ASTROFYSIIKAN TEHTÄVIÄ IV



Samankaltaiset tiedostot
Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

ASTROFYSIIKAN TEHTÄVIÄ II

ASTROFYSIIKAN TEHTÄVIÄ V

ASTROFYSIIKAN TEHTÄVIÄ VI

Kosmos = maailmankaikkeus

Aurinko. Tähtitieteen peruskurssi

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson

Muunnokset ja mittayksiköt

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

Maailmankaikkeuden syntynäkemys (nykykäsitys 2016)

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe , malliratkaisut

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

g-kentät ja voimat Haarto & Karhunen

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA

Mitataan yleismittarilla langan resistanssi, metrimitalla pituus, mikrometrillä langan halkaisija. 1p

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

Fysiikan valintakoe , vastaukset tehtäviin 1-2

Kvanttifysiikan perusteet 2017

Kokeellisen tiedonhankinnan menetelmät

FYSIIKAN HARJOITUSTEHTÄVIÄ

1 Laske ympyrän kehän pituus, kun

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5

2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset.

Kosmologia ja alkuaineiden synty. Tapio Hansson

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen

HARJOITUS 4 1. (E 5.29):

Sähköstatiikka ja magnetismi

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.

VUOROVAIKUTUS JA VOIMA

yyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan

3.1 Varhaiset atomimallit (1/3)

Liikemäärän säilyminen Vuorovesivoimat Jousivoima

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET

Jupiter-järjestelmä ja Galileo-luotain II

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

KERTAUSTEHTÄVIÄ KURSSIIN A-01 Mekaniikka, osa 1

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

MEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

Massa ja paino. Jaana Ohtonen Språkskolan Kielikoulu. torsdag 9 januari 14

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Maan ja avaruuden välillä ei ole selkeää rajaa

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

3.4 Liike-energiasta ja potentiaalienergiasta

Fysiikka 8. Aine ja säteily

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe , malliratkaisut ja arvostelu.

Nyt kerrataan! Lukion FYS5-kurssi

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

Luvun 8 laskuesimerkit

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan

AURINKOKUNNAN RAKENNE

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009

FYSIIKAN HARJOITUSKOE I Mekaniikka, 8. luokka

Kitka ja Newtonin lakien sovellukset

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe , malliratkaisut

S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Mustien aukkojen astrofysiikka

Pietarsaaren lukio Vesa Maanselkä

5.9 Voiman momentti (moment of force, torque)

Atomien rakenteesta. Tapio Hansson

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike

766323A-02 Mekaniikan kertausharjoitukset, kl 2012

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N

Magneettikentät. Haarto & Karhunen.

Theory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä)

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe , malliratkaisut

Suhteellisuusteorian perusteet 2017

v = Δs 12,5 km 5,0 km Δt 1,0 h 0,2 h 0,8 h = 9,375 km h 9 km h kaava 1p, matkanmuutos 1p, ajanmuutos 1p, sijoitus 1p, vastaus ja tarkkuus 1p

Aloitetaan kyselemällä, mitä kerholaiset tietävät aurinkokunnasta ja avaruudesta ylipäänsä.

E 3.15: Maan pinnalla levossa olevassa avaruusaluksessa pallo vierii pois pöydän vaakasuoralta pinnalta ja osuu lattiaan D:n etäisyydellä pöydän

Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen

AKAAN AURINKOKUNTAMALLI

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Keski-Suomen fysiikkakilpailu

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Kapasitiivinen ja induktiivinen kytkeytyminen

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:

YO-harjoituskoe B / fysiikka Mallivastaukset

PAINOPISTE JA MASSAKESKIPISTE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

5.13 Planetaarinen liike, ympyräradat

RATKAISUT: 19. Magneettikenttä

Transkriptio:

ASTROFYSIIKAN TEHTÄVIÄ IV 423. Mitä perusteluja ja todistuksia esitettiin ennen ajanlaskun alkua ja sen jälkeen maapallon pallonmuotoisuudelle? (ks. http://www.kotiposti.net/ajnieminen/mpallo.pdf). 424. Tanskalainen tähtitieteilijä Ole Römer 1644-1710) tutki vuonna 1676 Jupiterin kuiden pimennyksiä ja havaitsi, että Jupiterin ollessa lähinnä Maata pimennys esiintyi ennakoitua aikaisemmin kuin Jupiterin ollessa kauimpana Maasta. Tästä Römer päätteli, että Jupiterista saapuvalla valolla on äärellinen nopeus. Römer määritti Jupiterin kuun Ion pimennysajat aikoina (ks. kuva), jolloin Maa oli Jupiteria lähinnä (1) ja kauimpana siitä (2). Viimeksi mainitussa tapauksessa (2) pimennyksen alkamishetki myöhästyi laskemalla määritetystä ajasta noin 22 minuuttia Römer päätteli, että valolta kuluu Maan halkaisijan pituisen matkan, 300 miljoonaa kilometriä, kulkemiseen 22 minuuttia ja tästä hän laski valon nopeuden. a) Minkä arvon hän sai valon nopeudelle? b) Mikä on valon nopeuden taulukkoarvo? c) Kuinka monta prosenttia Römerin tulos poikkeaa taulukon arvosta? (ks. http://www.kotiposti.net/ajnieminen/romer.pdf). [V: a) 230 000 km/s, b) ks. MAOL s. 71, c) 24 %]. 425. a) Miten syntyy auringonpimennys? b) Selitä piirrosten avulla täydellisen ja rengasmaisen auringonpimennyksen syntyminen. c) Kuinka monen viikon päästä on seuraava täysikuu, kun Kuu näyttää tänään oheisen kuvan mukaiselta? (YO-S10-1). 426. Mistä Maan magneettikenttä aiheutuu? Kuvaile kentän muotoa lähellä Maan pintaa ja avaruudessa. Millainen on kosmisen säteilyn vuorovaikutus Maan magneettikentän kanssa? (YO-S10-11). 427. Laske maapallon liike-energia sen kiertäessä Aurinkoa. Käytä apuna taulukon tietoja. [V: 2,6 10 33 J].

428. Asteroidi 1933KA2 ohitti maapallon toukokuussa 1993 noin 144 000 km:n etäisyydeltä. Asteroidin massa oli noin 6000 t ja nopeus 80 000 km/h. a) Laske asteroidin liike-energia. b) Pohdi, miten asteroidin törmäys Maahan voitaisiin estää. [V: a) 1 10 15 J]. 429. Arizonassa Yhdysvalloissa on ison meteoriitin törmäyksestä syntynyt kraatteri. Kraatterin ikä on arviolta noin 49 000 vuotta. Sen halkaisija on 1190 m, syvyys 170 m ja reunavallien korkeus 45 m. On arvioitu, että meteoriitin massa oli 2 10 9 kg ja nopeus 10 km/s. Törmäys oli täysin kimmoton. a) Kuinka suuri oli Maan nopeuden muutos törmäyksessä? b) Kuinka paljon liike-energiasta muuttui toiseen muotoon? [V: a) 3,3 10-9 mm/s, b) 1 10 17 J]. 430. Keihin henkilöihin sopivat seuraavat tähtitieteen luonnehdinnat? a) Hänen mukaansa nimetyssä aurinkokunnan mallissa Aurinko on keskipisteenä. b) Hän otti ensimmäisenä käyttöön kaukoputken tähtitaivaan tarkkailussa. c) Hänen mukaansa planeetan rata ovat ellipsi, jonka toisessa polttopisteessä on Aurinko. d) Hän on pohjoismaalainen tähtitieteilijä, jonka havaintojen perusteella hänen oppilaansa muotoili kolme merkittävää lakia planeettojen liikkeistä. e) Hän selitti taivaankappaleiden noudattavan samoja liikkeen lakeja, kuin esimerkiksi kiven heitto. f) Hän esitti vuonna 1684 yleisen vetovoimalain. 431. Matkustat vuonna 2050 kuuhun ja seisot kuun kamaralla yömyöhällä rakastettusi kanssa ihaillen maatamoa. Kuinka suuressa kulmassa näet maan, kun Maan säde on 6366 km, Kuun säde on 1738 km ja maan ja kuun välinen etäisyys on 356400 km. Anna vastaus kahden desimaalin tarkkuudella. [V: 2,01 o ]. 432. Avaruusaluksen ulkopuolella työskentelevä astronautti heittää kameran, jonka massa on 800 g, nopeudella 12,0 m/s. Kuinka paljon astronautin nopeus muuttuu? Astronautin massa varusteineen on 100 kg. [V: 0,1 m/s]. 433. Avaruusraketin tietokoneen on kestettävä kiihtyvyys 10 g. Kone kiinnitetään testausta varten alustaan, joka alkaa värähdellä lähes harmonisesti amplitudilla 10 cm. Laske värähtelyn taajuus. [V: 5,0 Hz]. 434. Avaruusaluksen kuljettaman tieteellisen laitteen tulee kestää 10 g kiihtyvyys, jossa g on Maan vetovoiman kiihtyvyys (putoamiskiihtyvyys 9,81 m/s 2 ). Laitetta testataan vaakatasossa toimivassa harmonisessa värähtelijässä, jonka amplitudi on 0,15 m. Määritä värähtelijän taajuus silloin kun kiihtyvyys on 10 g. Harmonisen värähtelijän paikka (poikkeama) noudattaa yhtälöä: x = Asinωt, missä ω = 2πf. (Vihje: Derivoi paikka x ajan t suhteen kahdesti, jotta saat nopeuden ja kiihtyvyyden lausekkeet. Aseta sitten maksimikiihtyvyys yhtä suureksi kuin 10 g: a max = 10g). [V: 4,1 Hz]. 435. Maailmankaikkeus on yhden nykyisen käsityksen mukaan alkuräjähdyksestä (Big Bang) lähtien ikään kuin laajeneva pallo, jonka säde kasvaa valon nopeudella. Maailmankaikkeuden halkaisijan oletetaan olevan noin 3 10 26 m. Kuinka pitkän ajan kuluttua maailmankaikkeuden tilavuus on kaksinkertaistunut? [V: 4 10 9 a].

436. Newtonin lait eli mekaniikan peruslait. (YO-S86-1, YO-S79-1). 437. a) Miksi jossakin maapallolla on havaittavissa meren pinnan kohoamista ja laskemista eli ns. vuorovesi-ilmiö? b) Kuinka usein tulee aina uusi nousuvesi? c) Mitä tarkoittaa tulvavuoksi? d) Mihin vuorovesi-ilmiö perustuu? 438. Putoamiskiihtyvyys Kuun pinnalla on varsin tarkasti kuudesosa putoamiskiihtyvyydestä Maan pinnalla. a) Kuinka korkealle pomppaa astronautti yhtä voimakkaalla ponnistuksella Kuussa, jolla hän Maassa nousee 30 cm? b) Arvioi, kuinka korkealla olevan riman ylittäisi korkeushyppääjä samalla ponnistuksella ja hyppytekniikalla Kuussa, jolla hän maassa ylittää 2,0 m. [V: a) 1,8 m, b) 7,0 m]. 439. Pulsari on nopeasti pyörivä neutronitähti. Pulsarin PSR 1937+21 pyörimisnopeus on eli kierrostaajuus on 641,9282573 r/s. Laske pulsarin kierrosaika ja kulmanopeus. [V: 1,6 ms ja 4030 rad/s]. 440. Astronauttikokelasta testataan sentrifugissa, jonka säde on 10 m. Sentrifugia kiihdytetään levosta kulmakiihtyvyydellä 0,15 rad/s 2. Määritä 5,0 sekunnin kuluttua astronautin a) kulmanopeus, b) ratanopeus, c) ratakiihtyvyys eli tangenttikiihtyvyys, d) normaalikiihtyvyys, e) (kokonais)kiihtyvyys. [V: a) 0,75 rad/s, b) 7,5 m/s, c) 1,5 m/s 2, d) 5,6 m/s 2, e) 5,8 m/s 2, 15 o ]. 441. Astronauttia harjoitettiin kestämään raketin noustessa vallitsevia suuria kiihtyvyyksiä pyörittämällä häntä sentrifugissa ympyräradalla, jonka säde oli 15 m. a) Mikä kulmanopeus tarvitaan, jotta astronautti saisi vastaavan kokemuksen kuin raketin kiihtyvyyden ollessa 10 g? b) Mikä on astronautin tangenttikiihtyvyys eli ratakiihtyvyys, jos sentrifugin pyörimisliike kiihtyy tasaisesti levosta kyseiseen kulmanopeuteen kahdessa minuutissa? c) Mikä on astronautin (kokonais)kiihtyvyys sentrifugin kiihdytyksen loppuhetkellä? [V: a) 2,6 rad/s, b) 0,32 m/s 2, c) 98 m/s 2 ]. Fotoni 5, E4, s. 23-24.] 442. Olkoon Aurinkokunnassa pieni taivaankappale, jonka etäisyys Auringosta olisi 8 kertaa suurempi kuin Maan etäisyys Auringosta. Kuinka monta vuotta taivaankappaleella menisi siihen, että se kiertäisi Auringon? Tee lasku Keplerin lakien avulla. [V: 23 a]. 443. Deimos-kuu kiertää Mars-planeettaa radalla, jonka säde on 23,5 Mm. Kiertoaika on 30,3 h. Kuinka suuri on Marsin massa näiden tietojen perusteella? [V: 6,45 10 23 kg]. 444. Jupiterin Europa kuun kiertoaika on 3,55 vuorokautta ja sen ympyräradan säde on 671000 km. Kallisto-kuun kiertoaika on 16,7 vuorokautta. Laske näillä tiedoilla a) Kalliston radan säde, b) Jupiterin massa. [V: a) 1,88 10 9 m, b) 1,90 10 27 kg]. 445. a) Kuinka suurella voimalla Maa vetää Kuuta puoleensa? b) Kuinka suuren kiihtyvyyden tämä vetovoima antaa Kuulle? c) Mikä on Kuun normaalikiihtyvyys, jos oletetaan, että se kiertää Maata pitkin ympyrärataa? Käytä apunasi taulukon tietoja. [V: a) 2,0 10 20 N, b) ja c) 2,7 10-3 m/s 2 ].

446. Avaruusalus kiertää ympyrärataa Maata päiväntasaajan kohdalla 1200 km korkeudella. Aluksessa leijailee astronautti, jonka massa varusteineen on 180 kg. a) Laske astronauttiin kohdistuva gravitaatiovoima. b) Laske avaruusaluksen kierrosaika. [V: a) 1,2 kn, b) 110 min]. 447. Satelliitti kiertää Maata 760 km:n korkeudella ilman moottoreiden työntöä. Satelliitin massa on 235 kg ja rata ympyrän muotoinen. Maan massa on 5,974 10 24 kg ja säde 6370 km. a) Kuinka suuri gravitaatiovoima satelliittiin kohdistuu? b) Laske satelliitin nopeus ja kiertoaika. [V: a) 1,8 kn, b) 7,5 km/s ja 100 min]. 448. Apollo-lennolla kuumoduuli kiersi Kuuta 186 km:n korkeudella. Laske kuumoduulin nopeus ja kiertoaika, kun se liikkui ympyräradalla. [V: 1,6 km/s ja 126 min]. 449. Kuututkimuksessa käytettävä avaruusalus kiertää Kuuta ympyräradalla, jonka säde on 1960 km. Kuun massa on 7,35 10 22 kg. Laske aluksen nopeus. (YO-K82-2b). [V: 1,58 km/s]. 450. Avaruuden gammasäteilyä mittaava luotain kiertää Maata 790 km:n korkeudella. Luotaimen rata on ympyrän muotoinen. a) Kirjoita luotaimen liikeyhtälö. b) Laske luotaimen kiertoaika ja kiihtyvyys. [V: b) 100 min ja 7,8 m/s 2 ]. 451. Geostationaariselle radalle (Geostationary Orbit GSO) tarkoitetut satelliitit siirretään ensin Maan lähellä olevalle ympyräkiertoradalle (Low Earth Orbit LEO), josta ne nostetaan geostationaariselle radalle elliptistä rataa (E) pitkin. (Kuvassa olevien ratojen säteet eivät ole mittakaavassa). a) Mitä tarkoitetaan geostationaarisella radalla? b) Mikä on geostationaarisen radan säde? Kuinka korkealla geosationaarinen satelliitti on maanpinnasta? c) Miksi kaikki tehtävässä mainitut radat ovat samassa tasossa päiväntasaajan kanssa? d) Laske geostationaarisen satelliitin ratanopeus. [V: b) 42 200 km, 36 000 km, d) 3,1 km/s]. 452. Millä korkeudella Maan pinnasta painovoiman kiihtyvyys g on pienentynyt 1 %? [V: 32 km]. 453.Erilaisten satelliittien etäisyydet Maasta voivat vaihdella hyvin paljon. a) Eräs melko matalalla oleva satelliitti kiertää Maata 720 km korkeudella maanpinnasta. Satelliitin massa on 1200 kg. Laske satelliitin nopeus ja kiertoaika. b) Eräs geostationaarinen eli päiväntasaajan tasossa Maata kiertävä satelliitti on 36 000 km korkeudella. Satelliitin massa on 2300 kg. Kuinka monta prosenttia siihen vaikuttava painovoima on a)-kohdan satelliittiin vaikuttavasta painovoimasta? [V: a) 7,5 km/s, 99 min b) 5,4 %].

454. Satelliitti liikkuu lähes ympyrärataa pitkin maapallon ekvaattoritasossa 200 km korkeudella. Satelliitissa on 2 m pituinen suora antenni, joka on kohtisuorassa maan pintaa vastaan. Laske antennin päiden välille Maan magneettikentän vuoksi indusoituva jännite (potentiaaliero) olettaen, että magneettivuon tiheys B lentoradan kohdalla on 70 μt ja inklinaatio ja deklinaatio ovat 0 o. Antennin päiden välille indusoitunut jännite saadaan lausekkeesta e = lvb, missä l on antennin pituus, B on magneettivuon tiheys ja v on satelliitin nopeus. (YO-S80-4b). [V: 1 V]. 455. Auringon soihdut (solar flares) on voimakas Auringossa tapahtuva energiapurkaus. Tällainen purkaus lähettää myös kovaa röntgensäteilyä (< 0,06 nm). Kuinka suuri jännite tarvittaisiin röntgenputkeen, jotta saataisiin aikaan 0,06 nm:n röntgensäteilyä? [V: 21 kv]. 456. Millä aallonpituusalueella on säteilyn spektrin huipun kohta 2,7 K:n taustasäteilyllä? (Kosminen kolmen kelvinin taustasäteily on mikroaaltosäteilyä, joka tulee kaikkialta avaruudesta. Se vastaa aallonpituusjakaumaltaan sellaista lämpösäteilyä, joka tulee noin 2,7 kelvinin lämpöisestä mustasta kappaleesta. Kosminen mikroaaltotaustasäteily on universumin kuuman menneisyyden jälkihehku. Se syntyi maailmankaikkeuden ollessa noin 380 000 vuoden ikäinen. Tällöin ensimmäiset atomit syntyivät ytimistä ja elektroneista 2900 K lämpötilassa. Maailmankaikkeus muuttui läpinäkyväksi ja mahdollisti näin säteilyn kulkemisen universumin läpi(rekombinaatio eli irtikytkeytyminen). Säteily oli alun perin punahohtoista infrapunasäteilyä ja näkyvää valoa, mutta on jäähtynyt ja punasiirtymän takia muuttunut lyhytaaltoiseksi radiosäteilyksi. Säteily havaittiin vuonna 1965 ja yksi alkuräjähdysteorian vahvimmista todisteista). [V: 1,1 mm]. 457. Maan lähettämän sähkömagneettisen säteilyn intensiteettimaksimi on aallonpituudella 10 000 nm. Mikä on tämän tiedon perusteella Maan keskimääräinen pintalämpötila? [V: 290 K]. 458. Erään tähden pintalämpötila on 6 500 K. Mikä on tämän tähden a) väri b) intensiteettimaksimia vastaavan fotonin energia? [V: b) 2,8 ev]. 459. Laske säteilyn aallonpituus, kun sen fotonin energia on 1,15 ev. [V: 1,1 μm]. 460. Näkyvän valon keskimääräinen aallonpituus on 550 nm. Laske tätä aallonpituutta vastaavan fotonin a) energia b) liikemäärä. [V: a) 3,6 10-19 J, b) 1,2 10-27 kgm/s]. 461. Sähkömagneettisen säteilyn energia on 1,3 kev. Laske säteilyn a) taajuus b) aallonpituus tyhjiössä. [V: a) 3,1 10 17 Hz, b) 0,95 nm]. 462. Tähtienvälisessä avaruudessa esiintyy niin sanottuja Rydbergin atomeja, jotka ovat korkeaan energiatilaan virittyneitä vetyatomeja. a) Mille aallonpituudelle ja taajuudelle vastaanotinantenni on viritettävä, jotta havaitaan signaali elektronista, joka siirtyy energiatilasta 109 energiatilaan 108? b) Kuinka suuri on näiden tilojen energioiden erotus? c) Kuinka paljon tarvitaan energiaa, jotta vetyatomin perustilassa oleva elektroni siirtyy tilaan 109? [V: a) 58,2 mm ja 5,2 GHz, b) 21,4 μev, c) 13,6 ev]. 463. Tähtitieteilijä tekee havaintoja Linnunradan keskustan suunnassa olevasta kaasupilvestä. Kaasupilvestä tulevien fotonien energia on 1,0 ev. Millä aallonpituusalueella kaasupilvi säteilee, ja mikä on säteilyn tarkka aallonpituus? [V: IP; 1,2 μm].

464. Laske maapallon ikä, kun oletetaan, että maapallo kertyi kokoon aineesta, jossa oli yhtä runsaasti uraani-235 ja uraani-238 -isotooppeja. Uraani-isotooppien U-235 ja U-238 suhteelliset runsaudet luonnossa ja puoliintumisajat ovat 0,720 % ja 7,038 10 8 a (U-235) sekä 99,275 % ja 4,468 10 9 a (U-238). [V: 6 10 9 a]. 465. Tähtien energiantuotanto perustuu fuusioreaktioon. Raskaimmissa tähdissä fuusiot jatkuvat aina rautaan Fe saakka. Rautaa raskaammat alkuaineet syntyvät sen sijaan supernovaräjähdyksissä. Tähdissä tapahtuu mm. fuusioreaktio, jossa kolmesta 4 He-ytimestä syntyy välivaiheiden kautta 12 C-ydin. Eräässä tähdessä tässä prosessissa vapautuu energiaa 0,3 10 24 W teholla. Kuinka monta kilogrammaa heliumia kuluu sekunnissa? Heliumin isotooppimassa on 4,002603 u. Suorita yksikkötarkistus. (~YO-S87-7). [V: 5 10 9 kg]. 466. Galaksi pyörii Auringon etäisyydellä akselinsa ympäri kerran 2,3 10 8 vuodessa. Aurinko sijaitsee 30 000 valovuoden päässä galaksin keskustasta. Kuinka suuri on Auringon ratanopeus? [V: 250 km/s]. 467. Kaksi tietoliikennesatelliittia kiertää maapalloa siten, että niiden välinen kulma on 2,00 o. Satelliittien radan säde on 4,23 10 7 m. Kuinka suuri on satelliittien välinen etäisyys s pitkin ympyrän kaarta? [V: 1,48 10 6 m ]. 468. Auringosta peräisin olevat protonit ajautuvat aurinkotuulen mukana Maan magneettikenttään. Kun protonit törmäävät ilmakehän happiatomeihin magneettikentän ohjaamina, happiatomit virittyvät. Revontulivaloa, jonka aallonpituus on 558 nm, syntyy, kun happiatomin korkea viritystila E k purkautuu alempaan viritystilaan E a. a) Kuinka suuri on energiatilojen välinen erotus elektronivoltteina (ev)? b) Kuinka suuri nopeus protoneilla tulee vähintään olla, jotta ne pystyisivät saamaan aikaan kyseisen revontulivalon? Lopputilan korkeus perustilaan nähden on noin 1,96 ev. c) Piirrä prosessia kuvaava energiatasokaavio. [V: a) 2,22 ev, b) 28,3 km/s]. 469. Mitä ovat mekaniikan suuret säilymislait taivaankappaleiden liikkeissä? Esitä sanallisesti, mitä kukin niistä tarkoittaa. Esitä jokaisesta esimerkki. 470. Satelliitti kiertää Maata pitkin ympyrärataa, jonka säde on 1,60 R (R = Maan säde). Maan keskisäde on 6370 km. Laske a) satelliitin nopeus b) satelliitin kiertoaika c) Maan vetovoiman aiheuttama kiihtyvyys ko. radalla. [V: a) 6,2 km/s, b) 2h 51 min, c) 0,625g].

471. Oheinen yksinkertaistettu ttu kuvaaja esittää Auringon aktiivisuudesta johtuvaa maapallon magneettikentän magneettivuon tiheyden pystykomponentin vaihtelua. Kuinka suuren sähkövirran tämä voi suurimmillaan aiheuttaa kuvan esittämään Suomen kantaverkon silmukkaan? Oletetaan silmukka ympäristöstään eristetyksi ja sen johtimen keskimääräiseksi resistanssiksi pituusyksikköä kohti 8,6 μω/m. (YO-S08-8). [V: 78 ma]. 472. Auringon aktiivisuus voi aiheuttaa Maan magneettikentässä suhteellisen pieniä mutta verraten nopeita vaihteluja, magneettisia myrskyjä. Nämä synnyttävät merkittäviä sähkövirtoja suurikokoisiin johdepiireihin, joita muodostavat mm. öljy- ja kaasuputket tai sähkönsiirtoverkot. Sähköverkossa tällaiset ns. GIC-virrat (lähes tasavirtoja) voivat aiheuttaa suojareleiden laukeamisia (sähkökatkoksia) ja jopa pysyviä muuntajavaurioita. Oheisessa kartassa näkyy yksinkertaistettuna osa Suomen valtakunnanverkon 400 kv siirtojohdosta. Oletetaan silmukka ympäristöstään eristetyksi ja sen keskimääräiseksi johdinresistanssiksi 9,0 µ /m. Voimakkaan geomagneettisen myrskyn aikana Maan magneettikentän magneettivuon tiheyden pystykomponentti muuttuu minuutin aikana tasaisesti arvosta 48,40 µt arvoon 47,18 µt. Määritä silmukkaan syntyvän GIC-virran suuruus. (YO-K96-8). [V: 150 A]. 473. Levosta lähtevän raketin kokonaismassa on M, josta polttoainetta on m p. Pakokaasut suihkuavat raketin suhteen nopeudella la v 0. Määritä raketin saama nopeus polttoaineen loputtua. : ä ö :.

474. Riittävän korkealla Maan pinnasta a) painovoima on nolla b) painovoima on äärettömän suuri c) painovoima on yhtä suuri kuin voima, joka tarvitaan pitämään kappale geostationaarisella radalla d) asteroidit muuttuvat massattomiksi. 475. Maata kiertävällä avaruusasemalla a) kappaleisiin kohdistuu gravitaatiovoima kohti Maan keskipistettä, b) kappaleet ovat massattomia, c) kappaleiden hitausominaisuus häviää, d) kappaleiden paino on nolla. 476. a) Laske Kuun pinnan lähellä putoavan kappaleen kiihtyvyys. b) Kaksi satelliittia A ja B kiertävät Maata ympyräradoilla, joiden säteiden pituudet ovat 2R ja 8R, missä R on Maan säde. Laske satelliittien kiertoaikojen suhde. [V: a) 1,623 m/s 2, b) 8]. 477. Kuinka paljon pidemmälle voit hypätä tasajalkaponnistuksen avulla Kuussa kuin Maassa, jos alkunopeutesi ja lähtökulmasi ovat samat molemmissa? Kuun putoamiskiihtyvyys on kuudesosa Maan putoamiskiihtyvyydestä. Alkunopeus on 6,0 m/s ja lähtökulma vaakatasoon nähden 27 o. [V: 14,8 m]. 478. Kuinka korkealla Maan pinnasta putoamiskiihtyvyys on puolet Maan pinnalla olevasta putoamiskiihtyvyydestä? Maan säteenä voi käyttää ekvaattorisädettä. [V: 2600 km]. 479. Selitä käsitteet a) Big Bang b) komeetta c) tähti d) asteroidi e) musta-aukko f) Linnunrata. 480. Onko väite tosi (T) vai epätosi (E)? Korjaa virheellinen vastaus oikeaksi. a) Maapallo syntyi 4,7 miljoonaa vuotta sitten. b) Maailmankaikkeuden keskilämpötila on nyt noin 3 K. c) Maailmankaikkeuden näkyvä aine koostuu perushiukkasista. d) Pimeä aine saa aikaan yön. e) Valovuosi on aikamitta. f) Atomin rakenneosat ovat protoni ja elektroni. 481. Ovatko seuraavat väitteet oikein vai väärin? Perustelut. a) Avaruudessa etenevä avaruusasema pystyy etenemään vakionopeudella ilman polttoainetta. b) Avaruudessa vakionopeudella Maata kiertävään satelliittiin ei vaikuta mitään voimia. c) Kun kappale on vapaassa pudotuksessa lähellä maanpintaa, siihen vaikuttaa aina 9,81 newtonin voima. d) Maan vetovoima aiheutuu yksinomaan Maan massasta, ja esimerkiksi Maan magneettisuudella ei ole mitään tekemistä tämän asian kanssa. b) Maa ja Kuu vetävät kumpikin toisiaan, mutta Kuuhun kohdistuva voima on paljon suurempi. c) Jos kappaleeseen kohdistuvien voimien summa on nolla, se on aina levossa.

482. Avaruussukkula nousee kiihtyvällä vauhdilla laukaisupaikalta suoraan ylöspäin. Tällöin a) sukkulan potentiaalienergia on vakio, b) sukkulan kineettinen energia on vakio, c) sukkulan potentiaalienergia ja kineettinen energia kasvavat, d) sukkulan kineettinen energia muuttuu kemialliseksi energiaksi. 483. Savolainen sanoi kerran, että kiinalaiset saisivat aikaan maanjäristyksen toisella puolella maapalloa, jos kaikki hyppäisivät yhtä aikaa ilmaan. Oletetaan, että miljardi kiinalaista hyppää yhtä aikaa 20 cm:n korkeudelle. Miten suuren nopeuden maapallo saa ponnistushetkellä vastakkaiseen suuntaan? Kiinalaisten keskimassa on 48 kg. [V: 1,6 10-14 m/s]. 484. Selitä lyhyesti: a) Aurinkokunnan rakenne, rakennetta koossa pitävä vuorovaikutus ja rakenneosien liike. b) Mihin perustuu käsitys maailmankaikkeuden laajenemisesta? c) Mihin perustuu Auringon energiantuotto ja miten Auringon energiaa siirtyy Maahan? (YO-S03-1). 485. Ceres on Marsin ja Jupiterin välillä olevalla asteroidivyöhykkeellä sijaitseva asteroidi eli kääpiöplaneetta. Pallon muotoisen asteroidi Cereksen keskimääräinen halkaisija on 950 km. Ceres koostuu materiaalista, jonka keskitiheys on 2,08 g/cm 3. a) Mikä on putoamiskiihtyvyys Cereksen pinnalla? b) On suunniteltu, että Vereksen pinnalle laskeutuisi tulevaisuudessa tutkimusluotain ottamaan maanäytettä. Näytteen ottamisen jälkeen luotain laukaistaan Cerestä kiertävälle radalle Cereksen pinnalta. Mikä on pienin mahdollinen Cerestä kiertävän luotaimen nopeus? [V: a) 0,28 m/s 2, b) 0,36 km/s]. 486. Raketti on lähtötelineissä suunnattuna ylöspäin. Sen raketit käynnistyivät ja niistä purkautuu kaasua 1500 kg sekunnissa. Kaasumolekyylien nopeus on 50 km/s. Kuinka suuri voi raketin massa olla alussa, jotta se voi liikkua hitaasti ylöspäin rakettimoottorin avulla? [V: 7,6 10 6 kg]. 487. Auringon sisuksissa muuttuu joka sekunti 600 miljoonaa tonnia vetyä heliumiksi. Oletetaan, että Auringon energia olisi pelkästään reaktiosta + +, jossa energiaa vapautuu 17,5892 MeV. a) Laske Auringon teho. b) Auringon massasta muuttuu joka sekunti 4 miljoonaa tonnia energiaksi. Laske auringon teho tämän tiedon perusteella. [V: a) 2,0 10 26 W, b) 3,6 10 26 W]. 488. Auringon säteilyenergia on peräisin fuusioreaktioista, jossa Auringon massaa muuttuu energiaksi. Auringon säteilyteho on 3,9 10 26 W. a) Kuinka paljon massaa muuttuu energiaksi sekunnissa? b) Kuinka suuren osan alkuperäisestä massastaan Aurinko on tällä tavoin menettänyt siitä lähtien, kun reaktio käynnistyi noin 4,5 10 9 vuotta sitten? Auringon alkuperäinen massa on 2,0 10 30 kg. [Oulun yliopisto 1997]. [V: a) 4,3 10 9 kg, b) 0,031 %].

489. a) Avaruusluotain lähetettiin tutkimaan ulkoavaruutta. Lähtöhetkellä luotaimen pinnan lämpötila oli 35 o C. Oletetaan, että pinnan lämpötila laskee jossakin vaiheessa 3 K:n lämpötilaan. Laske, kuinka suuri on ympyrän muotoisen ikkunan pinta-ala lähtöhetkellä ja 3 K:n lämpötilassa, kun ikkunan säde oli lähtöhetkellä 10,0 cm. Laske muutos myös prosentteina. Ikkunan pituuden lämpötilakerroin on 8,0 10-6 1/K. b) Tarkastele niitä ongelmia, joita suuret lämpötilaerot voivat aiheuttaa avaruusaluksille. [V: a) 314 cm 2 ja 313 cm 2, muutos -0,49 %, b) -]. 490. Avaruusalus X kuljettaa tiilikuormaa tähtienvälisessä tyhjässä avaruudessa. Avaruusalus joutuu pysähtymään paikanmääritystä varten. Moottorit eivät enää pysähdyksen jälkeen toimi. Ei ole mitään keinoa saada avaruusalusta liikkeelle. Onko asia näin? Perustelut. 491. Ovatko seuraavat väitteet oikein vai väärin. Perustele. a) Vuorovesi-ilmiö Maassa johtuu pääasiassa Auringon gravitaatiovoimasta, sillä se on huomattavan paljon voimakkaampi, kuin kuun gravitaatiovoima. b) Maan vuodenaikojen vaihtelu johtuu Maan ratatason kaltevuudesta aurinkokunnan tasoon nähden. c) Maasta havaittavan auringonpimennyksen aikana Kuu heijastaa auringonvaloa. 492.Television satelliittikanavien lähetykset tulevat satelliitista, joka kiertää maata noin 36 000 km korkeudessa. Satelliitti pysyy maasta katsottuna paikoillaan. Mikä seuraavista väittämistä kuvaa oikealla tavalla satelliitin kiertoa? a) Satelliitin korkeus ei ole vapaasti valittavissa. b) Satelliitin korkeus on määritetty ensisijaisesti sen mukaan, että mahdollisimman monet maat voisivat ottaa vastaan signaalin. Jos satelliitti olisi matalammalla, osa Euroopasta olisi katveessa. c) Satelliitin on oltava riittävän korkealla maan vetovoiman vaikutuspiiristä. Muuten satelliitti tippuu maahan. d) Satelliitti kiertää maata päiväntasaajan määräämässä tasossa ennen kaikkia sen vuoksi, että Eurooppa ja Afrikka voivat käyttää saman satelliitin antamaa signaalia. 493. Satelliitit A ja B kiertävät Maata pitkin ympyräratoja. Satelliitin B etäisyys Maan keskipisteestä on kaksinkertainen A:n etäisyyteen nähden. Tällöin a) Satelliitin B normaalikiihtyvyys on neljä kertaa satelliitin A normaalikiihtyvyys. b) Satelliittien normaalikiihtyvyydet voivat olla samat. c) Satelliittien normaalikiihtyvyyksiä ei voida verrata, jos ei tiedetä niiden nopeuksia. d) Satelliitin B normaalikiihtyvyys on neljäsosa satelliitin A normaalikiihtyvyydestä. 494. Suurella nopeudella liikkuvassa avaruusaluksessa kellon sekuntiviisari heilahtaa 1 s eteenpäin. Maasta havaittuna heilahdus kestää 1,2 s. Mikä on avaruusaluksen nopeus Maan suhteen? [V: 0,55c ]. 495. Millä nopeudella havaitsijan A on liikuttava levossa olevan tangon suhteen, jotta hänen havaintonsa mukaan tangon pituus on a) neljäsosa b) kolme neljäsosaa tangon lepokoordinaatistossa mitatusta pituudesta? [V: a) 0,97c 2,90 10 8 m/s, b) 0,66c 1,98 10 8 m/s].

496. Avaruusalus ohittaa Maan nopeudella 250 000 km/s, ja sen kuljettaja havaitsee tapahtuman, jonka kesto maassa mitattuna on 1,00 s. Kuinka kauan tapahtuma kestää avaruusaluksessa tehdyn mittauksen mukaan? [V: 2,50 s]. 497. Kuinka monta prosenttia pidemmäksi mitataan lepokoordinaatistossa tapahtuvat aikavälit sellaisessa koordinaatistossa, jonka nopeus lepokoordinaatiston suhteen on 0,10 c? [V: 0,50 %]. 498. Liikkuvan havaitsijan mittauksissa aikavälit ovat 1,0 % pidempiä kuin lepokoordinaatistossa mitatut aikavälit. Mikä on tällöin liikkuvan havaitsijan nopeus lepokoordinaatiston suhteen? [V: 0,14c]. 499. Maan ja Kuun välisellä yhdysjanalla liikkuva havaitsija mittaa Kuun ja Maan väliseksi etäisyydeksi 300 000 km. Mikä on havaitsijan nopeus Maan suhteen? [V: 0,63c]. 500. Millä nopeudella avaruusaluksen pitäisi matkustaa Maahan nähden, jotta Kuun ja Maan välinen etäisyys olisi aluksesta mitattuna 190 000 km? [V: 0,87c].