1. Johdanto. Johdanto 1. Johdanto 2. Johdanto 3. Johdanto 4



Samankaltaiset tiedostot
1. Johdanto. Johdanto 1

Digitaalinen signaalinkäsittely Kuvankäsittely

JOHDATUS TEKOÄLYYN TEEMU ROOS

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

JOHDATUS TEKOÄLYYN TEEMU ROOS

Lääketieteellinen kuvantaminen. Biofysiikan kurssi Liikuntabiologian laitos Jussi Peltonen

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS

VÄRISPEKTRIKUVIEN TEHOKAS SIIRTO TIETOVERKOISSA

Tarvitseeko informaatioteknologia matematiikkaa?

JOHDATUS TEKOÄLYYN TEEMU ROOS

PIKSELIT JA RESOLUUTIO

3D-kuvauksen tekniikat ja sovelluskohteet. Mikael Hornborg

11. Tilavuusrenderöinti

2.2. Kohteiden konstruktiivinen avaruusgeometrinen esitys

Mitä on konvoluutio? Tutustu kuvankäsittelyyn

1467S Digitaalinen kuvankäsittely 1.1 Mitä digitaalinen kuvankäsittely on

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Lataa Matemaattinen mallinnus. Lataa

Luento 6: 3-D koordinaatit

811312A Tietorakenteet ja algoritmit I Johdanto

Astuvansalmen kalliomaalauskohteen dokumentointi 3D:n avulla

UUDET INNOVAATIOT. Professori Heikki Kälviäinen Koulutusohjelman johtaja Laitoksen johtaja

JOHDATUS TEKOÄLYYN TEEMU ROOS

Projektisuunnitelma ja johdanto AS Automaatio- ja systeemitekniikan projektityöt Paula Sirén

FYSA210/2 PYÖRIVÄ KOORDINAATISTO

DIGIBONUSTEHTÄVÄ: MPKJ NCC INDUSTRY OY LOPPURAPORTTI

Trimble S7: SureScan, pistepilvet ja VISION-kuvantaminen tee näin Kari Tenhunen Geotrim Kä K y ä tt t äj t äpäivä v t ä

Suurikokoiset LCD kosketusnäytöt HUMAN TOUCH

10.2. Säteenjäljitys ja radiositeettialgoritmi. Säteenjäljitys

Ongelma(t): Miten digitaalista tietoa voidaan toisintaa ja visualisoida? Miten monimutkaista tietoa voidaan toisintaa ja visualisoida?

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Matterport vai GeoSLAM? Juliane Jokinen ja Sakari Mäenpää

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

TIETOISET ELÄMYKSET OVAT KOODATTUA AIVOINFORMAATIOTA

LAS- ja ilmakuva-aineistojen käsittely ArcGIS:ssä

ARVO - verkkomateriaalien arviointiin

Luokka- ja oliokaaviot

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:

Korkean suorituskyvyn lämpökameran käyttö tulipesämittauksissa. VI Liekkipäivä, Lappeenranta Sami Siikanen, VTT

Projektisuunnitelma. Projektin tavoitteet

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Luento 6 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Johdatus tekoälyyn. Luento : Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ]

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

KUVANKÄSITTELY THE GIMP FOR WINDOWS OHJELMASSA

Laskennallinen menetelmä puun biomassan ja oksien kokojakauman määrittämiseen laserkeilausdatasta

TIE Tietorakenteet ja algoritmit 1. TIE Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

811120P Diskreetit rakenteet

POHDIN - projekti. Funktio. Vektoriarvoinen funktio

SGN-3010: Digitaalinen kuvankäsittely I. Sari Peltonen Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos 2007

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

Vasteaika. Vasteaikaa koskeva ohje ei ole juuri muuttunut Robert B. Millerin vuonna 1968 pitämästä esityksestä:

Digikuvaus selkokielellä

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Videon tallentaminen Virtual Mapista

RumbleTools Oy. Imatralainen korkean teknologian yritys Ydinosaamisemme on prosessien automatisointi robotiikan ja ohjelmistokehityksen avulla

Spektri- ja signaalianalysaattorit

Liiketoimintaa metsäkonetiedosta?

Artec TDSM 3D Skanneri 3D mallit ja animaatiot nopeasti, myös liikkuvasta kohteesta

6.6. Tasoitus ja terävöinti

Tietorakenteet ja algoritmit - syksy

Kohina. Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N)

Tee-se-itse -tekoäly

811120P Diskreetit rakenteet

bloggie - hauska ja helppo Mobile HD Snap -kamera

Muinaisesineiden 3D talletus

Hahmon etsiminen syotteesta (johdatteleva esimerkki)

1 Johdanto Mitä digitaalinen kuvankäsittely on Esimerkkejä digitaalisen kuvankäsittelyn hyödyntämisestä Kuvankäsittelyn vaiheet 3

5. Grafiikkaliukuhihna: (1) geometriset operaatiot

The spectroscopic imaging of skin disorders

Ulkoiset tallennusvälinekortit

Signaalien datamuunnokset

Signaalien datamuunnokset. Digitaalitekniikan edut

istopmotion 1.5 DV Animaatio-ohjelma

Matematiikka ja teknologia, kevät 2011

S Havaitseminen ja toiminta

LUKUJA, DATAA KÄSITTELEVÄT FUNKTIOT JA NIIDEN KÄYTTÖ LOGIIKKAOHJAUKSESSA

Digitaalisen kuvankäsittelyn perusteet

Riemannin pintojen visualisoinnista

Digitaalinen kappaletuotanto - Nopeasti markkinoille

811120P Diskreetit rakenteet

Sääasema Probyte JUNIOR

9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria

ModerniOptiikka. InFotonics Center Joensuu

Ohjelmiston toteutussuunnitelma

FYSP101/K1 KINEMATIIKAN KUVAAJAT

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Röntgenkuvaus, digitaalinen kuvaus ja tietokonetomografia

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1

Korkean resoluution ja suuren kuva-alueen SAR

Kirjoita ohjelma jossa luetaan kokonaislukuja taulukkoon (saat itse päättää taulun koon, kunhan koko on vähintään 10)

MrSmart 8-kanavainen lämpötilamittaus ja loggaus, digitoija ja talletusohjelma

Kerta 2. Kerta 2 Kerta 3 Kerta 4 Kerta Toteuta Pythonilla seuraava ohjelma:

Johdatus ohjelmointiin C-kielellä P Ohjelmoinnin perusteet C-kielellä A Ohjelmointityö

Eye tracking. analysoimalla viestintääsi voit lisätä myyntiäsi

Rosemount 3051S sähköiset ERS-anturit

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun

Luento 2: Tulostusprimitiivit

Transkriptio:

1. Johdanto Kuvanprosessointi tai käsittely juontaa juurensa kahdesta pääasiallisesta alueesta, jotka ovat kuvainformaation parantaminen ihmisen tulkintaa varten ja kuvadatan käsittely talletusta, siirtoa ja automaattisesti tietokoneella tehtävää havainnointia varten. Kuva määritellään kaksiulotteisena funktiona f(x,y), jossa x ja y ovat taso tai spatiaalisia koordinaatteja sekä f:n amplitudia tai arvoa missä tahansa pisteessä (x,y) kutsutaan intensiteetiksi tai harmaasävyksi. Käytetään myös kolmiulotteisia tilavuuskuvia, mutta niitä ei tässä kurssissa käsitellä kuin esimerkeissä. Kun argumentit x, y ja arvot f(, ) ovat äärellisiä ja diskreettejä, kuva on nimenomaan digitaalinen kuva, jota voidaan prosessoida tietokoneessa. Digitaalinen kuva koostuu äärellisestä määrästä alkioita, joilla kullakin on paikkansa ja arvonsa. Kuva alkio on nimeltään pikseli. Johdanto 1 Näkö on kenties ihmisen tärkein aisti. Kuvanprosessointi ei kuitenkaan rajoitu vain sellaisiin kuviin, joita ihminen voi silmänsä välityksellä nähdä, vaan toimii melkein koko sähkömagneettisella spektrillä, gamma säteistä radioaaltoihin. Näin ollen kuvanprosessoinnilla on nykyään lukuisia sovellusaloja. Termi kuvanprosessointi liittyy ja on osin päällekkäinen käsitteiden kuva analyysi, konenäkö ja tietokonegrafiikka kanssa. Kaikki nämä luetaan tekoälyn alle, jonka piiristä ne ovat lähteneet 1960 ja 1970 luvulta lukien tietokoneiden laskentatehon ja graafisten näyttölaitteiden sekä ennen muuta laskentamenetelmien kehityksen myötä. Kuvia pystyttiin lähettämään alkeellisella tasolla jo 1920 luvulta lähtien lennätinkaapeleita pitkin. Kuvatieto oli koodattu aluksi viidellä harmaasävyarvolla ja sittemmin 15 arvolla, kuten kuvassa 1.1. Teknologian kehittyessä ripeästi 1960 luvulla digitaalista dataa alkoi tulla runsaasti, esimerkkinä kuva 1.2. Johdanto 2 Kuva 1.1. Lontoosta New Yorkiin sähkölennättimellä viestitetty kuva vuodelta 1929 (ensimmäisen maailmansodan kenraalit Foch ja Pershing). Kuva 1.2. Ensimmäinen avaruusluotaimen Ranger 7 ottama ja maahan välittämä kuva kuun pinnasta (NASA, 1964). Johdanto 3 Johdanto 4

Lääketieteellinen digitaalinen kuvantaminen edistyi niin ikään 1960 ja 1970 luvulla merkittävästi. Toki jo v. 1895 W. C. Röntgen oli keksinyt hänen mukaansa nimetyn menetelmän käyttää röntgensäteitä, joita on paljon sovellettu muuallakin kuin lääketieteessä. Tietokonetomografian (CT) eli kerroskuvauksen keksiminen v. 1979 oli läpimurto digitaalista lääketieteellistä kuvanprosessointia ajatellen. Sittemmin on kehitetty muitakin, kuten magneettiresonanssikuvaus (MRI) ja positronemissiotomografiakuvaus (PET). Kuva 1.3. on röntgenkuva. Kuva 1.4. esittää aivoista mitatun animaation kolmiulotteisesta PET kuvasarjasta. Kuva 1.5. esittää kuvaruudulla otoksen, joka kuvattiin pimeässä infrapunakuvaa kuvanneella videokameralla (v. 1990). Johdanto 5 Kuva 1.3. Röntgenkuva alhaaltapäin kasvoista. Johdanto 6 Kuva 1.4. Positronemissiotomografia kuvasarja aivoista. Tämä on Jouni Mykkäsen väitöskirjatutkimuksesta (v. 2003), jossa etsitään eli lasketaan aivojen määrättyjä osia käyttäen PET dataa. Kuva 1.5. Nystagmus silmänliikkeitä; kuvaruudulla näkyy pimeässä talletettua infrapunakuvaa. Johdanto 7 Johdanto 8

Digitaalisia kuvia sovelletaan monessa muussakin, kuten fysiikassa, biologiassa, tähtitieteessä, teollisuudessa, elokuvissa ja lukuisilla muilla aloilla. Satelliittikuvat ja digitaaliset kartat ovat kiinnostava, uudehko alue. Kuva 1.6. esittää satelliittikuvan. Esimerkkinä tietojenkäsittelyopin opinnäytetyöstä voi katsoa esim. Vilppu Tuomisen pro gradua v. 2008, joka käsitteli mikroskopiakuvia (http://www.cs.uta.fi/research/theses/masters/tuominen_vilppu.pdf). Kuva 1.7. esittää sähkömagneettisen aaltoliikkeen spektrin alueen, joka ulottuu gamma säteistä radioaaltoihin. Periaatteessa näitä kaikkia voidaan käyttää digitaalisissa kuvissa. Kuva 1.8. havainnollistaa eri välinein otettua tähtitieteellistä kuvaa. Johdanto 9 Kuva 1.6. Satelliittikuva (NASA) Washington D.C:n alueesta. Johdanto 10 (a) (b) Kuva 1.7. Sähkömagneettisen aaltoliikkeen spektri esitettynä fotonin energian mukaan elektronivoltteina [ev]. Näkyvä valo on näistä melko kapea kaista. (c) (d) (e) Kuva 1.8. Ravun pulsarin kuvia (NASA): (a) gamma, (b) röntgen, (c) optinen, (d) infrapuna ja (e) radioaallot. Johdanto 11 Johdanto 12

värikuvan prosessointi aallokkeet ja moniresoluutioprosessointi kuvan tiivistäminen kuvan morfologinen prosessointi Luentoesityksen sisältö jakaantuu kuvan 1.9, mukaisiin kuvanprosessoinnin päätehtäviin, joita ei aivan kaikkia tosin tarkastella. (Aallokkeet ovat erikoiskysymys ja viimeisenä olevaa kohteiden tunnistusta on käsitelty hahmontunnistus kurssilla.) Kuvan 1.9. kaavio esittää myös, miten osalla tehtävistä sekä syöte että tulos ovat kuvadataa ja toisella osalla vain syöte, mutta tulos on kuvasta saatuja attribuutteja, informaatiota, jota käytetään mm. hahmontunnistuksessa kuvasta. kuvan korjaus kuvan suodatus ja korostaminen tietämyskanta segmentointi esittäminen ja kuvaus Kaavion 1.9. ensimmäinen osa on kuvadatan hankinta, josta prosessointi alkaa. Kuvan hankinta on yksinkertaisimmillaan valmiin digitaalisen kuvadatan ottaminen käyttöön. Luonnollisesti voidaan ajatella tähän mukaan itse kuvaaminen jollakin kameralla. Monesti mukana on myös esiprosessointia, kuten skaalaus. Johdanto 13 kuvan hankinta ongelma alue Kuva 1.9. Kuvanprosessoinnin tehtävät. Osan tehtävistä tulos on kuva ja osan yleensä kuvasta laskettuja attribuutteja. kohteen tunnistaminen Johdanto 14 Kuvan korostaminen tarkoittaa kuvan käsittelyä niin, että se on alkuperäistä soveliaampi kulloinkin seuraavaa jatkokäsittelyä, kuvan varsinaista prosessointia varten. Jatkokäsittely riippuu datan tyypistä ja on ongelmaorientoitunut, ts. vaihtelee sovelluksesta riippuen. Kuvan korjaus tai ennallistus pyrkii niin ikään parantamaan kuvan ulkoasua. Toisin kuin subjektiivinen kuvan korostus kuvan korjaus on objektiivinen perustuen kuvan huononemisen matemaattisiin todennäköisyysmalleihin. Kuvan korostaminen sitä vastoin perustuu käyttäjän subjektiivisiin käsityksiin, mikä on sen hyvä tulos. Värikuvien käsittely on voittanut jatkuvasti lisää alaa kiitos Internetin. Aallokkeet (wavelets) ovat menetelmäperhe, jolla esitetään kuvia eri resoluutioilla. Niitä hyödynnetään mm. kuvantiivistyksessä. Aallokkeet ovat erityisasiaa, jota ei tarkastella tässä kurssissa. Kuvantiivistys ( pakkaus) käsittää menetelmiä, joilla kuvat voidaan tallettaa alkuperäistä pienempään muistitilaan tai lähettää pienemmällä kaistanleveydellä. Muistien koot ovat kasvaneet edelleen ripeästi, mutta siirtokapasiteetit hitaammin. Esimerkkinä mainittakoon mm. digitaalikameroissa käytettävä JPEGkuvantiivistysstandardi. Kuvan morfologinen (muodon) prosessointi tarkoittaa kuvan komponenttien erottamista kuvan sisältämien muotojen kuvaamiseksi ja esittämiseksi. Johdanto 15 Johdanto 16

Segmentoinnissa kuva jaetaan alkeisosiinsa, esim. erilaiset kuvan alueiden reunat, joita käytetään kohteiden tunnistamisessa. Mitä paremmin segmentointi onnistuu, sitä paremmin kohteiden tunnistaminen on mahdollista tehdä. Esitys ja kuvaus seuravat segmentointia, joka tapahtuu tavallisesti pikselitasolla koostuen joko alueiden reunoista tai itse alueista. Joka tapauksessa tässä tarvitaan datan muuntamista prosessoinnille sopivaan muotoon. Käytetään reuna tai alue esitystä. Reunat tulevat kysymykseen, kun esim. keskitytään ulkoisiin muotoihin, kuten kulmat ja käyrät. Alue esityksiä käytetään sisäisten ominaisuuksien yhteydessä, kuten tekstuuri (pintakuvio) tai rungon muoto. Kuvaus eli piirteidenvalinta tarkoittaa attribuuttien käyttöä, jotka käsittävät kvantitatiivista informaatiota tai ovat pohjana luokiteltaessa kuvan kohteita eri luokkiin. Kohteiden tunnistaminen leimaa kohteet kuvaustietojen perusteella, esim. ajoneuvot kuvassa. Tämä on hahmontunnistus kurssin menetelmiä sisältävää, joten ei käsitellä tällä kurssilla. Tunnistamista ei luonnollisestikaan aina tarvita kuvanprosessoinnissa, vaan vain silloin, kun prosessointi käsittää jotakin pitkälle automatisoitua laskentaa, esim. konenäköä. Kuvassa 1.9. oli myös tietämyskanta. Ongelma alueen kuvan tietämys koodataan siihen. Tietämys voi olla yksinkertaista tietoa kiinnostavista alueista kuvassa tai monimutkaista, esim. kuvan osien suhteista. Tietämyskanta on vuorovaikutuksessa prosessointimoduulien kanssa (kaksipäinen nuoli), kun taas moduulit ovat toisiinsa nähden ketjussa. Kuvan 1.9. kaikkia moduuleja ei monesti tarvita, ja tulos voidaan saada minkä tahansa niistä jälkeen. Esim. pelkkään visuaaliseen tulokseen pyrittäessä riittää ainoastaan kuvankorostamismoduuli. Johdanto 17 Johdanto 18 tietoverkko Kuvanprosessointijärjestelmän osat Kuvanprosessointilaitteiden kehitys on kulkenut 1980 luvun erityslaitteista, jotka olivat isäntätietokoneeseen yhteydessä, nykyisiin yleiskäyttöisiin järjestelmiin. Näitä käytetään tavallisissa tietokoneissa, joihin on sijoitettu tarpeellisia laitteisto osia. Kuva 1.10. esittää kaaviona kuvanprosessoinnin tarvitsemat laitteisto osat. Antureihin eli sensoreihin kuuluu kaksi osaa digitaalisten kuvien aikaansaamiseksi. Ensimmäinen on laite, joka mittaa kuvattavan kohteen säteilemää energiaa, esim. valon heijastumista. Toinen on digitoija, laite, joka muuntaa fysikaalisen, mitatun tuloksen digitaalisen muotoon. Esim. videokamerassa tuotetaan tulos suhteessa kuvattuun valon intensiteettiin. Kuvan 1.10. osien lisäksi tarvitaan sopiva ohjelmisto. Tämä on muodostettu kurssilla kuvattavien menetelmien ja teorian varassa. Johdanto 19 graafinen näyttö tietokone keskusmuisti tulostin mittausanturit eli syöttölaite ongelma alue Kuva 1.10. Kuvankäsittelyjärjestelmän laitteisto osat. kuvanprosessointiyksikkö kuvanprosessointiohjelmisto Johdanto 20