinki

RAVINTO JA SUOLISTO. Fit4Life. Folasade A. Adebayo M.Sc., Doctoral Student Division of Nutrition University of Helsinki RAVINTO JA SUOLISTO Fit4Life Folasade A. Adebayo M.Sc., Doctoral Student Division of Nutrition University of Helsinki Ruoansulatus järjestelmä: Lisäelimet Sylkirauhaset Hampaat Maksa Haima Sappirakko Tärkeät

Lisätiedot

Kotitehtävä. Ruokapäiväkirja kolmelta vuorokaudelta (normi reenipäivä, lepopäivä, kisapäivä) Huomioita, havaintoja?

Kotitehtävä. Ruokapäiväkirja kolmelta vuorokaudelta (normi reenipäivä, lepopäivä, kisapäivä) Huomioita, havaintoja? Kotitehtävä Ruokapäiväkirja kolmelta vuorokaudelta (normi reenipäivä, lepopäivä, kisapäivä) Huomioita, havaintoja? VÄLIPALA Tehtävä Sinun koulupäiväsi on venähtänyt pitkäksi etkä ehdi ennen illan harjoituksia

Lisätiedot

Hyvän elämän eväät. Anette Palssa Laillistettu ravitsemusterapeutti, TtM

Hyvän elämän eväät. Anette Palssa Laillistettu ravitsemusterapeutti, TtM Hyvän elämän eväät Anette Palssa Laillistettu ravitsemusterapeutti, TtM www.anettepalssa.com Pätevyys ja sidonnaisuudet Luento- ja asiantuntijapalkkioita lääke- ja elintarvikeyrityksiltä Sitoutunut asiakastyöhön

Lisätiedot

BI4 IHMISEN BIOLOGIA

BI4 IHMISEN BIOLOGIA BI4 IHMISEN BIOLOGIA MITÄ ROKOTUKSIA? Muistatko mitä rokotuksia olet saanut ja minkä viimeiseksi? Miten huolehdit koulun jälkeen rokotuksistasi? Mikrobit uhkaavat elimistöä Mikrobit voivat olla bakteereita,

Lisätiedot

Onko ruokavaliolla merkitystä reumasairauksien hoidossa?

Onko ruokavaliolla merkitystä reumasairauksien hoidossa? Onko ruokavaliolla merkitystä reumasairauksien hoidossa? Ravitsemusterapeutti Nea Kurvinen Ravitsemusterapia Balans nea.kurvinen@ravitsemusbalans.fi Ravitsemuksen merkitys reuman hoidossa Monipuolinen

Lisätiedot

Ravitsemustietoa tule-terveydeksi. Laura Heikkilä TtM, laillistettu ravitsemusterapeutti Tehyn kuntoutusalan opintopäivät

Ravitsemustietoa tule-terveydeksi. Laura Heikkilä TtM, laillistettu ravitsemusterapeutti Tehyn kuntoutusalan opintopäivät Ravitsemustietoa tule-terveydeksi Laura Heikkilä TtM, laillistettu ravitsemusterapeutti Tehyn kuntoutusalan opintopäivät 23.11.2018 Reumasairaudet ja ravitsemus Reumasairaus vaikuttaa ravitsemukseen monin

Lisätiedot

tulehduksellisten suolistosairauksien yhteydessä

tulehduksellisten suolistosairauksien yhteydessä ADACOLUMN -HOITO tulehduksellisten suolistosairauksien yhteydessä www.adacolumn.net SISÄLTÖ Maha-suolikanava...4 Haavainen paksusuolitulehdus...6 Crohnin tauti...8 Elimistön puolustusjärjestelmä ja IBD...10

Lisätiedot

11. Elimistö puolustautuu

11. Elimistö puolustautuu 11. Elimistö puolustautuu Taudinaiheuttajat Tautimikrobit (= patogeenit): Bakteerit (esim. kolera), virukset (esim. influenssa), alkueliöt (esim. malaria), eräät sienet (esim. silsa) Aiheuttavat infektiotaudin

Lisätiedot

KandiakatemiA Kandiklinikka

KandiakatemiA Kandiklinikka Kandiklinikka Kandit vastaavat Immunologia Luonnollinen ja hankittu immuniteetti IMMUNOLOGIA Ihmisen immuniteetti pohjautuu luonnolliseen ja hankittuun immuniteettiin. Immunologiasta vastaa lymfaattiset

Lisätiedot

Yläkouluakatemia viikot 6 ja 7 /2015

Yläkouluakatemia viikot 6 ja 7 /2015 Yläkouluakatemia viikot 6 ja 7 /2015 Suoliston vaikutus terveyteen Vatsa ja suolisto ovat terveyden kulmakiviä -> niiden hyvinvointi heijastuu sekä fyysiseen että psyykkiseen hyvinvointiin Jopa 80% ihmisen

Lisätiedot

Lääketieteen ja biotieteiden tiedekunta Sukunimi Bioteknologia tutkinto-ohjelma Etunimet valintakoe pe Tehtävä 1 Pisteet / 15

Lääketieteen ja biotieteiden tiedekunta Sukunimi Bioteknologia tutkinto-ohjelma Etunimet valintakoe pe Tehtävä 1 Pisteet / 15 Tampereen yliopisto Henkilötunnus - Lääketieteen ja biotieteiden tiedekunta Sukunimi Bioteknologia tutkinto-ohjelma Etunimet valintakoe pe 18.5.2018 Tehtävä 1 Pisteet / 15 1. Alla on esitetty urheilijan

Lisätiedot

BI4 IHMISEN BIOLOGIA

BI4 IHMISEN BIOLOGIA BI4 IHMISEN BIOLOGIA IHMINEN ON TOIMIVA KOKONAISUUS Ihmisessä on noin 60 000 miljardia solua Solujen perusrakenne on samanlainen, mutta ne ovat erilaistuneet hoitamaan omia tehtäviään Solujen on oltava

Lisätiedot

Liikunta. Terve 1 ja 2

Liikunta. Terve 1 ja 2 Liikunta Terve 1 ja 2 Käsiteparit: a) fyysinen aktiivisuus liikunta b) terveysliikunta kuntoliikunta c) Nestehukka-lämpöuupumus Fyysinen aktiivisuus: Kaikki liike, joka kasvattaa energiatarvetta lepotilaan

Lisätiedot

Näin elämme tänään kuinka voimme huomenna?

Näin elämme tänään kuinka voimme huomenna? Näin elämme tänään kuinka voimme huomenna? Yrittäjälääkäri Ville Pöntynen 22.1.2015 Lupauksen toiminta-ajatukset Hoidamme ja ennaltaehkäisemme sairauksia sekä työ- ja toimintakyvyn laskua lääketieteen,

Lisätiedot

Elimistö puolustautuu

Elimistö puolustautuu Elimistö puolustautuu Tautimikrobit (= patogeenit): Bakteerit (esim. kolera), virukset (esim. influenssa), alkueliöt (esim. malaria), eräät sienet (esim. silsa) Aiheuttavat infektiotaudin Miten elimistö

Lisätiedot

Salliva syöminen opiskelukyvyn ja hyvinvoinnin tukena

Salliva syöminen opiskelukyvyn ja hyvinvoinnin tukena Salliva syöminen opiskelukyvyn ja hyvinvoinnin tukena Jonna Kekäläinen, terveydenhoitaja yamk 14.03.2019 Mitä on hyvä ja salliva syöminen? Terveyttä edistävää + Hyvää vireystilaa ylläpitävää + Sosiaalista

Lisätiedot

Luonnonmarjat ja kansanterveys. Raija Tahvonen MTT/BEL

Luonnonmarjat ja kansanterveys. Raija Tahvonen MTT/BEL Luonnonmarjat ja kansanterveys Raija Tahvonen MTT/BEL 15.8.2013 Jos poimit marjat itse, saat Liikuntaa Luonnossa liikkumisen hyvät vaikutukset aivoille Marjasi tuoreena Varman tiedot, mistä marjat ovat

Lisätiedot

Mind Master. Matti Vire 11.5.2013

Mind Master. Matti Vire 11.5.2013 Stressi = ympäristön yksilöön kohdistava uhka tai vahingollinen vaikutus sympaattinen hermojärjestelmä ja hypotalamus-aivolisäke-lisämunuainen aktivoituvat Akuutissa stressissä sydämen syke nousee, hengitys

Lisätiedot

Yksityiskohtaiset mittaustulokset

Yksityiskohtaiset mittaustulokset Yksityiskohtaiset mittaustulokset Jyrki Ahokas ahokasjyrki@gmail.com Näyttenottopäivä: 28.03.2019 Oma arvosi Väestöjakauma Hoitosuositusten tavoitearvo Matalampi riski Korkeampi riski Tässä ovat verinäytteesi

Lisätiedot

Itämeren ruokavalio. Kaisa Härmälä. Marttaliitto ry

Itämeren ruokavalio. Kaisa Härmälä. Marttaliitto ry Itämeren ruokavalio Kaisa Härmälä Marttaliitto ry Itämeren ruokavalio Kotimainen vaihtoehto Välimeren ruokavaliolle. Lähellä tuotettua. Sesongin mukaista. Välimeren ruokavalio Itämeren ruokavalio Oliiviöljy

Lisätiedot

Elimistö puolustautuu

Elimistö puolustautuu Elimistö puolustautuu Tautimikrobit (= patogeenit): Bakteerit (esim. kolera), virukset (esim. influenssa), alkueliöt (esim. malaria), eräät sienet (esim. silsa) Aiheuttavat infektiotaudin Mistä taudinaiheuttajat

Lisätiedot

Kananmuna sisältää muun muassa D-vitamiina ja runsaasti proteiinia

Kananmuna sisältää muun muassa D-vitamiina ja runsaasti proteiinia Jogurtti luomuhillolla on parempi vaihtoehto kuin puuro tai aamumurot. Tutkijat ovat yhä enenevästi havainneet, mitä näiden viljojen gluteeni aiheuttaa terveydellemme. Gluteeni on syyllinen yli 150 eri

Lisätiedot

PREDIALYYSI - kun munuaisesi eivät toimi normaalisti

PREDIALYYSI - kun munuaisesi eivät toimi normaalisti Sisäinen ohje 1 (5) PREDIALYYSI - kun munuaisesi eivät toimi normaalisti Munuaiset ovat pavunmuotoiset elimet ja ne sijaitsevat selkärankasi kummallakin puolella keskimäärin puolessa välissä selkääsi.

Lisätiedot

D-vitamiini voi ehkäistä tyypin 1 diabetesta

D-vitamiini voi ehkäistä tyypin 1 diabetesta D-vitamiini voi ehkäistä tyypin 1 diabetesta Arvo Ylpön aikana, viime vuosisadan ensimmäisinä vuosikymmeninä lasten D-vitamiinin saantisuositukset Suomessa olivat noin 100 µg/vuorokaudessa. Saantisuositusten

Lisätiedot

PREDIALYYSI - kun munuaisesi eivät toimi normaalisti

PREDIALYYSI - kun munuaisesi eivät toimi normaalisti PREDIALYYSI - kun munuaisesi eivät toimi normaalisti Munuaiset ovat pavunmuotoiset elimet ja ne sijaitsevat selkärankasi kummallakin puolella keskimäärin puolessa välissä selkääsi. Munuaiset toimivat suodattimena.

Lisätiedot

Etunimi: Henkilötunnus:

Etunimi: Henkilötunnus: Kokonaispisteet: Lue oheinen artikkeli ja vastaa kysymyksiin 1-25. Huomaa, että artikkelista ei löydy suoraan vastausta kaikkiin kysymyksiin, vaan sinun tulee myös tuntea ja selittää tarkemmin artikkelissa

Lisätiedot

Ravitsemus muistisairauksien ehkäisyssä. Mikko Rinta Laillistettu ravitsemusterapeutti Diacor terveyspalvelut Oy

Ravitsemus muistisairauksien ehkäisyssä. Mikko Rinta Laillistettu ravitsemusterapeutti Diacor terveyspalvelut Oy Ravitsemus muistisairauksien ehkäisyssä Mikko Rinta Laillistettu ravitsemusterapeutti Diacor terveyspalvelut Oy Mustisairaudet Suomessa Suomessa arvioidaan olevan 35 000 lievää ja 85 000 vähintään keskivaikeaa

Lisätiedot

Valio Oy RAVITSEMUKSEN PERUSTEET

Valio Oy RAVITSEMUKSEN PERUSTEET RAVITSEMUKSEN PERUSTEET SISÄLTÖ Ravinnon tehtävät Ravintoaineet Ruokaryhmät Energia Rasvat Hiilihydraatit Proteiinit Vitamiinit Kivennäisaineet Vesi RAVINNON TEHTÄVÄT Energian tuottaminen - Työ - Liikunta

Lisätiedot

VESILIUKOISET VITAMIINIT

VESILIUKOISET VITAMIINIT SUOJARAVINTOAINEET ENERGIAN LISÄKSI TARVITSEMME RAVINTOAINEITA ELINTOIMINTOJEMME YLLÄPITÄMISEEN JA SÄÄTELYTEHTÄVIIN SUOJARAVINTOAINEET VITAMIINIT KIVENNÄISAINEET eli mineraalit VESILIUKOISET VITAMIINIT

Lisätiedot

Adacolumn -hoito tulehduksellisten suolistosairauksien yhteydessä

Adacolumn -hoito tulehduksellisten suolistosairauksien yhteydessä Adacolumn -hoito tulehduksellisten suolistosairauksien yhteydessä Hellävarainen vallankumous IBD-tautien hoidossa Sisältö Maha-suolikanava...4 Haavainen paksusuolitulehdus...6 Crohnin tauti...8 Elimistön

Lisätiedot

santasport.fi URHEILIJAN RAVINTO Yläkouluakatemialeiri vko 32 2015 Santasport Lapin Urheiluopisto I Hiihtomajantie 2 I 96400 ROVANIEMI

santasport.fi URHEILIJAN RAVINTO Yläkouluakatemialeiri vko 32 2015 Santasport Lapin Urheiluopisto I Hiihtomajantie 2 I 96400 ROVANIEMI santasport.fi URHEILIJAN RAVINTO Yläkouluakatemialeiri vko 32 2015 Santasport Lapin Urheiluopisto I Hiihtomajantie 2 I 96400 ROVANIEMI 2 11.8.2015 PALAUTUMINEN -kehittymisen kulmakivi - Harjoittelun tarkoitus

Lisätiedot

TERVEELLINEN RAVITSEMUS OSANA ARKEA

TERVEELLINEN RAVITSEMUS OSANA ARKEA TERVEELLINEN RAVITSEMUS OSANA ARKEA Mitä kaikkea terveellinen ravinto on? Terveellinen ravinto Terveellisestä ruokavaliosta saa sopivasti energiaa ja tarvittavia ravintoaineita Terveellinen ravinto auttaa

Lisätiedot

vauriotyypit Figure 5-17.mhc.restriktio 9/24/14 Autoimmuniteetti Kudosvaurion mekanismit Petteri Arstila Haartman-instituutti Patogeeniset mekanismit

vauriotyypit Figure 5-17.mhc.restriktio 9/24/14 Autoimmuniteetti Kudosvaurion mekanismit Petteri Arstila Haartman-instituutti Patogeeniset mekanismit vauriotyypit Kudosvaurion mekanismit Autoimmuniteetti Petteri Arstila Haartman-instituutti Antigeenin tunnistus HLA:ssa pitää sisällään autoimmuniteetin riskin: jokaisella on autoreaktiivisia lymfosyyttejä

Lisätiedot

Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 2

Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 2 Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 2 Tulehdusten vaikutus neurodegeneratiivisiin tapahtumiin assosioituu vahvasti kaikkiin MS-taudin muotoihin. Aktiiviset leesiot liittyvät

Lisätiedot

Miten rokottaminen suojaa yksilöä ja rokotuskattavuus väestöä Merit Melin Rokotusohjelmayksikkö

Miten rokottaminen suojaa yksilöä ja rokotuskattavuus väestöä Merit Melin Rokotusohjelmayksikkö Miten rokottaminen suojaa yksilöä ja rokotuskattavuus väestöä Merit Melin Rokotusohjelmayksikkö 1 ESITYKSEN SISÄLTÖ Miten rokottaminen suojaa yksilöä? Immuunijärjestelmä Taudinaiheuttajilta suojaavan immuniteetin

Lisätiedot

VIIKKO 3. Ruuansulatus

VIIKKO 3. Ruuansulatus VIIKKO Ruuansulatus VIIKON SISÄLTÖ Video Alkusanat ja anatomia Ruuansulatusnesteet ja suolisto Mistä ruuansulatus muodostuu. 4 Bakteerit hyviä vai huonoja? Syöminen käytännössä Korjaavia toimenpiteitä

Lisätiedot

RAVITSEMUS MUISTISAIRAUKSIEN EHKÄISYSSÄ. Jan Verho Lailistettu ravitsemusterapeutti

RAVITSEMUS MUISTISAIRAUKSIEN EHKÄISYSSÄ. Jan Verho Lailistettu ravitsemusterapeutti RAVITSEMUS MUISTISAIRAUKSIEN EHKÄISYSSÄ Jan Verho Lailistettu ravitsemusterapeutti ELINTAPANEUVONTA EHKÄISEE MUISTIHÄIRIÖITÄ MUISTISAIRAUKSIEN EHKÄISY ALKAA JO KOHDUSSA Riittävä ravitsemus raskausaikana

Lisätiedot

Työhyvinvointia terveyttä edistämällä: Ravinto ja terveys. 24.10.2006 Henna-Riikka Seppälä 1

Työhyvinvointia terveyttä edistämällä: Ravinto ja terveys. 24.10.2006 Henna-Riikka Seppälä 1 Työhyvinvointia terveyttä edistämällä: Ravinto ja terveys 24.10.2006 Henna-Riikka Seppälä 1 RAVINNON MERKITYS TERVEYDELLE Onko merkitystä? Sydän- ja verisuonisairaudet Verenpaine Kolesteroli Ylipaino Diabetes

Lisätiedot

Maito ravitsemuksessa

Maito ravitsemuksessa Maito ravitsemuksessa Sisältö Ravitsemussuositukset kehottavat maidon juontiin Maidon ravintoaineet Mihin kalsiumia tarvitaan? Kalsiumin saantisuositukset Kuinka saadaan riittävä annos kalsiumia? D-vitamiinin

Lisätiedot

Urheilijan Ravintovalmennus Materiaalit. #Makroajattelu. Viikko 1 / Moduuli 1

Urheilijan Ravintovalmennus Materiaalit. #Makroajattelu. Viikko 1 / Moduuli 1 3 Viikko 1 Makroajattelu 2 Urheilijan Ravintovalmennus Materiaalit Viikko 1 / Moduuli 1 #Makroajattelu Materiaalien tarkoitus on toimia tiivistelmänä. Nostamme niissä olennaiset asiat esiin. Ne toimivat

Lisätiedot

HYVÄ RUOKA, PAREMPI MUISTI RAVITSEMUSASIANTUNTIJA, TTK SAARA LEINO 20.5.2014

HYVÄ RUOKA, PAREMPI MUISTI RAVITSEMUSASIANTUNTIJA, TTK SAARA LEINO 20.5.2014 HYVÄ RUOKA, PAREMPI MUISTI RAVITSEMUSASIANTUNTIJA, TTK SAARA LEINO 20.5.2014 TÄNÄÄN KESKUSTELLAAN: Muistisairauksien ehkäisyn merkitys Yleisimmät muistisairauden Suomessa ja niiden riskitekijät Mitkä ravitsemukselliset

Lisätiedot

Kuinka entsyymit toimivat?

Kuinka entsyymit toimivat? Mitä ovat entsyymit? Entsyymit ovat proteiineja, jotka toimivat kemiallisten reaktioiden katalysaattorina elimistössä. Niitä voidaan verrata liekin puhaltamiseen tulen sytyttämiseksi. Jos liekkeihin ei

Lisätiedot

Ravitsemus ja mielenterveys. Anette Palssa Laillistettu ravitsemusterapeutti, TtM Kognitiivinen lyhytterapeutti

Ravitsemus ja mielenterveys. Anette Palssa Laillistettu ravitsemusterapeutti, TtM Kognitiivinen lyhytterapeutti Ravitsemus ja mielenterveys Anette Palssa Laillistettu ravitsemusterapeutti, TtM Kognitiivinen lyhytterapeutti Mieti hetki parin kanssa Mikä on tärkeää mielenterveyskuntoutujan ravitsemusohjauksessa? Mitä

Lisätiedot

Tulehdusta vähentävä ruokavalio. Marja Vanhala FT, laillistettu ravitsemusterapeutti, ODL Liikuntaklinikka

Tulehdusta vähentävä ruokavalio. Marja Vanhala FT, laillistettu ravitsemusterapeutti, ODL Liikuntaklinikka Tulehdusta vähentävä ruokavalio Marja Vanhala FT, laillistettu ravitsemusterapeutti, ODL Liikuntaklinikka Esityksen sisältöä Tulehdus, sen yhteys sairauksiin ja tunnistaminen Tulehdusta vähentävä ruokavalio

Lisätiedot

Valio Oy TYÖIKÄISEN RAVITSEMUS JA TERVEYS

Valio Oy TYÖIKÄISEN RAVITSEMUS JA TERVEYS TYÖIKÄISEN RAVITSEMUS JA TERVEYS MONIPUOLISEN RUOKAVALION PERUSTA Vähärasvaisia ja rasvattomia maitotuotteita 5-6 dl päivässä sekä muutama viipale vähärasvaista ( 17 %) ja vähemmän suolaa sisältävää juustoa.

Lisätiedot

Terveellinen kaura. Lumoudu kaurasta Kaurapäivä 1.10.2013. Kaisa Mensonen Leipätiedotus ry

Terveellinen kaura. Lumoudu kaurasta Kaurapäivä 1.10.2013. Kaisa Mensonen Leipätiedotus ry Terveellinen kaura Lumoudu kaurasta Kaurapäivä 1.10.2013 Kaisa Mensonen Leipätiedotus ry Mikä on Leipätiedotus? Leipomoalan yhteinen tiedotusyksikkö Perustettu 1961 Rahoitus Perusbudjetti jäsenmaksuista

Lisätiedot

Liikunnan merkitys työkykyyn ja arjen jaksamiseen

Liikunnan merkitys työkykyyn ja arjen jaksamiseen Liikunnan merkitys työkykyyn ja arjen jaksamiseen tauoton liikkumaton tupakkapitoinen kahvipitoinen runsasrasvainen alkoholipitoinen heikkouninen? Miten sinä voit? Onko elämäsi Mitä siitä voi olla seurauksena

Lisätiedot

Perinnöllisyyden perusteita

Perinnöllisyyden perusteita Perinnöllisyyden perusteita Eero Lukkari Tämä artikkeli kertoo perinnöllisyyden perusmekanismeista johdantona muille jalostus- ja terveysaiheisille artikkeleille. Koirien, kuten muidenkin eliöiden, perimä

Lisätiedot

Pienryhmä 3 immuunipuolustus, ratkaisut

Pienryhmä 3 immuunipuolustus, ratkaisut Pienryhmä 3 immuunipuolustus, ratkaisut 1. Biologian yo 2013 mukailtu. Merkitse onko väittämä oikein vai väärin, Korjaa väärien väittämien virheet ja perustele korjauksesi. a. Syöjäsolut vastaavat elimistön

Lisätiedot

Proteiinia ja kuitua Muutakin kuin papupataa Palkokasvien käyttö elintarvikkeena

Proteiinia ja kuitua Muutakin kuin papupataa Palkokasvien käyttö elintarvikkeena Proteiinia ja kuitua Muutakin kuin papupataa Palkokasvien käyttö elintarvikkeena 30.5.2018 Erikoistutkija Susanna Rokka Luonnonvarakeskus Suomalaiset ravitsemussuositukset Tutkimusten mukaan runsas kasvisten

Lisätiedot

Diabetes. Iida, Sofia ja Vilma

Diabetes. Iida, Sofia ja Vilma Diabetes Iida, Sofia ja Vilma Diabetes Monia aineenvaihduntasairauksia, joissa veren sokeripitoisuus kohoaa liian korkeaksi Useimmiten syynä on haiman erittämän insuliinihormonin vähäisyys tai sen puuttuminen

Lisätiedot

KANSAINVÄLINEN KATSAUS AJANKOHTAISEEN YMPÄRISTÖSAIRAUSTUTKIMUKSEEN

KANSAINVÄLINEN KATSAUS AJANKOHTAISEEN YMPÄRISTÖSAIRAUSTUTKIMUKSEEN KANSAINVÄLINEN KATSAUS AJANKOHTAISEEN YMPÄRISTÖSAIRAUSTUTKIMUKSEEN Suomen Ympäristösairauskeskus perustettiin viime vuonna ajantasaisen ympäristösairaustiedon asiantuntijakeskukseksi. Tavoitteena on ajantasaisen,

Lisätiedot

Valio Oy LAKTOOSI-INTOLERANSSI JA LAKTOOSITON RUOKAVALIO

Valio Oy LAKTOOSI-INTOLERANSSI JA LAKTOOSITON RUOKAVALIO LAKTOOSI-INTOLERANSSI JA LAKTOOSITON RUOKAVALIO MITÄ ON LAKTOOSI? Laktoosi on maitosokeria. Maitotuotteet sisältävät aina hiilihydraatteja, koska maidossa on luonnostaan laktoosia. lehmänmaidossa n. 4,8

Lisätiedot

FORMARE 2015. Ravinnon merkitys hyvinvoinnille - ja ohjeet terveelliseen ruokavalioon

FORMARE 2015. Ravinnon merkitys hyvinvoinnille - ja ohjeet terveelliseen ruokavalioon FORMARE 2015 Ravinnon merkitys hyvinvoinnille - ja ohjeet terveelliseen ruokavalioon Sisältö Kalorit ja kulutus Proteiini Hiilihydraatti Rasva Vitamiinit Kivennäis- ja hivenaineet Vesi ja nesteytys Ravintosuositukset

Lisätiedot

Mistä tyypin 2 diabeteksessa on kyse?

Mistä tyypin 2 diabeteksessa on kyse? Mistä tyypin 2 diabeteksessa on kyse? Kenelle kehittyy tyypin 2 diabetes? Perimällä on iso osuus: jos lähisukulaisella on tyypin 2 diabetes, sairastumisriski on 50-70% Perinnöllinen taipumus vaikuttaa

Lisätiedot

DNA:n informaation kulku, koostumus

DNA:n informaation kulku, koostumus DNA:n informaation kulku, koostumus KOOSTUMUS Elävien bio-organismien koostumus. Vety, hiili, happi ja typpi muodostavat yli 99% orgaanisten molekyylien rakenneosista. Biomolekyylit voidaan pääosin jakaa

Lisätiedot

Valitse oikea vastaus. Joskus voi olla useampi kuin yksi vaihtoehto oikein. Merkitse rastilla, mikä/mitkä vaihtoehdot ovat oikein.

Valitse oikea vastaus. Joskus voi olla useampi kuin yksi vaihtoehto oikein. Merkitse rastilla, mikä/mitkä vaihtoehdot ovat oikein. Valitse oikea vastaus. Joskus voi olla useampi kuin yksi vaihtoehto oikein. Merkitse rastilla, mikä/mitkä vaihtoehdot ovat oikein. 1. Ruoka-ainekolmiossa ne elintarvikkeet, joita on hyvä syödä joka päivä,

Lisätiedot

Urheilijan ravitsemus ja vastustuskyky - Valion tuotteet urheilijan ravitsemuksessa

Urheilijan ravitsemus ja vastustuskyky - Valion tuotteet urheilijan ravitsemuksessa Urheilijan ravitsemus ja vastustuskyky - Valion tuotteet urheilijan ravitsemuksessa Infektiot, allergiat ja astma urheilussa sairaudet ja vammat urheilussa UKK-instituutti 5.11.2012 Marika Laaksonen, ETT,

Lisätiedot

Ravitsemuksen ABC. Kuopion Reippaan Voimistelijat Ry Ravitsemustieteen opiskelija Noora Mikkonen

Ravitsemuksen ABC. Kuopion Reippaan Voimistelijat Ry Ravitsemustieteen opiskelija Noora Mikkonen Ravitsemuksen ABC Kuopion Reippaan Voimistelijat Ry Ravitsemustieteen opiskelija Noora Mikkonen Tulossa La 25.10. La 8.11. La 15.11. La 22.11. La 29.11. Energiaravintoaineiden kirjo: energian tarve ja

Lisätiedot

Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 2

Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 2 Kuinka ravinto ja elintavat vaikuttavat MS-taudin etenemiseen? Osa 2 Tulehdusten vaikutus neurodegeneratiivisiin tapahtumiin assosioituu vahvasti kaikkiin MS-taudin muotoihin. Aktiiviset leesiot liittyvät

Lisätiedot

Ravitsemuksen ABC Energiaravintoaineet - proteiinin ja rasvan rooli

Ravitsemuksen ABC Energiaravintoaineet - proteiinin ja rasvan rooli Ravitsemuksen ABC Energiaravintoaineet - proteiinin ja rasvan rooli 8.11.2014 Kuopion Reippaan Voimistelijat Ry Ravitsemustieteen opiskelija Noora Mikkonen Aikataulu 25.10. Energiaravintoaineiden kirjo:

Lisätiedot

Biologia. Pakolliset kurssit. 1. Eliömaailma (BI1)

Biologia. Pakolliset kurssit. 1. Eliömaailma (BI1) Biologia Pakolliset kurssit 1. Eliömaailma (BI1) tuntee elämän tunnusmerkit ja perusedellytykset sekä tietää, miten elämän ilmiöitä tutkitaan ymmärtää, mitä luonnon monimuotoisuus biosysteemien eri tasoilla

Lisätiedot

Ruoansulatus ja suolisto

Ruoansulatus ja suolisto Ruoansulatus ja suolisto Suoliston ja suolistoflooran terveys on hyvän terveyden ja hyvinvoinnin lähtökohta. Kun suolisto voi huonosti, myös ihminen voi huonosti. Se ei ole ihme, sillä suoliston limakalvo

Lisätiedot

Laktoosi-intoleranssi ja laktoositon ruokavalio

Laktoosi-intoleranssi ja laktoositon ruokavalio Laktoosi-intoleranssi ja laktoositon ruokavalio Mitä on laktoosi? Maitotuotteet sisältävät aina hiilihydraatteja, koska maidossa on luonnostaan laktoosia eli maitosokeria. Lehmänmaidossa on n. 4,8 % maitosokeria

Lisätiedot

Vitamiinit. Tärkeimpiä lähteitä: maksa, maitotuotteet, porkkana, parsakaali ja pinaatti

Vitamiinit. Tärkeimpiä lähteitä: maksa, maitotuotteet, porkkana, parsakaali ja pinaatti Vitamiinit A-vitamiini Tärkeimpiä lähteitä: maksa, maitotuotteet, porkkana, parsakaali ja pinaatti Välttämätön näköaistimuksen syntyyn hämärässä, solujen kasvuun ja erilaistumiseen sekä ihmisen lisääntymiseen.

Lisätiedot

REUMA JA SYDÄN KARI EKLUND HELSINGIN REUMAKESKUS

REUMA JA SYDÄN KARI EKLUND HELSINGIN REUMAKESKUS REUMA JA SYDÄN KARI EKLUND HELSINGIN REUMAKESKUS Sisältö Sydän ja nivelreuma Sydän- ja verisuonitaudit - ateroskleroosi - riskitekijät Nivelreuma ja sydän- ja verisuonitaudit - reumalääkitys ja sydän Kuinka

Lisätiedot

Ihmiskeho. Ruoansulatus. Jaana Ohtonen Kielikoulu/Språkskolan Haparanda. söndag 16 februari 14

Ihmiskeho. Ruoansulatus. Jaana Ohtonen Kielikoulu/Språkskolan Haparanda. söndag 16 februari 14 Ihmiskeho Ruoansulatus Ruoansulatus Keho voi ottaa talteen ja käyttää hyvin pieniä molekyylejä. Useimmat ravintoaineet ovat suuria molekyllejä. Ravintoaineet on hajotettava pieniksi osasiksi ennen kuin

Lisätiedot

BI4 IHMISEN BIOLOGIA

BI4 IHMISEN BIOLOGIA BI4 IHMISEN BIOLOGIA 5 HORMONIT OVAT ELIMISTÖN TOIMINTAA SÄÄTELEVIÄ VIESTIAINEITA Avainsanat aivolisäke hormoni hypotalamus kasvuhormoni kortisoli palautesäätely rasvaliukoinen hormoni reseptori stressi

Lisätiedot

BIOLÄÄKETIETEEN LÄPIMURROT

BIOLÄÄKETIETEEN LÄPIMURROT BIOLÄÄKETIETEEN LÄPIMURROT Jussi Huttunen Tampere 20.4.2016 LÄÄKETIETEEN MEGATRENDIT Väestö vanhenee ja sairauskirjo muuttuu Teknologia kehittyy - HOITOTEKNOLOGIA - tietoteknologia Hoito yksilöllistyy

Lisätiedot

Anatomia ja fysiologia 1

Anatomia ja fysiologia 1 Anatomia ja fysiologia 1 Tehtävät Laura Partanen 2 Sisällysluettelo Solu... 3 Aktiopotentiaali... 4 Synapsi... 5 Iho... 6 Elimistön kemiallinen koostumus... 7 Kudokset... 8 Veri... 9 Sydän... 10 EKG...

Lisätiedot

Vahva suolisto vahva vastustuskyky. Matti Vire 7.9.2013

Vahva suolisto vahva vastustuskyky. Matti Vire 7.9.2013 Ihmisen ruuansulatuksen muodostavat: Suu Mahalaukku Maksa (sappi) Haima Ohutsuoli Paksusuoli Peräsuoli Suun tehtävät: Pureskelu Syljen eritys Entsyymien eritys Mahalaukun tehtävät: Suolahapon eritys Pepsiinin

Lisätiedot

URHEILIJAN RAVINTO. Ateriarytmi, Urheilijan lautasmalli. Yläkouluakatemia Vko 31. santasport.fi

URHEILIJAN RAVINTO. Ateriarytmi, Urheilijan lautasmalli. Yläkouluakatemia Vko 31. santasport.fi santasport.fi URHEILIJAN RAVINTO Ateriarytmi, Urheilijan lautasmalli Yläkouluakatemia 2016-2017 Vko 31 Santasport Lapin Urheiluopisto I Hiihtomajantie 2 I 96400 ROVANIEMI Ravintovalmennuksen tavoitteet

Lisätiedot

8 LEIPÄ JA VILJA RAVITSEMUKSESSA. Leipä ja vilja ravitsemuksessa (8)

8 LEIPÄ JA VILJA RAVITSEMUKSESSA. Leipä ja vilja ravitsemuksessa (8) 8 LEIPÄ JA VILJA RAVITSEMUKSESSA Leipä ja vilja ravitsemuksessa (8) Mitä leipä on? Kivennäisaineita Magnesiumia Rautaa Kaliumia Hivenaineita Sinkkiä Seleeniä Vettä Energiaa Hiilihydraatteja Proteiineja

Lisätiedot

Syö muistisi hyväksi

Syö muistisi hyväksi Syö muistisi hyväksi Satu Jyväkorpi Ravitsemustieteilijä, ETM Tohtorikoulutettava, Helsingin yliopisto Gerontologinen ravitsemus Gery ry www.gery.fi Muistisairaiden määrä lisääntyy Muistisairauksiin sairastuu

Lisätiedot

Läpimurto ms-taudin hoidossa?

Läpimurto ms-taudin hoidossa? Läpimurto ms-taudin hoidossa? Läpimurto ms-taudin hoidossa? Kansainvälisen tutkijaryhmän kliiniset kokeet uudella lääkkeellä antoivat lupaavia tuloksia sekä aaltoilevan- että ensisijaisesti etenevän ms-taudin

Lisätiedot

Solun perusrakenne I Solun perusrakenne. BI2 I Solun perusrakenne 3. Solujen kemiallinen rakenne

Solun perusrakenne I Solun perusrakenne. BI2 I Solun perusrakenne 3. Solujen kemiallinen rakenne Solun perusrakenne I Solun perusrakenne 3. Solujen kemiallinen rakenne 1. Avainsanat 2. Solut koostuvat molekyyleistä 3. Hiilihydraatit 4. Lipidit eli rasva-aineet 5. Valkuaisaineet eli proteiinit rakentuvat

Lisätiedot

Ketogeeninen ruokavalio aineenvaihdunta

Ketogeeninen ruokavalio aineenvaihdunta Ketogeeninen ruokavalio aineenvaihdunta Ketogeeninen ruokavalio kääntää perinteiset ravintosuositukset päälaelleen. Vähähiilihydraattisena ruokavaliona se ylittää aika ajoin uutiskynnyksen keskustelu sen

Lisätiedot

Fitness Lisäravinteet Anti-aging. Terveys kiinnostaa meitä enemmän kuin koskaan, mutta silti terveysriskit ovat lisääntyneet. On aika kysyä miksi!

Fitness Lisäravinteet Anti-aging. Terveys kiinnostaa meitä enemmän kuin koskaan, mutta silti terveysriskit ovat lisääntyneet. On aika kysyä miksi! Fitness Lisäravinteet Anti-aging Terveys kiinnostaa meitä enemmän kuin koskaan, mutta silti terveysriskit ovat lisääntyneet. On aika kysyä miksi! Uskomme, että yksi syy siihen on huomattava muutos välttämättömien

Lisätiedot

TARTUNTATAUDIT Ellen, Olli, Maria & Elina

TARTUNTATAUDIT Ellen, Olli, Maria & Elina TARTUNTATAUDIT Ellen, Olli, Maria & Elina ELIMISTÖN PUOLUSTUSKYKY Immuniteetti eli vastutuskyky on elimistön kyky suojautua tarttuvilta taudeilta Jos tauteja aiheuttavat mikrobit uhkaavat elimistöä, käynnistyy

Lisätiedot

Syöpä. Ihmisen keho muodostuu miljardeista soluista. Vaikka. EGF-kasvutekijä. reseptori. tuma. dna

Syöpä. Ihmisen keho muodostuu miljardeista soluista. Vaikka. EGF-kasvutekijä. reseptori. tuma. dna Ihmisen keho muodostuu miljardeista soluista. Vaikka nämä solut ovat tietyssä mielessä meidän omiamme, ne polveutuvat itsenäisistä yksisoluisista elämänmuodoista, jotka ovat säilyttäneet monia itsenäisen

Lisätiedot

Ureakierron häiriöt ja rgaanishappovirtsaisuudet Lapsille

Ureakierron häiriöt ja rgaanishappovirtsaisuudet Lapsille Ureakierron häiriöt ja rgaanishappovirtsaisuudet Lapsille www.e-imd.org Mikä on ureakierron häiriö/orgaanishappovirtsaisuus? Kehomme hajottaa syömämme ruoan tuhansien kemiallisten reaktioiden avulla ja

Lisätiedot

URHEILIJAN RAVINTO Ravinnon laatu, suojaravintoaineet

URHEILIJAN RAVINTO Ravinnon laatu, suojaravintoaineet santasport.fi URHEILIJAN RAVINTO Ravinnon laatu, suojaravintoaineet Yläkouluakatemia 2015-2016 Vko 36 Santasport Lapin Urheiluopisto I Hiihtomajantie 2 I 96400 ROVANIEMI SUOJARAVINTOAINEET https://www.youtube.com/watch?v=cgcpdskk1o8&spfreload=10

Lisätiedot

Pellavansiemenen. 6/2009 Hyvinvointia pellavasta -hanke

Pellavansiemenen. 6/2009 Hyvinvointia pellavasta -hanke Pellavansiemenen terveysvaikutukset Kooste Lähteenä käytetty artikkelia TarpilaA, WennbergT. TarpilaS: Flaxseedas a functionalfood. Current Topics in Neutraceutical Research 2005 (3);3:167-188 1 Sisällysluettelo

Lisätiedot

SUKLAA JA SYDÄNTERVEYS

SUKLAA JA SYDÄNTERVEYS SUKLAA JA SYDÄNTERVEYS terveystuote vai haitallinen herkku? Jaakko Mursu, TtM,, ravitsemusterapeutti Ravitsemusepidemiologian jatko opiskelija opiskelija Kansanterveyden tutkimuslaitos, Kuopion yliopisto

Lisätiedot

Laktoosi-intoleranssi ja laktoositon ruokavalio

Laktoosi-intoleranssi ja laktoositon ruokavalio Laktoosi-intoleranssi ja laktoositon ruokavalio Mitä on laktoosi? Maidon luonnollinen hiilihydraatti, jota kutsutaan myös maitosokeriksi. Äidinmaidossa laktoosia n. 7 g/100 g, lehmänmaidossa n. 4,8 g/100

Lisätiedot

Liikunnan merkitys työkykyyn ja arjen jaksamiseen Maria Leisti, Elixia

Liikunnan merkitys työkykyyn ja arjen jaksamiseen Maria Leisti, Elixia Liikunnan merkitys työkykyyn ja arjen jaksamiseen Maria Leisti, Elixia tauoton liikkumaton tupakkapitoinen kahvipitoinen runsasrasvainen alkoholipitoinen heikkouninen? Miten sinä voit? Onko elämäsi Mitä

Lisätiedot

Tulehdus ja karsinogeneesi. Tulehduksen osuus syövän synnyssä. Tulehdus ja karsinogeneesi. Tulehdus ja karsinogeneesi. Tulehdus ja karsinogeneesi

Tulehdus ja karsinogeneesi. Tulehduksen osuus syövän synnyssä. Tulehdus ja karsinogeneesi. Tulehdus ja karsinogeneesi. Tulehdus ja karsinogeneesi Tulehduksen osuus syövän synnyssä Ari Ristimäki, professori Patologia Helsingin yliopisto esiasteissa ja useissa eri syöpäkasvaintyypeissä. 1 A Mantovani, et al. NATURE Vol 454 24 July 2008 Figure 15.22d

Lisätiedot

Nuoren urheilijan ravitsemus. Kari Korpilahti sisätautien ja kardiologian erikoislääkäri 10.3.2015

Nuoren urheilijan ravitsemus. Kari Korpilahti sisätautien ja kardiologian erikoislääkäri 10.3.2015 Nuoren urheilijan ravitsemus Kari Korpilahti sisätautien ja kardiologian erikoislääkäri 10.3.2015 Sisältö Miksi oikea ravitsemus on tärkeää nuorelle urheilijalle Ruokavalion pääperiaatteet Energiatasapaino

Lisätiedot

Firmagon eturauhassyövän hoidossa

Firmagon eturauhassyövän hoidossa Firmagon eturauhassyövän hoidossa Käytännön tietoa ja ohjeita potilaalle Eturauhassyöpään sairastuminen ja sen hoito aiheuttavat uuden elämäntilanteen. Mielessä voi pyöriä monia kysymyksiä. Ajatusten kanssa

Lisätiedot