8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH

Samankaltaiset tiedostot
4.0.2 Kuinka hyvä ennuste on?

Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t

9. Tila-avaruusmallit

Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio.

6.5.2 Tapering-menetelmä

Vastaavasti voidaan määritellä korkeamman kertaluvun autoregressiiviset prosessit.

ARMA(p, q)-prosessin tapauksessa maksimikohdan määrääminen on moniulotteinen epälineaarinen optimointiongelma.

Sovellettu todennäköisyyslaskenta B

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)

Moniulotteisia todennäköisyysjakaumia

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

3. Teoriaharjoitukset

6.2.3 Spektrikertymäfunktio

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

805306A Johdatus monimuuttujamenetelmiin, 5 op

Epäyhtälöt ovat yksi matemaatikon voimakkaimmista

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)

Ennustaminen ARMA malleilla ja Kalmanin suodin

Todennäköisyyden ominaisuuksia

P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.

6.1 Autokovarianssifunktion karakterisaatio aikatasossa

V ar(m n ) = V ar(x i ).

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Tilastollinen päättömyys, kevät 2017 Harjoitus 6B

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

4.2.2 Uskottavuusfunktio f Y (y 0 X = x)

6. Tietokoneharjoitukset

STOKASTISET PROSESSIT

Identifiointiprosessi

Dynaamiset regressiomallit

Inversio-ongelmien laskennallinen peruskurssi Luento 7

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Maximum likelihood-estimointi Alkeet

3.6 Su-estimaattorien asymptotiikka

Tilastollisia peruskäsitteitä ja Monte Carlo

Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia

Sovellettu todennäköisyyslaskenta B

ARIMA- ja GARCH-mallit sekä mallin sovittaminen osakeaineistoon

Dynaamiset regressiomallit

ARMA mallien ominaisuudet ja rakentaminen

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Väliestimointi (jatkoa) Heliövaara 1

Viikon 5 harjoituksissa käytämme samoja aikasarjoja kuin viikolla 4. Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Erityiskysymyksiä yleisen lineaarisen mallin soveltamisessa

= X s + IE[X t X s ] = 0, s ja sitä, että ehdollinen odotusarvo on tavallinen odotusarvo silloin, kun satunnaismuuttuja

Estimointi. Vilkkumaa / Kuusinen 1

805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016)

3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

Testejä suhdeasteikollisille muuttujille

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

9. laskuharjoituskierros, vko 12-13, ratkaisut

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Tilastotieteen aihehakemisto

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

Valintahetket ja pysäytetyt martingaalit

Sovellettu todennäköisyyslaskenta B

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu

Osa 2: Otokset, otosjakaumat ja estimointi

10 Moniulotteinen normaalijakauma

4. Tietokoneharjoitukset

Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Tilastollinen aineisto Luottamusväli

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

4. Tietokoneharjoitukset

Regressioanalyysi. Kuusinen/Heliövaara 1

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Ito-prosessit. Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma. S ysteemianalyysin. Laboratorio

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Sovellettu todennäköisyyslaskenta B

1. Tilastollinen malli??

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

Kaksisuuntainen varianssianalyysi. Heliövaara 1

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Yleistetyistä lineaarisista malleista

3. Tietokoneharjoitukset

Mallipohjainen klusterointi

Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 8B Ratkaisuehdotuksia.

Ilkka Mellin Aikasarja-analyysi Suurimman uskottavuuden menetelmä

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

11 Raja-arvolauseita ja approksimaatioita

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Transkriptio:

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin ajanjaksoihin rauhallisempien kehityskausien välillä. Pörssikurssien ennusteiden luotettavuus vaihtelee silloin ajan funktiona. ARMA-mallilla ei ole tällaista käyttätymistä, sillä ARMA-prosessi X t riippuu sen menneestä kehityksestä X t 1, X t,... lineaarisesti. Tällöin ennusteiden luottamusvälit ovat samat kaikille ajanhetkille, eivätkä ne riipu aikasarjan menneestä kehityksestä. Miten mallitetaan aikasarjaa, jossa aikasarjan menneisyys vaikuttaa ennusteiden luotettavuuteen? Tavoitteena on, että ennustusvirheen varianssi on aikasarjassa esiintyvien arvojen funktio. Kuva 8.1: Standard-Poor 500 pörssi-indeksin käytös on epäsäännöllistä. Aikasarjassa näkyy purskeittaista vahvenpaa epäsäännöllisyyttä. 0.0 0.10 0.00 0.10 0 1000 000 3000 4000 5000 8.1.1 ARCH Määritelmä 8.1. Olkoon p 1. Stokastinen prosessi X t on ARCH(p)-malli (autoregressiivinen ehdollinen heteroskedastinen malli, jonka aste p 1), jos missä valkoinen kohina ε t on riippumaton arvoista X t k, k 1, ja vakiot c 0, b j 0. σ t = c 0 + b 1 X t 1 +... b p X t p 9

Huomioita määritelmästä: Sekä σ t että ε t ovat stokastisia prosesseja. ARCH-prosessi määritellään yhtälöparilla. Satunnaismuuttujat σ t ja ε t, t 1 ovat määritelmän mukaan riippumattomia, sillä riippumattomien satunnaismuuttujien jatkuvat funktiot ovat riippumattomia. (Miksi? Muista Borel-joukot!) ARCH-prosessin odotusarvo häviää riipumattomuuden vuoksi, sillä E[X t ] = E[σ t ε t ] = E[ c 0 + b 1 Xt 1 +... b p Xt p ε t ] = E[σ t ]E[ε t ] = 0. Heteroskedastinen tarkoittaa erivarianssista. Kun hetkellä t tunnetaan prosessin mennyt kehitys eli arvot X t 1 = a t 1, X t = a t...., X t p = a p, niin satunnaismuuttuja X t Xt 1 =a 1,...X t p =a p = c 0 + b 1 a t 1 +... b p a t p ε t. Toisin sanoen prosessin X t ehdollinen varianss E[X t X t 1,..., X t p ] = σ t, kun prosessin menneisyys X t 1,..., X t p tunnetaan, riippuu prosessin menneestä kehityksestä. ARCH-malli kehitettiin alunperin kuvaamaan inflaatiota. Seuraavan lauseen todistus sivuutetaan. Lause 8.1. Yhtälöillä σ t = c 0 + b 1 X t 1 +... b p X t p on yksikäsitteinen stationäärinen ratkaisu X t, jolle E[X t ] < silloin ja vain silloin kun b k < 1. Huomautus 8.1.1. Stationäärisen ARCH-prosessin varianssi on riippumattomuuden vuoksi muotoa E[Xt ] = E[σt ε t ] = E[c 0 + b 1 Xt 1 +... b p Xt p] E[Xt c 0 ] = 1 p b. k Korollaari 8.1. Stationäärinen ARCH-prosessi on korreloimatonta valkoista kohinaa. 93

Kuva 8.: Näyte ARCH(1)-prosessista Simulated Path of Series 0 4 0 00 400 600 800 1000 Todistus. Olkoon X t stationäärinen ARCH(p)-prosessi. Selvästi E[X t ] = 0. Kun h 0, niin E[X t X t h ] = E[σ t σ t h ε t ε t h ] = E[σ t σ t h E[ε t ε t h X t h 1, X t h,... ]] = E[σ t σ t h E[ε t ε t h ]] = E[σ t σ t h δ h,0 ] = δ h,0 E[σ t ]. 8.1. GARCH-malli Määritelmä 8.. Olkoon p 1 ja q 0. Stokastinen prosessi X t on GARCH(p, q)-malli (yleistetty autoregressiivinen ehdollinen heteroskedastinen malli), jos missä valkoinen kohina ε t on riippumaton arvoista X t k, k 1, ja vakiot c 0, b k, s k 0. σ t = c 0 + b k Xt k + q s k σt k GARCH-prosessissa on pitempiä voimakkaan heilahtelun purskeita kuin ARCHprosessissa. Seuraavan lauseen todistus sivuutetaan. Lause 8.. Yhtälöillä q σt = c 0 + b k Xt k + s k σt k 94

on yksikäsitteinen stationäärinen ratkaisu X t, jolle E[Xt ] < silloin ja vain silloin kun q b k + s k < 1. Kuva 8.3: Näyte GARCH(1,1)-prosessista GARCH(1,1) 4 0 4 0 00 400 600 800 1000.0 3.0 4.0 5.0 Kuva 8.4: Näyte GARCH(1,1)-prosessin ehdollisesta varianssista ehdollinen varianssi 0 00 400 600 800 1000 Kuva 8.5: GARCH(1,1)-näytteen QQ-kuvio Normal Q Q Plot 4 0 4 3 1 0 1 3 95

Korollaari 8.. Stationäärinen GARCH-prosessi on korreloimatonta valkoista kohinaa, jonka varianssi on E[Xt c 0 ] = 1 p b k q s. k Todistus. Samoin kuin ARCH-prosessin tapauksessa (Korollaari 8.1). Huomautus 8.1.. Autokorrellation kuvaajaa sekä Ljung-Box testisuuretta on mahdollista käyttää korreloimattomuuden varmentamiseen. Erikoinen piirre GARCH-prosessissa X t on, että toiset potenssit X t ovat korreloituneita. Esimerkiksi ARCH(1)-prosessin tapauksessa tämän voi havaita kirjoittamalla neliöity ARCH-prosessi muodossa josta havaitaa, että X t Xt = (c 0 + bxt 1)ε t = c 0 + bxt 1 + (c 0 + bxt 1)(ε t 1), }{{} Valkoista kohinaa on AR(1)-prosessi. 8.1.3 ARCH-mallin estimointi Samoin kuin ARMA-prosessien tapauksessa, ARCH-mallin parametrit voidaan estimoida ML-menetelmällä. Oletetaan, että ARCH-mallin valkoinen kohina ε t N(0, 1). ARCHprosessin X t havaintovektorin (X 1,..., X n ) tarkka todennäköisyystiheysfunktio on laskennallisesti raskas käsitellä, mutta satunnaismuuttujan X t ehdollinen jakauma, kun X t 1,... X t p on annettu on yksinkertaisempi. Esimerkiksi ARCH(p)-prosessin tapauksessa f(a t a t 1,..., a t p ) = 1 e 1 σ a t t. πσ t Bayesin kaavan nojalla nähdään, että f(a 1+p,..., a n a 1,..., a p ) = 1 (π) e 1 n k=p+1 a k /σ k. n p n k=p+1 σ k Tarkka likelihood-funktio on sekoitus näistä funktioista painotettuna satunnaisvektorin (X 1,..., X p ) jakaumalla. Ehdollinen log-likelihood-funktio on n n a k (log L C )(c, b 1,... b p ; a 1,..., a n ) = vakio log σ k (8.1.1) k=p+1 σ k=p+1 k Mallin parametrit valitaan maksimoimalla logaritminen likelihood-funktio (8.1.1). Huomautus 8.1.3. GARCH-mallia käytetää usein varianssin σ t ennuustamiseen. Ennuste auttaa hahmottamaan esim. pörssikurssien kehitykseen liittyviä riskejä. Yhden askeleen MMSE-ennuste GARCH(1,1)-mallin tapauksessa σ n+1 = E[σ n+1 X 1,..., X n ] = E[c 0 + bx n + sσ n X 1,..., X n ] = c 0 + bx n + sσ n. 96

8.1.4 Heteroskedastisuuden testaus Milloin aikasarjaan tulisi käyttää heteroskedastista mallia? Aikasarjan kuvaajan tarkastelun lisäksi voidaan tehdä hypotessin testaus. Olkoon X t ARCH(p)-prosessi missä Asetetaan hypoteesit: σt = c 0 + b k Xt 1. H 0 b 1 = b = = b p = 0. H 1 b k 0 jollakin 1 k p Kun H 0 pätee, on prosessin X t ehdollinen varianssi E[X t X 1,..., X t 1 ] = c 0. Merkitään ĉ 0 (H 0 ) parametrin c 0 estimaattia kun H 0 on totta ja ĉ 0 (H 1 ), b k parametrien c 0, b 1,..., b p estimaatteja, kun H 1 on totta. Ns. likelihood-suhdetesti perustuu testisuureeseen ( ) L C (ĉ 0 (H 1 ), b 1,... b k ; a 1,..., a n ) S n = log L C (ĉ 0 (H 0 ), 0, 0,..., 0; a 1,..., a n ) missä L C on prosessin X t ehdollinen likelihood-funktio kaavasta (8.1.1), kun ehdollistetaan arvoilla X k = a k, k = 1,..., p. Lause 8.3 (Wilksin lauseen erikoistapaus). Kun hypoteesi H 0 on totta lim S D n χ p. n Esimerkki 8.1. Tarkastellaan Standard-Poor-500 pörssiindeksiä (S&P500). S&P500-aikasarjaa voidaan mallittaa GARCH(1,1)-mallilla, joka varustetaan keskiarvolla µ: X t = µ + σ t ε t, ε t N(0, 1) missä σ t = c 0 + bx t 1 + sσ t 1. Parametrit voidaan estimoida ML-menetelmällä. 97

Kuva 8.6: Standard-Poor 500 pörssi-indeksin käytös on epäsäännöllistä. Aikasarjassa näkyy purskeittaista vahvenpaa epäsäännöllisyyttä. 0.0 0.10 0.00 0.10 0 1000 000 3000 4000 5000 Kuva 8.7: Standard-Poor 500 pörssi-indeksin autokorrelaation perusteella aikasarja vaikuttaa valkoiselta kohinalta. Series sp500ret$sp500ret ACF 0.0 0.4 0.8 0 10 0 30 Lag 98