Locating multiple inclusions from sweep data of electrical impedance tomography
|
|
- Elsa Jokinen
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 Aalto University School of Science Otto Seiskari Locating multiple inclusions from sweep data of electrical impedance tomography Master s thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Technology in the Degree Programme in Engineering Physics and Mathematics. Espoo, 18th November 2011 Supervisor: Instructor: Professor Olavi Nevanlinna Academy Research Fellow Nuutti Hyvönen
2 Preface First, I wish to express my gratitude to my thesis instructor Nuutti Hyvönen for his remarkable dedication and the excellent advice I received throughout the writing process. In addition, I would like to acknowledge Lauri Harhanen for providing his code for the numerical simulations and the Finnish Funding Agency for Technology and Innovation TEKES for supporting this work (contract 40370/08). For me, this thesis has been an interesting opportunity to learn mathematics and dive into the current inverse problem research. Thanks are also due to my friends and family who always brighten my life outside work and studies. Especially I would like to thank my parents Johanna and Pekka, my sister Essi and my girlfriend Niina. Espoo, 18th November 2011 Otto Seiskari i
3 Aalto University School of Science Abstract of the Master s Thesis Author: Title: Supervisor: Instructor: Degree programme: Otto Seiskari Locating multiple inclusions from sweep data of electrical impedance tomography Professor Olavi Nevanlinna Academy Research Fellow Nuutti Hyvönen Degree Programme in Engineering Physics and Mathematics Major subject: Mathematics Minor subject: Computer Science Chair (code): Mat-1 Abstract: Electrical impedance tomography (EIT) is the practice of estimating the position-dependent electrical properties of a body from current and voltage measurements on its boundary. It has numerous present and prospective applications in, among others, medical imaging, geophysics and non-destructive material testing. This thesis studies sweep data of EIT, which is a recent concept associated with a special two-electrode measurement introduced in [21] by Hyvönen, Harhanen and Hakula. Based on the recent paper [16] by Hanke, where a similar analysis is carried out for a related novel EIT measurement, the backscatter data, a method for locating inclusions of different conductivities in an otherwise homogeneous disk-shaped object is devised. The cornerstone of the analysis is a certain factorization of the difference Neumann-to-Dirichlet map, which is proven valid under somewhat weaker assumptions than in [16]. The factorization is subsequently used to construct an asymptotic small inclusion expansion and prove that sweep data can be interpreted as the boundary value of a complex analytic function. As a new result, the method presented here has the capability of extracting information about the conductivities and sizes of the inclusions. Even though inspired by the devised properties, the algorithm is not entirely backed by theory, but the numerical results strongly indicate that it works as desired. Pages: v+83 Language: English Date: 18th November 2011 Keywords: electrical impedance tomography, inverse problems, layer potential, conductivity equation, Sobolev space, Laurent Padé approximant ii
4 Aalto-yliopisto Perustieteiden korkeakoulu Diplomityön tiivistelmä Tekijä: Työn nimi: Työn valvoja: Työn ohjaaja: Koulutusohjelma: Otto Seiskari Useiden inkluusioiden paikantaminen impedanssitomografian sweep-datasta Professori Olavi Nevanlinna Akatemiatutkija Nuutti Hyvönen Teknillisen fysiikan ja matematiikan tutkinto-ohjelma Pääaine: Matematiikka Sivuaine: Tietotekniikka Opetusyksikön (ent. professuuri) koodi: Mat-1 Tiivistelmä: Impedanssitomografiassa (EIT) kappaleen paikkariippuvia sähköisiä ominaisuuksia yritetään selvittää sen pinnalla mitattujen sähkövirtojen ja -jännitteiden perusteella. Sillä on sovelluksia esimerkiksi lääketieteellisessä kuvantamisessa, geofysiikassa sekä materiaalien testauksessa. Tässä diplomityössä tutkitaan impedanssitomografian sweep-dataa, joka on Hyvösen, Harhasen ja Hakulan artikkelissa [21] esitelty uusi, tiettyyn kahden elektrodin EIT-mittaukseen liittyvä käsite. Diplomityössä esitellään menetelmä, jossa muuten homogeenisesta kiekkomaisesta kappaleesta paikannetaan sähkönjohtavuudeltaan poikkeavia inkluusioita. Menetelmä pohjautuu Hanken artikkeliin [16], jossa analysoidaan vastaavalla tavalla EIT:n takaisinsirontadataa, joka on sweepdatan kaltainen ja tähän läheisesti liittyvä uusi käsite. Työssä teoreettinen tarkastelu nojautuu tiettyyn Neumann Dirichleterotuskuvauksen faktorointiin, jonka todistetaan pätevän heikommilla oletuksilla, kuin artikkelissa [16]. Faktoroinnin avulla muodostetaan asymptoottinen pieninkluusiokehitelmä ja todistetaan, että sweep-data voidaan tulkita kompleksianalyyttisen funktion reuna-arvona. Uutena tuloksena esitetty menetelmä kykenee laskemaan inkluusioiden johtavuuksiin ja kokoihin liittyviä tietoja. Vaikka algoritmi mukailee sweep-datan teoreettisia ominaisuuksia, eivät todistetut tulokset takaa sen toimivuutta. Numeeriset esimerkit kuitenkin viittaavat vahvasti siihen, että menetelmä toimii halutulla tavalla. Sivumäärä: v+83 Kieli: englanti Päivämäärä: Avainsanat: impedanssitomografia, inversio-ongelmat, layer-potentiaali, johtavuusyhtälö, Sobolev-avaruus, Laurent Padé-approksimantti iii
5 Contents 1 Introduction 1 2 Preliminaries Complex analysis Continuous function spaces L p spaces Distributions Sobolev spaces Regular domains and boundaries Sobolev spaces in domains Boundary spaces and trace theorems Zero mean and definition up to constant Elliptic PDEs Green s identities Laplace s equation Variational formulation The Neumann Green function Electrical impedance tomography Physics of the conductivity equation EIT forward models Neumann-to-Dirichlet maps Sweep and backscatter data Regular inclusion theory Spaces on the inclusions Diffraction problem formulation Layer potentials Factorization of Λ σ Λ Asymptotic expansion Holomorphic extension Reconstruction Laurent Padé approximants Sweep data reconstruction Numerical examples Concluding remarks 80 iv
6 Notation The following notation is used in this work. It is assumed that the reader is familiar with these concepts. Consult e.g. [13] for details. N, N 0 natural numbers N = {1, 2, 3,...}, N 0 := {0} N. Z integers R, C real and complex numbers C R [a, b) half-open interval {x R : a x < b} F n n-dimensional vectors with elements in F F n m n m matrices with elements in F (F n = F n 1 ) Euclidean norm in C n e 1,..., e n orthonormal system of coordinate unit vectors in R n D dx, (Lebesgue) measure of D Rn D u dx 1/ D u dx, average of u over D ffld D B r (x) open unit ball {y R n : y x < r} in R n ω n area (surface measure) of the unit sphere B 1 (0) in R n χ D indicator function: χ D (x) = 1 if x D and 0 otherwise U D compactly contained set: U Int D D, D closure and boundary of D (R n, ) z complex conjugate of z C D α partial derivative of multi-order α N n 0,, curl, divergence, gradient Laplace operator (bilinear) dot product in C n M T transpose of the matrix M f(x) O f(x) = O(g(x)) as x z lim sup x z <. g(x) f(x) o f(x) = o(g(x)) as x z lim x z g(x) x the least integer greater than or equal to x R x the greatest integer less than or equal to x A, A topological dual and anti-dual of the vector space A (, ) V sesquilinear inner product in a Hibert space V, V dual evaluation between V and V no subscript: operator norm (unless stated otherwise) v
7 1 Introduction Electrical impedance tomography The spatial variations of electrical properties, such as conductivity and permittivity, of the medium inside an object can reveal valuable information about its contents. For instance, the conductivity of certain tumours differs clearly from that of healthy tissue. It is also possible to find underground mineral deposits or detect various structural defects in materials on the grounds of the conductivity or permittivity differences in the relevant media. The core idea of electrical impedance tomography (EIT) is to determine the position-dependent electrical properties of a body based on current and voltage measurements on its boundary. It has a wide range of potential applications and it has already been successively applied in, among others, medical imaging, non-destructive material testing and geophysics. EIT research was pioneered by Calderón in the 1980 s and, along with other related inverse problems, continues to be an active field today. [5][7][30] Inverse problems In the beginning of the 20th century, Jacques Hadamard stated the definition of a well-posed mathematical problem: a solution of the problem must exists, be unique and depend continuously on the data. Problems that do not meet these three conditions are called ill-posed and were long considered to be outside the scope of meaningful mathematical analysis. However, it appears that a large class of relevant problems do not fulfil Hadamard s conditions. In particular, many problems are unstable in the sense that small changes in their input data can cause arbitrarily large variations in their solutions. In the case of real-life computational problems, where the data includes noise and systematic measurement errors, such a phenomenon is disastrous if not treated properly. The keys to solving ill-posed problems are regularization and a priori knowledge about the solution. In practical terms, regularized solutions can be seen as compromises between resolution and error. These subjects are studied by inverse mathematics where the ill-posed questions are typically formulated as certain backwards versions of well-posed and often more well-understood problems. An archetypal example is EIT, in which the well-posed forward problem is, informally: given the conductivity of a body, determine the relationship between the currents and voltages on its boundary. The EIT inverse problem can be stated as: given the relationship between the currents and voltages, determine the conductivity. The latter problem is severely non-linear and illposed by nature. 1
8 This thesis This work studies a special two-electrode EIT measurement, where one electrode is stationary and the other moves around a circular object (as illustrated in Figure 1(a) on page 39). This leads one to the notion of sweep data, which was introduced in the recent paper [21] by Hyvönen, Harhanen and Hakula. A method for locating inhomogeneities (also called inclusions) in an otherwise homogeneous medium from a noisy measurement is devised. The method relies on the so-called Laurent-Padé approximants and it is based on a similar method introduced by Hanke [16] for backscatter data of EIT [18], which is likewise a novel concept and closely related to sweep data. The term backscatter originates from inverse scattering theory (e.g. RADAR), where an analogous concept is commonly encountered. The approach in this thesis is mostly theoretical, but numerical examples are also presented in the end. A lot of effort is put into elaborating the necessary modern mathematical machinery to a reader with undergraduate mathematical background. Section 2 provides some preliminary concepts, which represent well-known mathematics from the first half of the 20th century and before. These are included for convenience and in order to remove ambiguity from the definitions of the important concepts. The material in Sections 3 and 4 represents basic theory of elliptic partial differential equations (PDEs) in distributional Sobolev spaces, that has been well-established since the 1980 s mostly 1970 s or earlier. Section 5 presents the mathematical definitions of the central forward models and inverse problems in EIT, augmented by some physical arguments. In particular, the conductivity equation, an elliptic PDE, which models behaviour of static and time-harmonic electromagnetic fields in inhomogeneous media, and is thus the basis of EIT, is explained in detail. The definitions of sweep and backscatter data are also given in this section. EIT problems with certain a priori assumptions on the regularity of the inclusions are studied in Section 6 using layer potential techniques. The utilized factorization and polarization tensor methods represent recent inverse mathematics from the late 1990 s and 2000 s (see the book by Ammari & Kang [1] and references therein). Section 6.6 further specializes to the two-dimensional problem with circular boundary and constructs a (complex) asymptotic expansion for sweep data as a new result. Much of the analysis in this section is based on the recent paper [16] by Hanke, but the asymptotic expansions are proven valid under weaker regularity assumptions (on the inclusion boundaries) than in [16], and for distributional input currents unlike in [1]. It is demonstrated in Section 7 how the theoretical properties of sweep data can be used to inspire the design of a numerical reconstruction algorithm. The 2
9 method is mostly a straightforward reformulation of the algorithm devised by Hanke for backscatter data, but a certain new modification makes it possible to appraise whether the detected inclusions are conductive or resistive compared to the background. Furthermore, a certain combined measure of size and conductivity of the inclusion, the net conductivity effect introduced on page 63, can be approximated for separate inclusions. Still, there is a theoretical gap between the reconstruction method and the preceding analysis. Any result that would yield appropriate theoretical justification for the method has not been devised. In addition to showing one possible direction for future research, this increases the need for numerical experiments to test the eligibility of the method. A set of numerical examples and some implementation details are presented in Section 7.3. The examples strongly suggest that the method works as desired indeed better than could be expected on the grounds of known theory. 3
10 2 Preliminaries This section is provided for completeness, convenience of the reader and foremost to remove ambiguity from the definitions of the important concepts (such as C k -smooth functions). Consult e.g. [13], [32] and [20, Vol. I] for more detailed introductions to these concepts. 2.1 Complex analysis Definition 2.1 (Holomorphic functions). A function f : D C, where D is an open subset of C is called holomorphic (or complex analytic) if it is complex differentiable, that is, the limit exists 1 for all z D. [20, Vol. I 4.2] df f(z + h) f(z) (z) := lim dz h 0 h Complex differentiability is a very strong condition. From the existence of one complex derivative, it follows that the complex derivatives of all orders exist and are holomorphic [20, Vol. I 7.5]. In consequence, holomorphic functions are smooth when interpreted as vector fields (vector-valued functions) in R 2. For any z 0 in the domain D of a holomorphic function f, there exists a power series representation f(z) = c j (z z 0 ) j (2.1) j=0 that converges absolutely in any open disk B R (z 0 ) = {z : z z 0 < R} D. On the other hand, any function representable in this form (in some B R (z 0 )) is holomorphic in B R (z 0 ). The power series representation is always unique and given by the Taylor coefficients c j = dj f dz (z 0)/j! (2.2) [20, Vol. I 5.5 & 8.1]. Examples of functions that are holomorphic in their domain of definition include polynomials, rational functions, complex logarithms and the exponential function. [20, Vol. I] 1 In other words, ɛ > 0 δ > 0 s.t f(z+h) f(z) h df dz (z) < ɛ for all h s.t. h < δ. Notice that with the norm of the complex plane, this usual definition of limit implies that the result must be independent of the direction from which h approaches zero. 4
11 Definition 2.2 (Laurent series). Let f : D C be holomorphic in an annulus A = {z : 0 R 1 < z z 0 < R 2 }. Then, inside A, f is given by the unique absolutely convergent Laurent series where f(z) = j= c j = 1 2πi C c j (z z 0 ) j (2.3) f(z) dz (2.4) (z z 0 ) j+1 is a anti-clockwise line integral over any circle C = B r (z 0 ) such that R 1 < r < R 2. [20, 8.3] The Laurent coefficient c 1 =: Res(f, z 0 ) is called the residue of f at z 0, and by (2.4) it holds that f(z) dz = 2πic 1 C for any anti-clockwise line integral over C as in Definition 2.2. The Laurent coefficients of a function f on the origin-centred unit circle B 1 (0) C are given by c j = 1 2πi B 1 (0) that is, they coincide with the Fourier coefficients ĝ j := 1 2π f(z) 1 2π dz = f(e is )e ijs ds, (2.5) zj+1 2π 0 2π 0 g(s)e ijs ds, j Z (2.6) of the function g : [0, 2π) C, g(s) = f(e is ) in the basis {x e ijx } j Z and with respect to the inner product 1 (, ) 2π L 2 ((0,2π)), cf. (2.13) in Section 2.3 [32]. For a sample z 1,..., z N of complex numbers, the discrete Fourier coefficients can be defined as c j = 1 N N 1 k=0 z k+1 e 2πijk N, j Z. (2.7) Obviously, any system j 1,..., j N of modulo N incongruent integers reveals all such coefficients for j Z. It is thus common to define (2.7) only for j = 0,..., N 1, which yields the discrete Fourier transform (DFT). For real data z, it holds that c j = c j. 5
12 A holomorphic function f : D C has a root of multiplicity m at z 0 D if c j = 0 for all j = 0,..., m 1 and c m 0 in (2.2). Let z 0 (not necessarily in D) be such that f is holomorphic in B R (z 0 ) \ {z 0 } for some R > 0. Then z 0 is called an isolated singularity of f. The type of the singularity is defined by the Laurent series representation: Definition 2.3 (Isolated singularities). Let c j, j Z be the Laurent coefficients of f in B R (z 0 ) \ {z 0 }, R > 0, and denote by m = inf j Z {c j 0} the index of the first non-zero coefficient. If m 0 (including m = ), then z 0 is a removable singularity. If m is a negative integer, then z 0 is a pole of order m. If m =, then z 0 is an essential singularity. [20, Vol. I 8.4]. For polynomials and rational functions, poles and roots can be defined algebraically as follows: A polynomial p has a root of multiplicity m at z 0 C if it can be factorized as p(z) = (z z 0 ) m p(z), where p is a polynomial such that p(z 0 ) 0. Let f = p/q be a rational function that is irreducible, that is, the polynomials p and q have no non-trivial common factors. Then f has a root of multiplicity m at z 0 if and only if the numerator p has. It has a pole of order m at z 0 if the denominator q has a root of that multiplicity there. The residue of a rational function at a first-order pole z 0 is given by Res(f, z 0 ) = p(z 0) q (z 0 ), (2.8) and the residues of higher order poles can also be solved algebraically from the coefficients of p and q [20, Vol. I 9]. 2.2 Continuous function spaces Let D be an open subset of R n. A function f : D C m is of class E k (D) if for any multi-index α = (α 1,..., α n ) N n 0, such that α := n j=1 α j k, the derivative D α f := α 1 x α αn 1 f exists and is continuous in D. If all derivatives x αn 1 n of f up to order k are also bounded in D, then f is called k-smooth, denoted f C k (D). The class of k-smooth functions is a Banach space with the norm u C k (D) := α k 6 sup D α u (2.9) D
13 [31, 1.1]. Convergence in C k (D) is uniform convergence of the function and its derivatives up to order k in D. The restrictions of class E k (R n ) functions to D comprise the space C k (D) = E k (D). The elements of this space can alternatively be thought of as functions in C k (D) that, along with their derivatives, extend as continuous functions to D. The subspace C0 k (D) = E0 k (D) C k (D) consists of those k-smooth functions that have compact support in D, that is, supp u := {x D : u(x) 0} D. A function of class C (D) := k=0 C k (D) is simply called smooth, and C (D) := C 0 (D) denotes the class of continuous bounded functions. Correspondingly, functions with continuous derivatives of all orders are denoted E (D). It holds that C0 (D) = E0 (D). Remark 2.1. This notational convention is adopted from [10], [31] and [27], except that the class of smooth, possibly unbounded, functions is always denoted E (and not C as in [31]). A common alternative (as in [32]) is to denote E k by C k and equip it with an F -space topology. Definition 2.4. The class C k,λ (D) C k (D) (for λ > 0) is the Banach space of functions that are bounded in the norm where u C k,λ (D) := u C k (D) + max α =k Dα u C 0,λ, and, by convention, C k,0 (D) := C k (D). u(x) u(y) u C 0,λ := sup (2.10) x,y D x y λ A function that is continuous in the norm (2.10) (i.e. of class C 0,λ (D)) is called λ-hölder continuous and when λ = 1, this is called Lipschitz continuity. [31, 1.1] A mapping f : D D R n of class C k,λ (D), k 1 is a (k, λ)- diffeomorphism if it also has an inverse of class C k,λ ( D). In this context, the notion of diffeomorphisms can be extended to include the (non-differentiable) Lipschitz bicontinuous functions as (0, 1)-diffeomorphisms. [31, 2.3] 2.3 L p spaces Let (D, F, µ) be a measure space, where µ is a Borel measure (in some topology) such that µ(f ) < for all compact F F (e.g. the Lebesgue measure on D R n ). A complex-valued function f is measurable, if both Re f and Im f are measurable mappings (D, F) (R, B), where B is the Borel algebra on R 7
14 [2, 2.4]. Denote by L 0 (D, µ) the vector space of complex-valued measurable functions on (D, F) and set (as in [22, Ch. 2, 1]) where the relation is defined as L 0 (D, µ) = L 0 (D, µ)/, f g µ({x D : f(x) g(x)}) = 0 def. f = g a.e., that is, equivalence almost everywhere. The function L p (D,µ) : L 0 (D, µ) [0, ], ( 1/p f L p (D,µ) = f dµ) p, (2.11) where p 1, as well as f L (D,µ) = ess sup f := (D,µ) D inf sup A F,µ(A)=0 x D\A are well-defined in L 0 (D, µ) (not only in L 0 (D, µ)) because f g f g L p (D) = 0 f L p (D) = g L p (D) independent of p [1, ]. f(x) (2.12) Definition 2.5 (L p spaces). The Lebesgue space of order p [1, ] is the (quotient) space L p (D, µ) = {f L 0 (D, µ) : f L p (D,µ) < } and together with the corresponding L p norm (2.11) or (2.12) it is a Banach space for any p [1, ] [2, 2.4]. If µ is clear from the context, the Lebesgue spaces are denoted simply as L p (D). For instance, if D R n, then µ is assumed to be the Lebesgue measure. A related important concept is the space of locally integrable functions [13, 6.4] 2 L p loc (D, µ) = {f L0 (D, µ) : f F L p (F, µ) compact F F}. For any 1 p < r it holds that L r (D, µ) L r loc(d, µ) L p loc (D, µ) L0 (D, µ) 2 Gariepy & Ziemer [13] consider only spaces of real-valued functions, but the cited results generalize directly to the complex case using the definition [2, 2.4], f dµ := Re f dµ + i Im f dµ, of complex-valued integrals. 8
15 and if µ(d) <, then L r (D, µ) L p (D, µ). Particularly important is the space L 2 (D, µ), which is a Hilbert space (a complete inner product space) with the inner product (f, g) L 2 (D,µ) := fg dµ (2.13) [2, 3.1]. 2.4 Distributions Definition 2.6 (Distributions). Let D be an open set in R n and denote by D(D) := C0 (D) the smooth, compactly supported functions from D to C (called test functions or fundamental functions). The space of distributions, D (D), is defined as the (topological) dual of D(D), that is, the set of continuous linear functionals from D(D) to C. In order to properly define continuous in this context, it is necessary to define the topologies of D(D) and D (D). In this work, however, only the following partial information (for the details and proofs, see e.g. Wloka [31, 1]) is required: Lemma 2.2. The following constructs are in D (D). 1. For any f L 1 loc (D), the functional T f : φ 2. Dirac s delta distribution at y D: D D fφ dx. δ y : φ φ(y). 3. The distributional derivative of any T D (D): D α T : φ D α T, φ = ( 1) α T, D α φ. 4. The product of a distribution and a smooth function a C (D) at : φ at, φ = T, aφ. 9
16 In this context, a function f L 1 loc (D) is often identified with the corresponding distribution T f D (D). If V L 1 loc (D) (for example V = Lp (D)) and a distribution T satisfies T = T f for some f V, then one writes T V. Especially, if for some u, v L 1 loc (D) it holds that D α T u = T v, (2.14) then v is called the order-α weak derivative of u. This is commonly written as D α u = v in D (D). If the function u is continuously differentiable up to order α, then the condition (2.14) can be easily shown to hold for the function D α u C (D) by repeatedly applying Green s theorem (equation (4.1) on page 22) on the boundary of a sufficiently smooth domain containing the support of φ. This means that the weak derivative coincides with the classical derivative almost everywhere if both exist. One also talks about supports and restrictions of distributions. The restriction T U of a distribution T D (D) to U D means simply the restriction T D (U). The support of T is the complement of the largest open set for which T = 0. [31, 1.4 & 1.5] Definition 2.7 (Tempered distributions). A function φ E (R n ) is rapidly decreasing if p k,m (φ) := sup α k sup (1 + x 2 ) m D α φ(x) < (2.15) x for all k and m. The space of rapidly decreasing test functions is denoted S, and it has an F -space structure when equipped with the seminorms (2.15). The topological dual S = {S : C, k, m s.t. φ S, S(φ) < Cp k,m (φ)} D (R n ) (2.16) is called the space of tempered distributions [31, 1.9]. Definition 2.8 (Fourier transform). The Fourier transform, f := F f := F (f) of an integrable function f L 1 (R n ) is defined as f(ξ) = e ix ξ f(x) dx R n where denotes the dot product in R n. For a tempered distribution S S define Ŝ(φ) = (F S)(φ) := S(F φ). 10
17 The Fourier transform is a linear isomorphism from S to itself, and for any φ S it holds that F ( φ x j ) = iξ j F (φ), F (x j φ) = i ξ j F (φ) (2.17) and φ(x) = (F 1 1 φ)(x) = e ix ξ φ(ξ) dξ. (2π) n R n The inverse Fourier transform may alternatively be written as F 1 φ = 1 (2π) n F ˇφ, (2.18) where ˇφ(x) := φ( x). For any S S, the Fourier transform Ŝ is likewise a tempered distribution. It then follows from the definition of distributional derivatives that the formulas (2.17) and (2.18) also hold in S (because Š : φ S( ˇφ) is in S for any S S ). [31, 1.9] One can define S f and D α S in S as in D (R n ). It follows directly from (2.16) that D α S S for any S S, and Hölder s inequality [2, 2.4] yields that S f S if f L p (R n ) for some p 1 (cf. [31, 1.9]). This is also true for f L (R n ). Hence all weak derivatives of the (distributions corresponding to) elements L p (R n ) are tempered distributions. The Fourier transform can also be extended to a continuous mapping L 2 (R n ) L 2 (R n ) in such a manner that the norms of f and f satisfy Parseval s equality f L 2 (R n ) = 1 (2π) f n L 2 (R n ) (2.19) [31, 1.9]. For any distribution T D (D) one can define the corresponding (continuous) anti-linear functional T as T, φ := T, φ and vice versa. All of the above distribution theory remains essentially the same if one replaces D (D) with D (D), the topological anti-dual of D(D), which is the space of all continuous anti-linear functionals on D(D). For example, the existence of a weak derivative v L 1 loc (D) of u is equivalent to the condition Dα T u = T v, where T u, T v D (D), that is, D α u = v in D (D). 11
18 3 Sobolev spaces Sobolev spaces provide a natural framework for studying the solutions of (elliptic) partial differential equations. There are various definitions of these spaces that coincide under different assumptions. In this work, two (potentially) different classes of Sobolev spaces are required: distributional H-spaces in smooth domains and on their boundaries to represent point current sources. In addition, for computations on the Lipschitz boundaries of arbitrary inclusions, the Sobolev Slobodeckiĭ spaces W ±1/2 2 ( D) are needed. Section 3.1 gives a mathematical definition for the smoothness of domains, and Section 3.4 describes some quotient spaces that are useful for studying problems whose solutions are unique only up to an additive constant. These subjects are not exclusive to Sobolev space theory, but appear naturally in this context in the thesis. The results in this section are predominantly stated without proofs, which more often than not are non-trivial and laborious. The main references are the books by Lions & Magenes [27], Wloka [31] and Grisvard [15]. 3.1 Regular domains and boundaries Qualitatively, a domain boundary is regular if it locally resembles a graph of a regular function. This idea is formalized by the following definitions in terms of Hölder regularity (see Section 2.2). Definition 3.1 (Class C k,λ boundary). Let D be an open subset of R n. Its boundary D is of class C k,λ if for any x D there exists 1. an orthonormal coordinate system y 1,..., y n for R n (with origin at x) and a hypercube 3 neighbourhood V = { y j < α for all j = 1,..., n} of x (for some α > 0) 2. a function φ C k,λ (V ) on V = { y j < α for all j = 1,..., n 1} R n 1 such that φ(y ) α/2 for all y V and D V = {(y, y n ) V : y n < φ(y )}, D V = {(y, y n ) V : y n = φ(y )}. The above definition, also called the N k,λ property by Wloka [31, 2.2], requires that the boundary D can be assembled from patches of C k,λ function graphs that are repositioned using rigid body motions. The next definition 3 The exact shape of V in this definition is not important. An equivalent definition can be given using e.g. a cylinder or ball. [14, 6.2][31, 2.3] 12
19 (called (k, λ)-smoothness in [31, 2.3]) formulates the notion of regularity in manifold terminology. Definition 3.2 (Submanifold with boundary). Let D be an open subset of R n. The closure D is an n-dimensional C k,λ submanifold with boundary in R n if for each x D there exists a (k, λ)-diffeomorphism φ (see Section 2.2) from some neighbourhood O x to Q = φ(o) R n, such that φ(d O) = Q := {(y, y n ) Q : y n < 0} and φ( D O) = Q 0 := {(y, y n ) Q : y n = 0}. [15, 1.2.1][31, 2.3] For bounded domains and k 1, the conditions of Definitions 3.1 and 3.2 are equivalent. However, in the case of Lipschitz boundaries (i.e. k = 0, λ = 1), Definition 3.1 induces strictly stronger conditions and is therefore necessary for defining Lipschitz domains. [15, 1.2.1] Definition 3.3 (Regular domains). In the sequel, a domain (an open and connected set) D R n is called a C k,λ regular domain if it is non-empty, bounded and has a boundary of class C k,λ. Domains satisfying C 0,1 regularity are also referred to as Lipschitz regular. Remark 3.1. Each C regular domain is an instance of what Lions & Magenes call a domain D, whose boundary is a connected infinitely differentiable variety of dimension n 1, with D locally on one side of D [27, Ch. 1, 7.3]. For details, see [10, Ch. IV, Appendix] and [31, 2.5]. Examples of C regular domains include the unit sphere (in R n ) and the images of C regular domains under any smooth diffeomorphic deformation of R n. Bounded piecewise C 1 domains, such as connected non-empty intersections of C 1 regular domains, with no cusps, are generally Lipschitz regular domains. The compact boundary of a C k,λ regular domain D can be covered with a finite system of charts {(O j, φ j )} N j=1, which can be selected so that there exists a partition of unity {α j : D [0, 1]} N j=1, such that α j φ 1 j (, 0) C k,λ 0 (Q 0 ) (that is, α j C k,λ ( D) [14, 6.2]). Set { θ j (u)(y (α j u)(φ 1 j (y, 0)) if (y, 0) Q 0, ) = (3.1) 0 otherwise. For a C regular domain, each θ j is a continuous linear mapping D( D) D(R n 1 ) and can be extended to a (continuous) mapping D ( D) D (R n 1 ). [10, Ch. IV, Appendix][27, Ch. 1, 7.3] For all Lipschitz domains, there also exists a canonical surface measure (corresponding to an area element ds) [10, Ch. IV, Appendix][15][31, 4.2]. This readily enables the construction of the spaces L p ( D). In Lipschitz regular 13
20 domains, it is also possible to define an exterior unit normal vector field ν : D B 1 (0) R n almost everywhere w.r.t the surface measure on D [15, 1.5.1], in other words, ν is in L ( D). Furthermore, for class C k,λ boundaries, ν is of class C k 1,λ [15, 1.5.1][31, 2.4]. 3.2 Sobolev spaces in domains Definition 3.4 (Classical Sobolev spaces). Let D be an open subset of R n. The classical Sobolev spaces of order m = 0, 1, 2,... are defined as W m p (D) = {v L p (D) : D α v L p (D) for all α m}, where D α v L p (D) means that the weak derivative of v exists in L p (D). It can be shown that W2 m (D) is a Hilbert space with the inner product (f, g) W m 2 (D) = D α fd α g dx (3.2) D α m [10, Ch. IV, 1]. Since C N ( N j=1 a i ) 2 N j=1 a i 2 ( N j=1 a i ) 2, the corresponding norm v W m 2 (D) := ((v, v) W m 2 (D)) 1/2 is equivalent to v W2 m(d) = D α v L 2 (D), (3.3) α m which is often used for convenience. In particular, notice that W 1 2 (D) = {u L 2 (D) : u (L 2 (D)) n } and it can be equipped with the (equivalent) norm ( n 1/2. u W 2 1 (D), := u L 2 (D)+ u L 2 (D) = u L 2 (D)+ u x i 2 L (D)) (3.4) 2 Definition 3.5 (Sobolev spaces on R n ). In R n, the L 2 -type Sobolev spaces can be defined as for any s R. i=1 H s (R n ) = {u S : (1 + ξ 2 ) s/2 (F u) L 2 (R n )} It follows from Parseval s equality (2.19) and some elementary manipulations, that these spaces, equipped with the norm u H s (R n ) = (1 + ξ 2 ) s/2 F u L 2 (R n ), are isomorphic to W m 2 (R n ) for any (integral) m 0 [31, 5.1]. 14
21 Definition 3.6 (Fractional-order H s (D)). Let D be an open subset of R n and s 0. The fractional-order H s spaces on D can be defined as where H s (R n ) is as in Definition 3.5. H s (D) = {f D : f H s (R n )}, For any s 0, the space H s (D) of Definition 3.6 is a Banach space with the norm f H s (D) = inf g H s (R n ),g D =f g H s (R n ) [27, Ch ][31, 5.1] and (due to the Calderón Zygmund extension theorem) these spaces are isomorphic to the spaces W m 2 (D) of Definition 3.4 if s = m = 0, 1, 2,... and D is a Lipschitz regular domain [31, 2.2, 2.3 & 5.2]. Remark 3.2. There are many different fractional-order Sobolev space constructions. Lions & Magenes use certain interpolation spaces for most of the theorems in [27]. These Hilbert spaces always coincide with W m 2 (D) for m = 0, 1, 2,... by definition and are are isomorphic to H s (D), s 0 in C regular domains D [27, Ch. 1, 2 & 9]. It is also possible to define the Sobolev Slobodeckiĭ spaces W s p (cf. Definitions 3.4 and 3.10 below) in domains D R n for all s 0 (and p > 1 [15]) so that W s 2 (R n ) coincides with H s (R n ) [31]. According to Lions & Magenes all reasonable definitions coincide [27, Ch. 1, 17] in C regular domains. In this work, no Sobolev spaces are studied in non-lipschitzian (or unbounded) domains and fractional-order H s (D) spaces are considered only in C regular domains. Hence there is no dangerous ambiguity, since all definitions of H s (D) coincide up to equivalence of norms. Definition 3.7 (H s 0(D) and H s (D)). Let s > 0. An important closed subspace of H s (D) is H s 0(D) = D(D) Hs (D), the closure of compactly supported smooth functions on D in the norm of H s (D). Using this space, one may define the negative order Sobolev spaces H s (D) = (H s 0(D)) D (D) as the (topological) duals of H s 0(D) (equipped with the operator norm) [27, Ch. 1, 12.1]. In addition, identify H 0 (D) = H 0 (D) = (H 0 (D)) = L 2 (D). Each element of (H s 0(D)) is determined by its values on the dense subset D(D) of H s 0(D), that is, by a distribution. Therefore, it makes sense to write H s (D) D (D) while in reality each element of (H s 0(D)) is the continuous 15
22 extension of a distribution to this space (cf. [31, 17.2]). As in Section 2.4, each element of u L 2 (D) H s 0(D) is identified with the distribution T u D (D). This construction allows one to write D(D) H s 0(D) L 2 (D) H s (D) D (D). (3.5) The notation of Definition 3.7 is consistent with Definition 3.5 for negative s, since D(R n ) is dense in H s (R n ) for all s R [27, Ch. 1, 7.1 & 12.1] and H s (R n ) = (H s (R n )) [27, Ch. 1, 1.2]. There is a slight obscurity. According to the Riesz representation theorem, the Hilbert space H s 0(D) is isomorphic to and could be identified with its own anti-dual, and the space H s 0(D) could alternatively be identified with its dual. However, this identification, i.e. u (u, ) H 1 0 (D), is different from the identification u (u, ) L 2 (D) = T u induced by (3.5). Consequently, the elements of H s 0(D), s > 0 are never implicitly identified with the Riesz elements (or their conjugates) in H s (D) in this context. It is also common to identify L 2 (D) with its anti-dual space and consequently define H s (D) = (H s 0(D)) (see e.g. [31, 12.1 & 17.1][10, Ch. IV 5]). In this construction (the so-called Gelfand triple or rigged Hilbert space), the anti-dual evaluation, H s 0 (D) can be viewed as a continuous extension of the inner product (, ) L 2 (D) to H s (D) H s (D) [31, 17.1]. To avoid excessive and irrelevant complex conjugation, the opposite convention of identifying L 2 (D) with its dual (cf. [27, Ch & 12.1]) is adopted here. Using this construction, the dual evaluation is the continuous extension of the bilinear form (, ) L 2 (D) (which is not the inner product of L 2 (D)). Definition 3.8. Let A and B be topological vector spaces. Then A is contained in B by continuous injection, which is denoted A B, if there exists a continuous injective homomorphism (linear mapping) π : A B. This holds especially when A is a subspace of B and x B C x A for all x A. Theorem 3.3 (Sobolev s embedding theorem). The order s of a Sobolev space is a measure of regularity or smoothness of its elements. Namely, if s > n 2 +m, then for a C regular domain D (or respectively Lipschitz regular domain D, s = 0, 1, 2,...) H s (D) C m (D) (3.6) 16
23 [10, Ch. IV, 3][27, Ch. 1, 9.4][31, 6] 4. In particular, if u H s (D) for all s = 0, 1, 2,..., then u C (D). It also follows rather directly from the definitions that the inclusion H m (D) H l (D) is continuous for all l m R, which also remains true if D is replaced by R n or D (see below). 3.3 Boundary spaces and trace theorems Definition 3.9 (H s spaces on a smooth boundary). Let D be a C regular domain with a system of local maps {(O j, φ j )} N j=1. For any s R, define H s ( D) = {u D ( D) : θ j (u) H s (R n 1 ), j = 1,..., N}, where the maps {θ j } N j=1 are as in equation (3.1), for some partition of unity subordinate to the system of local maps. H s ( D) is a Hilbert space with the norm u 2 H s ( D) = N θ j (u) 2 H s (R n 1 ), j=1 and the norms defined by different systems {O j, φ j, θ j } N j=1 are equivalent. [27, Ch. 1, 7.3][10, Ch. IV, Appendix] It naturally holds that H s 0( D) = H s ( D) and H s ( D) = (H s ( D)) [27, Ch. 1, 7.3]. In terms of the above boundary spaces, one can formulate Theorem 3.4 (Trace theorem for H s (D)). Let D be a C regular domain and s > 1. For all j = 0,..., µ = s 3 (i.e. µ is the greatest integer strictly 2 2 less than s 1 ) there exists a continuous, linear trace map 2 γ j : H s (D) H s j 1/2 ( D) (3.7) such that γ j φ = j φ ν j or in other words, for all φ D(R n ). In addition, Ker(γ 0,..., γ µ ) = H s 0(D), H s 0(D) = {v H s (D) : γ j v = 0, j = 0,..., µ}. 4 Strictly speaking, this means that for s > n 2 + m there exists at least one m-smooth representative of the equivalence class u H s (D) in addition to the uncountably many discontinuous representatives. The important point is that there exists a continuous function φ : H s (D) C m (D) (where u C m (D) := α m max x D Dα u(x) ) that finds the m- smooth representative. 17
24 There also exists a continuous lifting (or right inverse) µ H s j 1/2 ( D) H s (D). j=0 For a proof and details, see [27, Ch. 1, 9.1 & 11.4]. The trace maps (3.7) are continuous extensions of the operators that, when applied to functions in D(D), yield the (interior) normal derivatives on D. These extensions are well-defined and unique, because D(D) is dense in H s (D). For any φ D(D), j N 0 and s > 0, it holds that γ j φ H s ( D) C D,j,s sup D α φ(x) (3.8) x D α j+ s for some C D,j,s > 0. Similar trace theorems also exist for less regular domains, but these are formulated (see [31] and [15]) for another classes of Sobolev spaces, one of which can be defined as follows: Definition 3.10 (Sobolev Slobodeckiĭ boundary spaces W ±1/2 ( D)). Let D be a Lipschitz regular domain. Define where (cf. [31, 4.2]) In addition, let W 1/2 ( D) = {u L 2 ( D) : u W 1/2 ( D) < } u 2 W 1/2 ( D) = u 2 L 2 ( D) + D D W 1/2 ( D) = (W 1/2 ( D)) u(x) u(y) 2 x y n ds x ds y. be the dual of W 1/2 ( D), equipped with the operator norm. Remark 3.5. It is common to denote the L 2 nature of these spaces with a subor superscript, e.g. W 1/2 ( D) = W 1/2 2 ( D), since, as in Definition 3.4, it is possible to define Wp s ( D) spaces for other L p exponents (and regularities s 0) [15]. An alternative convention is to replace W 2 by H, but this notation is not adopted here to note the (possible) difference to the spaces of Definition 3.9. Theorem 3.6 (Trace theorem for H 1 (D)). Let D be a Lipschitz regular domain. Then, as in Theorem 3.4, there exists a unique, continuous and linear (extension) trace map γ 0 : H 1 (D) W 1/2 ( D) with a continuous right inverse. [31, 8] 18
25 Since φ = ν φ ν D for any φ D(R n ) and the exterior unit normal ν is in L ( D) for all Lipschitz regular domains, it follows that the (extension) Neumann trace map γ 1 : H 2 (D) L 2 ( D), is well-defined and continuous. γ 1 u = ν γ 0 ( u) 3.4 Zero mean and definition up to constant In the study of PDEs with Neumann boundary conditions, it is often natural to work with functions that are defined up to an additive constant factor or have a vanishing mean. These can be thought to correspond to the physical notions of an unknown potential ground level and conservation of current, respectively. Mathematically, these can be described as follows: Definition 3.11 (Definition up to an additive constant). Let H be a subspace of L 2 (D, µ) (with µ(d) < ) that contains the constant function 1. Define H/C := H/span C {1} = {{u + c : c C} : u H}. (3.9) Definition 3.12 (Vanishing mean). Let H be as in Definition Functions with zero mean in H are denoted { } H = u H : u dµ = 0. Let H be the dual (or anti-dual) of H (in some topology) and define H = {v H : v, 1 H = 0}. Examples of well-defined spaces include D(D)/C, H s (D)/C and H l ( D) for any C regular domain D and s > 0, l R, but e.g. H s (R n )/C is not well-defined, because R n = and consequently 1 / H s (R n ). If H is a Banach space, then, because span C {1} is a closed subspace of H, the quotient space H/C can be given the norm (see [32, Ch. I 11]) D u H/C = inf c C u + c H. (3.10) For any Banach space, H is also a closed subspace of H and thus a Banach space sharing the norm of H. Lemma 3.7. Let X be a Banach space and M a closed subspace of X. Then there holds the isometric isomorphism (X/M) = M := {f X : f(m) = 0 for all m M}, where X is the topological dual (or respectively anti-dual) of X. [31, 12.2] 19
26 Proof. It is known that, X/M is a Banach space with the norm u X/M = inf m M x + m X [32, Ch. I 11]. Denote by (X/M) A and X A the algebraic duals (resp. antiduals), i.e., the sets of all possibly unbounded linear (resp. anti-linear) functionals, of X/M and X, respectively. Then define π : (X/M) A X A by (π(f))(x) = f(x + M). It readily follows that π is well-defined and linear with a well-defined inverse (π 1 (g))(x) = g(x + M) = g(x) for any g M,A = {g X A : g(m) = 0 m M}. This means that π is an isomorphism between the vector spaces (X/M) A and M,A. Now, for any functional f (X/M) A, the operator norm satisfies f (X/M) = sup u X/M,u 0 = sup u X/M,u 0 m M = π(f) X, f(u) u X/M = sup sup u X/M,u 0 f(u) inf m M u + m X f(u + m) (π(f)(u + m) = sup u + m X u+m X,u+m 0 u + m X which means that π (X/M) is an isometric isomorphism between (X/M) = {f (X/M) A : f (X/M) < } and M = {f M,A : f X < }. Corollary 3.8. Let H be as in Definition 3.11 and a Banach space. The topological dual (resp. anti-dual) of H/C is isometrically isomorphic to H, where H is the dual (resp. anti-dual) of H. Lemma 3.9. Let m N 0 and D be a bounded domain. Then H m (D)/C is a Hilbert space that is isometrically isomorphic to H m (D). Proof. Define π : H m (D) H m (D) by Notice that for any C C, π(u) = u D D u dx. π(u + C) dx = 0 and thus π is in fact well-defined from H m (D)/C to H m (D). It is also linear and has a well-defined (canonical) inverse π 1 (u) = u + C. It remains to show that π is norm-preserving: u 2 H m (D)/C = π(u) + C 2 H m (D)/C = inf C C π(u) + C 2 H m (D) = inf C C { π(u) 2 H m (D) + 2Re (π(u), C) H m (D) + C 2 H m (D)} = inf C C { π(u) 2 H m (D) + C 2 H m (D)} = π(u) 2 H m (D) 20
27 because (π(u), C) H m (D) = C D π(u) dx = 0 by (3.2) and the fact that Dα C = 0 for any multi-index α 0. Consequently H m (D)/C is a Hilbert space, as its norm is identical to that of H m (D). Lemma 3.10 (Trace theorem for H(D)/C). Let H(D), H 1 ( D) be such 5 that the (extension) trace map (as in Theorem 3.4) γ 0 : H(D) H 1 ( D) is welldefined and continuous. Then it can also be interpreted as a continuous operator γ 0 : H(D)/C H 1 ( D)/C. Furthermore, if H 2 ( D) is such that γ 1 : H(D) H 2 ( D) is well-defined and continuous, then so is γ 1 : H(D)/C H 2 ( D). Proof. By definition, γ 0 maps the constant function c C to a constant function on D. For any ũ H(D)/C and u ũ H(D), γ 0 u H1 ( D)/C = inf c C γ 0u + c H1 ( D) = inf c C γ 0(u + c) H1 ( D) inf c C γ 0 u + c H(D) = γ 0 u H(D)/C, that is, the operator γ 0 is well-defined and has a smaller operator norm than γ 0. Similarly, the operator γ 1 maps any constant function to the zero function and γ 1 u H2 ( D) γ 1 inf c C u + c H(D), which proves the second claim. 5 For example, H(D) = H 1 (D) and H 1 ( D) = W 1/2 ( D); or H(D) = H s (D) and H 1 ( D) = H s 1/2 ( D), where s > 1/2. 21
28 4 Elliptic PDEs This section presents some key concepts in elliptic PDE theory. The focus is on Laplace s equation and providing the minimum tools for formulating the necessary forward problem theory for the conductivity equation. For an accessible introduction to elliptic PDE theory, see e.g. Dautray & Lions [10]. 4.1 Green s identities Theorem 4.1 (Green s theorem). Let D be a Lipschitz regular domain and u H 1 (D). Then u dx = uν i ds, (4.1) D x i D where ν i is the i:th component of the exterior unit normal vector field. The boundary integral is taken over the trace γ 0 u W 1/2 ( D) L 2 ( D) (recall Theorem 3.6). Equation (4.1) is a certain generalization of the fundamental theorem of calculus to higher dimensions. This general form of the theorem (in R n ) can be recovered from [15, Theorem ]. Straightforward application of (4.1) to suitable functions yields Corollary 4.2. For any w (H 1 (D)) n (resp. (C 1 (D) C (D)) n ) u H 1 (D) (resp. C 1 (D) C (D)) and v, h H 2 (D) (resp. C 2 (D) C 1 (D)) the following identities hold: w dx = w ν ds, (4.2a) D D v dx = D u v dx = D (v h h v) dx = u dx = D D D D D D v ν ds, u v ν ds u v dx, D ( v h ) ν h v ds, ν uν ds. (4.2b) (4.2c) (4.2d) (4.2e) Equation (4.2a) is regularly called the divergence theorem. Equations (4.2c) and (4.2d) are known as Green s first and second identity, respectively. Equation (4.1) is occasionally referred to as Stokes s theorem. 22
29 Definition 4.1. Define H 1 (D, ) = {u H 1 (D) : u L 2 (D)}, which can be equipped with the graph norm u 2 H 1 (D, ) = u 2 H 1 (D) + u 2 L 2 (D). Clearly the above is a subspace of H 1 (D). In addition, the following holds: Lemma 4.3. The smooth functions D(D) H 1 (D, ) are dense in H 1 (D, ). [15, Lemma ] Lemma 4.4 (A generalized Green s identity). Let D be a Lipschitz regular domain. Then there exists a continuous extension γ 1 : H 1 (D, ) W 1/2 ( D) (resp. γ 1 : H 1 (D, )/C W 1/2 ( D)) to the classical Neumann trace operator. In addition, the generalized Green s identity 6 γ 1 u, γ 0 v D = v u dx + u v dx (4.3) D holds for all u H 1 (D, ) (resp. u H 1 (D, )/C) and v H 1 (D). Proof. (cf. [10, Ch. VII 2]) Let u H 1 (D, ) and define γ 1 u by (γ 1 u)(w) = (γ0 1 w) u dx + u (γ0 1 w) dx, D where w W 1/2 ( D) is arbitrary and γ 1 0 is the (linear) continuous lifting of W 1/2 ( D) to H 1 (D) (see Theorem 3.6). Clearly, γ 1 u is linear and, due to the norm equivalence (3.4), (γ 1 u)(w) γ 1 0 w L 2 (D) u L 2 (D) + (γ 1 0 w) L 2 (D) u L 2 (D) C 1 γ 1 0 w W 1/2 ( D)( u L 2 (D) + u L 2 (D)) C 2 γ 1 0 u H 1 (D, ) w W 1/2 ( D) for some C 1, C 2 > 0 depending only on n. Therefore γ 1 u W 1/2 ( D) with γ 1 u W 1/2 ( D) C 2 γ0 1 u H 1 (D, ) and consequently γ 1 C 2 γ0 1. By Lemma 4.3, for any u H 1 (D, ), v H 1 (D) and ε > 0, there exists u ε H 2 (D) such that γ 1u, γ 0 v v u dx u v dx D C 3 (1 + γ 0 γ 1 ) v H 1 (D) u u ε H 1 (D, ) ε 6 The notation, D stands for, W 1/2 ( D) (or any other dual evaluation between spaces on D). Similar shorthands are used throughout the remainder of this thesis. 23 D D D
30 because, by Green s first identity (4.2c), u ε and v satisfy u ε v u ε dx + v u ε dx = D D D ν v dx = = γ0 1 v u ε dx + D D D u ε ν γ 1 0 v dx (γ 1 0 v) u ε dx = γ 1 u ε, γ 0 v D. Consequently, the generalized Green s identity (4.3) holds, and γ 1 is the continuous extension of the (Sobolev space) Neumann trace operator. The respective identities for H 1 (D, )/C hold by Lemma 3.10 and the fact that the differential operators and eliminate the additive constant. 4.2 Laplace s equation The partial differential equation u = 0 in D, (4.4a) u = f ν on D, (4.4b) where D R n is an open set, is called Laplace s equation with a Neumann boundary condition or the Neumann problem of the Laplacian (in D). A twicedifferentiable function u E 2 (D) that satisfies (4.4a) is called harmonic in D. If (4.4a) holds (only) in the distributional sense, i.e., u = 0 D (D), then u is called weakly harmonic in D. In fact, these notions are very close to each other since any weakly harmonic function (in H 1 (D)) coincides almost everywhere with a function in E (D) [13, 11.7]. The boundary condition is understood in the sense of traces. If D is a C regular domain, then (4.4b) means γ 1 u = f, where γ 1 is the Neumann trace operator of Theorem 3.4. If D is a Lipschitz regular domain, then (4.4) can be studied for f L 2 ( D) or f W 1/2 ( D), but (as with f H s ( D) with low enough s) more care needs to be taken to define the appropriate trace operator. By equation (4.2b) a necessary condition for the existence of a solution u C 2 (D) C 1 (D) to (4.4) is u f ds = D D ν ds = u dx = 0. (4.5) D Another characteristic of the problem (4.4) is that adding a constant function to any solution u also yields a solution, because the differential operators / ν and do not see the constant. In other words, the constant functions are in 24
Strict singularity of a Volterra-type integral operator on H p
Strict singularity of a Volterra-type integral operator on H p Santeri Miihkinen, University of Helsinki IWOTA St. Louis, 18-22 July 2016 Santeri Miihkinen, University of Helsinki Volterra-type integral
Capacity Utilization
Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run
The CCR Model and Production Correspondence
The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls
Bounds on non-surjective cellular automata
Bounds on non-surjective cellular automata Jarkko Kari Pascal Vanier Thomas Zeume University of Turku LIF Marseille Universität Hannover 27 august 2009 J. Kari, P. Vanier, T. Zeume (UTU) Bounds on non-surjective
The Viking Battle - Part Version: Finnish
The Viking Battle - Part 1 015 Version: Finnish Tehtävä 1 Olkoon kokonaisluku, ja olkoon A n joukko A n = { n k k Z, 0 k < n}. Selvitä suurin kokonaisluku M n, jota ei voi kirjoittaa yhden tai useamman
Alternatives to the DFT
Alternatives to the DFT Doru Balcan Carnegie Mellon University joint work with Aliaksei Sandryhaila, Jonathan Gross, and Markus Püschel - appeared in IEEE ICASSP 08 - Introduction Discrete time signal
Alternative DEA Models
Mat-2.4142 Alternative DEA Models 19.9.2007 Table of Contents Banker-Charnes-Cooper Model Additive Model Example Data Home assignment BCC Model (Banker-Charnes-Cooper) production frontiers spanned by convex
Topologies on pseudoinnite paths
Topologies on pseudoinnite paths Andrey Kudinov Institute for Information Transmission Problems, Moscow National Research University Higher School of Economics, Moscow Moscow Institute of Physics and Technology
16. Allocation Models
16. Allocation Models Juha Saloheimo 17.1.27 S steemianalsin Optimointiopin seminaari - Sks 27 Content Introduction Overall Efficienc with common prices and costs Cost Efficienc S steemianalsin Revenue
Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu
Returns to Scale II Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be
Other approaches to restrict multipliers
Other approaches to restrict multipliers Heikki Tikanmäki Optimointiopin seminaari 10.10.2007 Contents Short revision (6.2) Another Assurance Region Model (6.3) Cone-Ratio Method (6.4) An Application of
Efficiency change over time
Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
800323A KUNTALAAJENNUKSET OSA II FIELD EXTENSIONS PART II
800323A KUNTALAAJENNUKSET OSA II FIELD EXTENSIONS PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2018 Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN 800323A KUNTALAAJENNUKSET YLIOPISTO OSA
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.
START START SIT 1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. This is a static exercise. SIT STAND 2. SIT STAND. The
Topics on Hyperbolic Function Theory in Cl_{n+1,0}
Tampereen teknillinen yliopisto. Matematiikan laitos. Tutkimusraportti 9 Tampere University of Technology. Department of Mathematics. Research Report 9 Sirkka-Liisa Eriksson & Heikki Orelma Topics on Hyperbolic
Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi
Network to Get Work Tehtäviä opiskelijoille Assignments for students www.laurea.fi Ohje henkilöstölle Instructions for Staff Seuraavassa on esitetty joukko tehtäviä, joista voit valita opiskelijaryhmällesi
Gap-filling methods for CH 4 data
Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling
Information on preparing Presentation
Information on preparing Presentation Seminar on big data management Lecturer: Spring 2017 20.1.2017 1 Agenda Hints and tips on giving a good presentation Watch two videos and discussion 22.1.2017 2 Goals
MUSEOT KULTTUURIPALVELUINA
Elina Arola MUSEOT KULTTUURIPALVELUINA Tutkimuskohteena Mikkelin museot Opinnäytetyö Kulttuuripalvelujen koulutusohjelma Marraskuu 2005 KUVAILULEHTI Opinnäytetyön päivämäärä 25.11.2005 Tekijä(t) Elina
National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007
National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 Chapter 2.4 Jukka Räisä 1 WATER PIPES PLACEMENT 2.4.1 Regulation Water pipe and its
Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)
Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen
Kvanttilaskenta - 2. tehtävät
Kvanttilaskenta -. tehtävät Johannes Verwijnen January 8, 05 edx-tehtävät Vastauksissa on käytetty edx-kurssin materiaalia.. Problem The inner product of + and is. Edelleen false, kts. viikon tehtävä 6..
LYTH-CONS CONSISTENCY TRANSMITTER
LYTH-CONS CONSISTENCY TRANSMITTER LYTH-INSTRUMENT OY has generate new consistency transmitter with blade-system to meet high technical requirements in Pulp&Paper industries. Insurmountable advantages are
Convex analysis and dual problems
Convex analysis and dual problems Salla Kupiainen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2018 Tiivistelmä: Salla Kupiainen, Convex analysis and dual problems,
Valuation of Asian Quanto- Basket Options
Valuation of Asian Quanto- Basket Options (Final Presentation) 21.11.2011 Thesis Instructor and Supervisor: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta
Effective Domains and Admissible Domain Representations
UPPSALA DISSERTATIONS IN MATHEMATICS 42 Effective Domains and Admissible Domain Representations Göran Hamrin Department of Mathematics Uppsala University UPPSALA 2005 No motto List of Papers This thesis
7. Product-line architectures
7. Product-line architectures 7.1 Introduction 7.2 Product-line basics 7.3 Layered style for product-lines 7.4 Variability management 7.5 Benefits and problems with product-lines 1 Short history of software
Kvanttilaskenta - 1. tehtävät
Kvanttilaskenta -. tehtävät Johannes Verwijnen January 9, 0 edx-tehtävät Vastauksissa on käytetty edx-kurssin materiaalia.. Problem False, sillä 0 0. Problem False, sillä 0 0 0 0. Problem A quantum state
Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus
AS-84.327 Paikannus- ja navigointimenetelmät Ratkaisut 2.. a) Kun kuvan ajoneuvon kumpaakin pyörää pyöritetään tasaisella nopeudella, ajoneuvon rata on ympyränkaaren segmentin muotoinen. Hitaammin kulkeva
anna minun kertoa let me tell you
anna minun kertoa let me tell you anna minun kertoa I OSA 1. Anna minun kertoa sinulle mitä oli. Tiedän että osaan. Kykenen siihen. Teen nyt niin. Minulla on oikeus. Sanani voivat olla puutteellisia mutta
Results on the new polydrug use questions in the Finnish TDI data
Results on the new polydrug use questions in the Finnish TDI data Multi-drug use, polydrug use and problematic polydrug use Martta Forsell, Finnish Focal Point 28/09/2015 Martta Forsell 1 28/09/2015 Esityksen
Toppila/Kivistö 10.01.2013 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä.
..23 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla -6 pistettä. Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (a) Lineaarisen kokonaislukutehtävän
Choose Finland-Helsinki Valitse Finland-Helsinki
Write down the Temporary Application ID. If you do not manage to complete the form you can continue where you stopped with this ID no. Muista Temporary Application ID. Jos et onnistu täyttää lomake loppuun
Operatioanalyysi 2011, Harjoitus 4, viikko 40
Operatioanalyysi 2011, Harjoitus 4, viikko 40 H4t1, Exercise 4.2. H4t2, Exercise 4.3. H4t3, Exercise 4.4. H4t4, Exercise 4.5. H4t5, Exercise 4.6. (Exercise 4.2.) 1 4.2. Solve the LP max z = x 1 + 2x 2
Julkaisun laji Opinnäytetyö. Sivumäärä 43
OPINNÄYTETYÖN KUVAILULEHTI Tekijä(t) SUKUNIMI, Etunimi ISOVIITA, Ilari LEHTONEN, Joni PELTOKANGAS, Johanna Työn nimi Julkaisun laji Opinnäytetyö Sivumäärä 43 Luottamuksellisuus ( ) saakka Päivämäärä 12.08.2010
MRI-sovellukset. Ryhmän 6 LH:t (8.22 & 9.25)
MRI-sovellukset Ryhmän 6 LH:t (8.22 & 9.25) Ex. 8.22 Ex. 8.22 a) What kind of image artifact is present in image (b) Answer: The artifact in the image is aliasing artifact (phase aliasing) b) How did Joe
7.4 Variability management
7.4 Variability management time... space software product-line should support variability in space (different products) support variability in time (maintenance, evolution) 1 Product variation Product
x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia/Exercises 2017 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
Returns to Scale Chapters
Return to Scale Chapter 5.1-5.4 Saara Tuurala 26.9.2007 Index Introduction Baic Formulation of Retur to Scale Geometric Portrayal in DEA BCC Return to Scale CCR Return to Scale Summary Home Aignment Introduction
Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL
Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL Ville Liljeström, Micha Matusewicz, Kari Pirkkalainen, Jussi-Petteri Suuronen and Ritva Serimaa 13.3.2012
toukokuu 2011: Lukion kokeiden kehittämistyöryhmien suunnittelukokous
Tuula Sutela toukokuu 2011: Lukion kokeiden kehittämistyöryhmien suunnittelukokous äidinkieli ja kirjallisuus, modersmål och litteratur, kemia, maantiede, matematiikka, englanti käsikirjoitukset vuoden
1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä
OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 81122P (4 ov.) 30.5.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan
Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija
Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija 1 Asemoitumisen kuvaus Hakemukset parantuneet viime vuodesta, mutta paneeli toivoi edelleen asemoitumisen
Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland
Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland Anne Mari Juppo, Nina Katajavuori University of Helsinki Faculty of Pharmacy 23.7.2012 1 Background Pedagogic research
3 9-VUOTIAIDEN LASTEN SUORIUTUMINEN BOSTONIN NIMENTÄTESTISTÄ
Puhe ja kieli, 27:4, 141 147 (2007) 3 9-VUOTIAIDEN LASTEN SUORIUTUMINEN BOSTONIN NIMENTÄTESTISTÄ Soile Loukusa, Oulun yliopisto, suomen kielen, informaatiotutkimuksen ja logopedian laitos & University
Oma sininen meresi (Finnish Edition)
Oma sininen meresi (Finnish Edition) Hannu Pirilä Click here if your download doesn"t start automatically Oma sininen meresi (Finnish Edition) Hannu Pirilä Oma sininen meresi (Finnish Edition) Hannu Pirilä
Työsuojelurahaston Tutkimus tutuksi - PalveluPulssi 11.3.2016. Peter Michelsson Wallstreet Asset Management Oy
Työsuojelurahaston Tutkimus tutuksi - PalveluPulssi 11.3.2016 Peter Michelsson Wallstreet Asset Management Oy Wallstreet lyhyesti Perustettu vuonna 2006, SiPa toimilupa myönnetty 3/2014 Täysin kotimainen,
Basic Flute Technique
Herbert Lindholm Basic Flute Technique Peruskuviot huilulle op. 26 Helin & Sons, Helsinki Basic Flute Technique Foreword This book has the same goal as a teacher should have; to make himself unnecessary.
Capacity utilization
Mat-2.4142 Seminar on optimization Capacity utilization 12.12.2007 Contents Summary of chapter 14 Related DEA-solver models Illustrative examples Measure of technical capacity utilization Price-based measure
Jussi Klemola 3D- KEITTIÖSUUNNITTELUOHJELMAN KÄYTTÖÖNOTTO
Jussi Klemola 3D- KEITTIÖSUUNNITTELUOHJELMAN KÄYTTÖÖNOTTO Opinnäytetyö KESKI-POHJANMAAN AMMATTIKORKEAKOULU Puutekniikan koulutusohjelma Toukokuu 2009 TIIVISTELMÄ OPINNÄYTETYÖSTÄ Yksikkö Aika Ylivieska
TIEKE Verkottaja Service Tools for electronic data interchange utilizers. Heikki Laaksamo
TIEKE Verkottaja Service Tools for electronic data interchange utilizers Heikki Laaksamo TIEKE Finnish Information Society Development Centre (TIEKE Tietoyhteiskunnan kehittämiskeskus ry) TIEKE is a neutral,
Supply Chain Management and Material Handling in Paper Industry Case Tervakoski Oy
Tampere University of Applied Sciences Paper technology International Pulp and Paper Technology Supply Chain Management and Material Handling in Paper Industry Case Tervakoski Oy Supervisor Commissioned
Master's Programme in Life Science Technologies (LifeTech) Prof. Juho Rousu Director of the Life Science Technologies programme 3.1.
Master's Programme in Life Science Technologies (LifeTech) Prof. Juho Rousu Director of the Life Science Technologies programme 3.1.2017 Life Science Technologies Where Life Sciences meet with Technology
RINNAKKAINEN OHJELMOINTI A,
RINNAKKAINEN OHJELMOINTI 815301A, 18.6.2005 1. Vastaa lyhyesti (2p kustakin): a) Mitkä ovat rinnakkaisen ohjelman oikeellisuuskriteerit? b) Mitä tarkoittaa laiska säikeen luominen? c) Mitä ovat kohtaaminen
Mat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
Mat-2.4142 Seminar on Optimization Data Envelopment Analysis Economies of Scope 21.11.2007 Economies of Scope Introduced 1982 by Panzar and Willing Support decisions like: Should a firm... Produce a variety
Introduction to Automotive Structure
Supakit Rooppakhun Introduction to Automotive Structure The main purpose is to: Support all the major components and sub assemblies making up the complete vehicle Carry the passengers and/or payload in
Statistical design. Tuomas Selander
Statistical design Tuomas Selander 28.8.2014 Introduction Biostatistician Work area KYS-erva KYS, Jyväskylä, Joensuu, Mikkeli, Savonlinna Work tasks Statistical methods, selection and quiding Data analysis
1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä
OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 811122P (5 op.) 12.12.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan
ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin. Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana
ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana Taustaa KAO mukana FINECVET-hankeessa, jossa pilotoimme ECVETiä
Composition of group-subgroup subfactors
Composition of group-subgroup subfactors Richard Burstein Vanderbilt University October 23 Composition of group-subgroup subfactors Planar algebras and subfactors Automorphisms of planar algebras Planar
Olet vastuussa osaamisestasi
Olet vastuussa osaamisestasi Ohjelmistoammattilaisuuden uudet haasteet Timo Vehmaro 02-12-2015 1 Nokia 2015 Mitä osaamista tulevaisuudessa tarvitaan? Vahva perusosaaminen on kaiken perusta Implementaatio
Houston Journal of Mathematics. University of Houston Volume, No.,
Houston Journal of Mathematics c University of Houston Volume, No., CONGRUENCE LATTICES OF UNIFORM LATTICES G. GRÄTZER, E. T. SCHMIDT, AND K. THOMSEN Abstract. A lattice L is uniform, if for any congruence
Moniston tangenttiavaruus
Moniston tangenttiavaruus Juho Linna 16. tammikuuta 2008 1 1 Monistot Käytän Jänichin kirjan merkintöjä ja pyrin mainitsemaan eroavaisuudet Manfredon merkintöihin sitä mukaa kun niitä ilmenee. Olkoon X
LUONNOS RT 80260 EN AGREEMENT ON BUILDING WORKS 1 THE PARTIES. May 1998 1 (10)
RT 80260 EN May 1998 1 (10) AGREEMENT ON BUILDING WORKS This agreement template is based on the General Terms and Conditions of Building Contracts YSE 1998 RT 16-10660, LVI 03-10277, Ratu 417-7, KH X4-00241.
Tietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Taulukon edut Taulukon haitat Taulukon haittojen välttäminen Dynaamisesti linkattu lista Linkatun listan solmun määrittelytavat Lineaarisen listan toteutus dynaamisesti linkattuna
Guidebook for Multicultural TUT Users
1 Guidebook for Multicultural TUT Users WORKPLACE PIRKANMAA-hankkeen KESKUSTELUTILAISUUS 16.12.2010 Hyvää käytäntöä kehittämässä - vuorovaikutusopas kansainvälisille opiskelijoille TTY Teknis-taloudellinen
S Sähkön jakelu ja markkinat S Electricity Distribution and Markets
S-18.3153 Sähkön jakelu ja markkinat S-18.3154 Electricity Distribution and Markets Voltage Sag 1) Kolmivaiheinen vastukseton oikosulku tapahtuu 20 kv lähdöllä etäisyydellä 1 km, 3 km, 5 km, 8 km, 10 km
RANTALA SARI: Sairaanhoitajan eettisten ohjeiden tunnettavuus ja niiden käyttö hoitotyön tukena sisätautien vuodeosastolla
TURUN YLIOPISTO Hoitotieteen laitos RANTALA SARI: Sairaanhoitajan eettisten ohjeiden tunnettavuus ja niiden käyttö hoitotyön tukena sisätautien vuodeosastolla Pro gradu -tutkielma, 34 sivua, 10 liitesivua
KMTK lentoestetyöpaja - Osa 2
KMTK lentoestetyöpaja - Osa 2 Veijo Pätynen 18.10.2016 Pasila YHTEISTYÖSSÄ: Ilmailun paikkatiedon hallintamalli Ilmailun paikkatiedon hallintamalli (v0.9 4.3.2016) 4.4 Maanmittauslaitoksen rooli ja vastuut...
Nuku hyvin, pieni susi -????????????,?????????????????. Kaksikielinen satukirja (suomi - venäjä) (www.childrens-books-bilingual.com) (Finnish Edition)
Nuku hyvin, pieni susi -????????????,?????????????????. Kaksikielinen satukirja (suomi - venäjä) (www.childrens-books-bilingual.com) (Finnish Edition) Click here if your download doesn"t start automatically
Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies
Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine 4.1.2018 Centre for Language and Communication Studies Puhutko suomea? -Hei! -Hei hei! -Moi! -Moi moi! -Terve! -Terve
Siirtymä maisteriohjelmiin tekniikan korkeakoulujen välillä Transfer to MSc programmes between engineering schools
Siirtymä maisteriohjelmiin tekniikan korkeakoulujen välillä Transfer to MSc programmes between engineering schools Akateemisten asioiden komitea Academic Affairs Committee 11 October 2016 Eija Zitting
Information on Finnish Language Courses Spring Semester 2017 Jenni Laine
Information on Finnish Language Courses Spring Semester 2017 Jenni Laine 4.1.2017 KIELIKESKUS LANGUAGE CENTRE Puhutko suomea? Do you speak Finnish? -Hei! -Moi! -Mitä kuuluu? -Kiitos, hyvää. -Entä sinulle?
Increase of opioid use in Finland when is there enough key indicator data to state a trend?
Increase of opioid use in Finland when is there enough key indicator data to state a trend? Martta Forsell, Finnish Focal Point 28.9.2015 Esityksen nimi / Tekijä 1 Martta Forsell Master of Social Sciences
FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL
FinFamily PostgreSQL 1 Sisällys / Contents FinFamily PostgreSQL... 1 1. Asenna PostgreSQL tietokanta / Install PostgreSQL database... 3 1.1. PostgreSQL tietokannasta / About the PostgreSQL database...
OP1. PreDP StudyPlan
OP1 PreDP StudyPlan PreDP The preparatory year classes are in accordance with the Finnish national curriculum, with the distinction that most of the compulsory courses are taught in English to familiarize
Expression of interest
Expression of interest Avoin hakemus tohtorikoulutettavaksi käytäntö Miksi? Dear Ms. Terhi virkki-hatakka I am writing to introduce myself as a volunteer who have the eagerness to study in your university.
Rekisteröiminen - FAQ
Rekisteröiminen - FAQ Miten Akun/laturin rekisteröiminen tehdään Akun/laturin rekisteröiminen tapahtuu samalla tavalla kuin nykyinen takuurekisteröityminen koneille. Nykyistä tietokantaa on muokattu niin,
C++11 seminaari, kevät Johannes Koskinen
C++11 seminaari, kevät 2012 Johannes Koskinen Sisältö Mikä onkaan ongelma? Standardidraftin luku 29: Atomiset tyypit Muistimalli Rinnakkaisuus On multicore systems, when a thread writes a value to memory,
AYYE 9/ HOUSING POLICY
AYYE 9/12 2.10.2012 HOUSING POLICY Mission for AYY Housing? What do we want to achieve by renting apartments? 1) How many apartments do we need? 2) What kind of apartments do we need? 3) To whom do we
LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet
LX 70 % Läpäisy 36 32 % Absorptio 30 40 % Heijastus 34 28 % Läpäisy 72 65 % Heijastus ulkopuoli 9 16 % Heijastus sisäpuoli 9 13 Emissiivisyys.77.77 Auringonsuojakerroin.54.58 Auringonsäteilyn lämmönsiirtokerroin.47.50
Information on Finnish Courses Autumn Semester 2017 Jenni Laine & Päivi Paukku Centre for Language and Communication Studies
Information on Finnish Courses Autumn Semester 2017 Jenni Laine & Päivi Paukku 24.8.2017 Centre for Language and Communication Studies Puhutko suomea? -Hei! -Hei hei! -Moi! -Moi moi! -Terve! -Terve terve!
MEETING PEOPLE COMMUNICATIVE QUESTIONS
Tiistilän koulu English Grades 7-9 Heikki Raevaara MEETING PEOPLE COMMUNICATIVE QUESTIONS Meeting People Hello! Hi! Good morning! Good afternoon! How do you do? Nice to meet you. / Pleased to meet you.
General studies: Art and theory studies and language studies
General studies: Art and theory studies and language studies Centre for General Studies (YOYO) Aalto University School of Arts, Design and Architecture ARTS General Studies General Studies are offered
The role of 3dr sector in rural -community based- tourism - potentials, challenges
The role of 3dr sector in rural -community based- tourism - potentials, challenges Lappeenranta, 5th September 2014 Contents of the presentation 1. SEPRA what is it and why does it exist? 2. Experiences
S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖKNKKA A KONKKA. välikoe 2..2008. Saat vastata vain neljään tehtävään!. aske jännite U. = 4 Ω, 2 = Ω, = Ω, = 2, 2 =, = A, 2 = U 2 2 2 2. ännitelähde tuottaa hetkestä t = t < 0 alkaen kaksiportaisen
Tarua vai totta: sähkön vähittäismarkkina ei toimi? 11.2.2015 Satu Viljainen Professori, sähkömarkkinat
Tarua vai totta: sähkön vähittäismarkkina ei toimi? 11.2.2015 Satu Viljainen Professori, sähkömarkkinat Esityksen sisältö: 1. EU:n energiapolitiikka on se, joka ei toimi 2. Mihin perustuu väite, etteivät
T Statistical Natural Language Processing Answers 6 Collocations Version 1.0
T-61.5020 Statistical Natural Language Processing Answers 6 Collocations Version 1.0 1. Let s start by calculating the results for pair valkoinen, talo manually: Frequency: Bigrams valkoinen, talo occurred
812336A C++ -kielen perusteet, 21.8.2010
812336A C++ -kielen perusteet, 21.8.2010 1. Vastaa lyhyesti seuraaviin kysymyksiin (1p kaikista): a) Mitä tarkoittaa funktion ylikuormittaminen (overloading)? b) Mitä tarkoittaa jäsenfunktion ylimääritys
EUROOPAN PARLAMENTTI
EUROOPAN PARLAMENTTI 2004 2009 Kansalaisvapauksien sekä oikeus- ja sisäasioiden valiokunta 2008/0101(CNS) 2.9.2008 TARKISTUKSET 9-12 Mietintöluonnos Luca Romagnoli (PE409.790v01-00) ehdotuksesta neuvoston
Teacher's Professional Role in the Finnish Education System Katriina Maaranen Ph.D. Faculty of Educational Sciences University of Helsinki, Finland
Teacher's Professional Role in the Finnish Education System Katriina Maaranen Ph.D. Faculty of Educational Sciences University of Helsinki, Finland www.helsinki.fi/yliopisto This presentation - Background
ELEMET- MOCASTRO. Effect of grain size on A 3 temperatures in C-Mn and low alloyed steels - Gleeble tests and predictions. Period
1 ELEMET- MOCASTRO Effect of grain size on A 3 temperatures in C-Mn and low alloyed steels - Gleeble tests and predictions Period 20.02-25.05.2012 Diaarinumero Rahoituspäätöksen numero 1114/31/2010 502/10
NAO- ja ENO-osaamisohjelmien loppuunsaattaminen ajatuksia ja visioita
NAO- ja ENO-osaamisohjelmien loppuunsaattaminen ajatuksia ja visioita NAO-ENO työseminaari VI Tampere 3.-4.6.2015 Projektisuunnittelija Erno Hyvönen erno.hyvonen@minedu.fi Aikuiskoulutuksen paradigman
Integration of Finnish web services in WebLicht Presentation in Freudenstadt 2010-10-16 by Jussi Piitulainen
Integration of Finnish web services in WebLicht Presentation in Freudenstadt 2010-10-16 by Jussi Piitulainen Who we are FIN-CLARIN University of Helsinki The Language Bank of Finland CSC - The Center for
Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)
Tilasto T1106120-s2012palaute Kyselyn T1106120+T1106120-s2012palaute yhteenveto: vastauksia (4) Kysymys 1 Degree programme: (4) TIK: TIK 1 25% ************** INF: INF 0 0% EST: EST 0 0% TLT: TLT 0 0% BIO:
Paikkatiedon semanttinen mallinnus, integrointi ja julkaiseminen Case Suomalainen ajallinen paikkaontologia SAPO
Paikkatiedon semanttinen mallinnus, integrointi ja julkaiseminen Case Suomalainen ajallinen paikkaontologia SAPO Tomi Kauppinen, Eero Hyvönen, Jari Väätäinen Semantic Computing Research Group (SeCo) http://www.seco.tkk.fi/
Salasanan vaihto uuteen / How to change password
Salasanan vaihto uuteen / How to change password Sisällys Salasanakäytäntö / Password policy... 2 Salasanan vaihto verkkosivulla / Change password on website... 3 Salasanan vaihto matkapuhelimella / Change