ARMA(p, q)-prosessin tapauksessa maksimikohdan määrääminen on moniulotteinen epälineaarinen optimointiongelma.

Koko: px
Aloita esitys sivulta:

Download "ARMA(p, q)-prosessin tapauksessa maksimikohdan määrääminen on moniulotteinen epälineaarinen optimointiongelma."

Transkriptio

1 missä µ = c φ ja C j,k = Γj k) = σ 2 φj k φ 2. ARMAp, q)-prosessin tapauksessa maksimikohdan määrääminen on moniulotteinen epälineaarinen optimointiongelma. Käytännösssä optimointi tehdään numeerisesti käyttämällä tunnettuja menetelmiä Newton-Raphson, steepest descent, conjugate-gradient,...) Haastavuutta lisää kovarianssimatriisin monimutkainen riippuvuus parametreista. Usein likelihood-funktio pyritään kirjoittamaan yksinkertaisemmassa muodossa, jotta vältyttäisiin kovarianssimatriisin determinantin ja käänteismatriisin laskemiselta. Esimerkki 5.6 AR)-prosessin uskottavuusfunktio). Määrätään satunnaismuuttujan X t ehdollinen tntf, kun X t = x t tunnetaan. Lausekkeesta X t = µ + φx t µ) + ε t }{{} keskenään riippumattomia nähdään, että tämä ehdollinen jakauma on täsmälleen satunnaismuuttujan µ + φx t µ) + ε t jakauma, jonka tntf fx t x t ) = Satunnaisvektorin X t, X t ) yhteistntf on 2πσ 2 exp 2σ 2 x t µ φx t µ)) 2. fx t, x t ) = fx t )fx t x t ), missä X t Nµ, σ 2 φ 2 ). Vastaavasti satunnaisvektorin X,..., X n ) yhteistntf on fx, x 2,..., x n ) = fx )fx 2 x )fx 3 x 2 ) fx n x n ), jolloin likelihood-funktio on Lc, φ, σ) = exp ) φ2 a 2π) n σ 2n ) 2σ 2 µ) 2 φ 2 exp a 2σ 2 t µ φa t µ) ) 2 }{{} X ta t ) ) Likelihood-funktion lausekkeessa esiintyy satunnaismuuttujan X t ennuste X t, joka on laadittu arvon X t pohjalta. Likelihood-funktion arvon määrää tällöin erotus X t X t. 40

2 Funktioilla f ja logf) on maksimi samassa kohtaa. Logaritmin ottaminen likelihoodfunktiosta vähentää epälineaarisuuksia ja auttaa keskittymään oleellisiin piirteisiin. Sijoitetaan yhtälöön µ =. Log-likelihood-funktio on c φ log Lc, φ, σ) = vakio n logσ)+ 2 log φ2 ) φ2 2σ 2 a c ) 2 φ 2σ 2 Säännöllisen funktion maksimikohta on aina kriittinen piste eli se toteuttaa yhtälön Erityisesti 0, 0, 0) = log Lc, φ, σ) log L = c, φ, σ), log L c φ c, φ, σ), log L ) c, φ, σ). σ 0 = log L σ c, φ, σ) = n σ + σ 3 Maksimikohta kuuluu joukkoon S = {c, φ, σ) : σ 2 = n φ 2 ) a c ) 2 + φ φ 2 )a c φ )2 + a t c φa t )) 2 ) a t c φa t )) 2. a t c φa t ) )}. 2 Toisin sanoen riittää etsiä maksimikohtaa joukossa S kahden vapaan parametrin φ ja c avulla. Esimerkki 5.7. Olkoon X t = µ + ε t + θε t. Kun ε t N0, σ 2 ), niin satunnaisvektorin X,..., X n ) jakauma on Gaussinen. Kun θ <, jakauman odotusarvo on E[X k ] = µ ja kovarianssimatriisi on C jk = E[X j µ)x k µ)] = Γj k) = σ 2 + θ 2 )δ j,k + θδ, j k kaikilla j, k =,..., n. Kovarianssimatriisi on tridiagonaalinen eli + θ 2 ) θ θ + θ 2 ) θ C = 0 θ + θ 2 ) θ θ + θ 2 ) Tridiagonaalimatriiseille löytyy hajotelma, C = LΓL T, missä L on alakolmiomatriisi, jota voidaan käyttää tarkan likelihood-funktion muokkaamisessa. Käy ilmi, että likelihoodfunktio Lµ, θ, σ) = 2π) n n exp ) a k= r2 2r 2 k Xa,..., a k )) 2 k k missä r 2 k = E[X k X k ) 2 ] on estimaattorin X := L X µ) pienimmän neliösumman virhe. 4

3 5..3 Ehdollinen ML-menetelmä Kun ML-estimaatti lasketaan numeerisella optimoinnilla, likelihood-funktiosta, nimitetään saatua ML-estimaattia tarkaksi ML-estimaatiksi. Huomaa, että nimityksestä huolimatta numeerisesti suoritettu optimointi aiheuttaa tuloksiin epätarkkuutta!) On mahdollista myös käsitellä oikean likelihood-funktion sijaan muokattua likelihood-funktiota. Esimerkissä 5.6 todettiin että AR)-prosessin tapauksessa fx,..., x n ) = fx )fx 2 x )... fx n x n ) Kun ehdollistetaan arvolla X = x, saadaan fx,..., x n x ) = fx,..., x n ) fx ) Ns. ehdollinen likelihood-funktio on ja ehdollinen ML-estimaatti on = fx 2 x )... fx n x n ). Lc, φ, σ; X = a ) = fa 2,..., a n a ; c, φ, σ). ĉ, φ, σ) = argmaxfa,..., a n a ; c, φ, σ) c,φ,σ Mikäli n on suuri, niin suurin osa havaintovektorin elementeistä on vain heikosti korreloitunut pisteen X kanssa, jolloin ehdollistamisen ei pitäisi vakavasti vääristää likelihood-funktiota. Efektiivisesti ehdollistaminen muuttaa X :n jakauman epäaidoksi tn-jakaumaksi fx ) =. Ehdollistamisen ansiosta likelihood-funktio yksinkertaistuu huomattavasti: ) Lc, φ, σ X = a ) = 2π) n σ exp a n 2σ 2 t c φa t ) 2 Kriittisessä pisteessä erityisesti osittaisderivaatta muuttujan σ suhteen häviää. Vaaditaan siis jolloin 0 = log Lc, φ, σ; X = a ), 5..2) σ σ 2 = a t c φa t ) ) Sijoittamalla σ = σc, φ) yhtällöstä 5..3) yhtälöön 5..2) saadaan ) n Lc, φ, σc, φ) X = a ) = a t c φa t ) 2 exp ). 2π) n 2 42

4 Maksimikohta ĉ, φ) on funktion c, φ) a t c φa t ) 2 minimikohta. Ongelma palautuu ns. pienimmän neliösumman ratkaisuun: [ ] argmin a t c φa t ) 2 = argmin c 2 a M c,φ c,φ φ missä matriisi M = M 2 n on a a 2 M =.. ja vektori a = a 2, a 3,..., a n ). a n Minimikohta ĉ, φ) löytyy 4 yhtälön [ĉ ] M T M) = M φ T a ratkaisuna: [ ]... M T a a 3 = a a 2... a n. = a 2 a n [ n k=2 a ] k n k=2 a ka k ja a [ ]... M T a 2 [ n n M = a a 2... a n.. = n k= a k a n Ehdollinen ML-estimaatti on [ĉ ] = φ n ) n k= a2 k ) n k= a k) 2 Lineaarinen PNS-ratkaisu k= a k n k= a2 k [ n k= a2 k n k= a ] [ n k n k= a k=2 a ] k n k n k=2 a ka k Pienimmän neliösumman PNS) menetelmä eng. least squares method, LS) on approksimatiivinen ratkaisumenetelmä yhtälöille. Lineaaristen yhtälöryhmien tapauksessa PNS on varsin elegantti. Kun matriisi A R m n ja vektori y R m tunnetaan, niin mikä on ] 4 katso seuraava kappale! x = argmin x R n y Ax 2. 43

5 Huomautus 5... Jos A on neliömatriisi ja deta) 0, niin selvästi x = A y on minimikohta. Entä kun A ei ole neliömatriisi tai y ei kuulu matriisin A kuvajoukkoon? Esimerkiksi 0 [ ] = x x 3 2 Näytetään, että pienimmän neliösumman ratkaisu, toisin sanoen minimikohta, löytyy aina. Tätä varten kerrataan seuraavat käsitteet matriiseille A R m n. Lineaarisen kuvauksen ydin Lineaarisen kuvauksen kuvajoukko KerA) = {x R n : Ax = 0} RA){y R m : y = Ax jollakin x R n } Lineaarisen aliavaruuden L R n ortokomplementti L = {z R n : x z = 0}. Merkitään selvyyden vuoksi pistetuloa suluilla: x z = Osoitetaan ensin seuraava aputulos. x i z i = x, z). k= Lemma 5.3. Matriisille M R m n pätee RM T ) = Ker M) eli R n = RM T ) Ker M). Todistus. Olkoon x RM T ) Jokaisella z R m pätee 0 = M T z, x) = z, Mx) vain jos Mx = 0 eli x KerM). Siis RM T ) Ker M). Toisaalta, jos x KerM), niin M T z, x) = z, Mx) = 0 jokaisella z R m, joten x RM T ). Siis Ker M) RM T ). Lause 5.3. Olkoon A R m n ja y R m. Minimointiongelmalla on täsmälleen samat ratkaisut kuin yhtälöllä ˆx = argmin x R n Ax y 2 A T Aˆx = A T y. 44

6 Todistus. Lasketaan ensin sisätulo fx) = Ax y 2 = Ax y, Ax y) = Ax, Ax) y, Ax) Ax, y) + y, y) = A T Ax, x) 2A T y, x) + y, y). Funktionaalin f minimi, jos sellainen on, löytyy kriittisestä pisteestä. Lasketaan gradientin nollakohdat fx) = Ax y 2 = 2A T Ax 2A T y = ) Olkoon ˆx gradientin nollakohta eli A T Aˆx = A T y. Tämä on minimikohta, sillä fx) = Ax ˆx) + Aˆx y 2 = Ax ˆx) 2 + 2Ax ˆx), Aˆx y) + Aˆx y 2 = Ax ˆx) 2 + 2x ˆx, A T Aˆx A T y) + Aˆx y 2 = Ax ˆx) 2 + Aˆx y 2. Korollaari 5.. Olkoon A R m n ja y R m. Minimointiongelmalla ˆx = argmin x R n Ax y 2 on olemassa ratkaisu ˆx. Ratkaisu on yksikäsitteinen vain jos Ker A) = {0}. Todistus. Lauseen 5.3 nojalla minimointiongelma on ekivalentti yhtälön A T Aˆx = A T y kanssa. Tutkitaan yhtälön A T Ax = A T y yksikäsitteistä ratkeavuutta. Injektiivisyys: Selvästi Ker A Ker A T A). Lisäksi x Ker A T A) eli A T Ax = 0 jos ja vain jos 0 = A T Ax, z) = Ax, Az) jokaisella z R n. Erityisesti kun z = x, saadaan Ax = 0 eli x Ker A. Toisin sanoen Ker A T A) Ker A). Siis Ker A T A) = Ker A), jolloin A T A on injektio jos ja vain jos A on injektio. Näytetään, että A T y RA T A) Valitsemalla M = A sekä M = A T A lemmassa 5.3, saamme RA T ) = Ker A) = KerA T A) = RA T A). Täten yhtälöllä A T Ax = A T y on vähintään yksi ratkaisu ja ratkaisu on yksikäsitteinen vain jos KerA) = {0}. Esimerkki 5.8. Olkoon y =,, 3) ja 0 A = 0 Määrätään pienimmän neliösumman ratkaisu yhtälölle y = Ax + e. Lasketaan ) 0 ) 0 A T A = 0 2 =

7 ja A T y = 0 Saamme yhtälön ) ) 2 ˆx = 2 ˆx 2 jonka ratkaisu on ˆx, ˆx 2 ) = 4, 4 ). Tällöin 3 3 A x == ) = ) 4, 4 ) 5. 4 Esimerkki 5.9 MA)-prosessin ehdollinen likelihood). Tarkastellaan seuraavaksi MA)-prosessin X t = µ + ε t + θε t. parametrien µ, θ, σ estimointia, kun havaintovektorista X,..., X n ) on saatu näyte a,..., a n ). JOS tiedetään LISÄKSI, että satunnaismuuttujan ε otos on annettu, esimerkiksi ε = 0, niin MA-yhtälöstä seuraa, että otosten arvot ovat Taulukko 5.: Valkoisen kohinan arvot X = a ε = 0 X 2 = a 2 ε 2 = X 2 µ θε = a 2 µ X 3 = a 3 ε 3 = X 3 µ θε 2 = a 3 µ θa 2 µ).. X n = a n ε n = a n µ) θa n µ) + θ 2 a n 2 µ) ) n θ n a µ) n + ) n ε Vastaavasti satunnaismuuttujat ε t ovat satunnaismuuttujien X t, X t,..., X ja ε funktioita. Silloin fx t x t,..., x, ε ) = exp ) 2πσ 2 2σ x 2 t µ θε t ) 2.. Ehdollistamalla rekursiivisesti nähdään, että ehdollinen likelihood-funktio on n Lµ, c, σ 2 ; ε = 0) = fa,..., a n ε ) = exp 2πσ 2 2σ a 2 k µ θ ε }{{ k } k=2 ε k ) 2 missä ε k on taulukossa 5. esitetty parametrien µ, θ ja näytteiden a,..., a n funktioina. 46,

8 5.2 Mallin asteen valinta Mitä parametreja p, q) tulisi käyttää mallin estimoinnissa? AIC Akaike information criterium): Lasketaan eri malleille luku I AIC = 2 log LΦ; p, q) + 2p + q + ) ja valitaan malli, jolla luku I AIC on pienin. SBIC Schwartzin bayesilainen informaatiokriteeri): Lasketaan eri malleille luku I SBIC = 2 log LΦ; p, q) + p + q + ) logn) ja valitaan malli, jolla on pienin I SBIC -luku. Informaatiokriteerien toiminta perustuu ns. Kullback-Leiblerin informaatioon, joka mittaa kahden jakauman välistä eroa. Olkoon X t stationäärinen prosessi ja olkoon g havaintovektorin X,..., X n ) todellinen tntf, jota emme tunne. Olkoon f X:n estimoitu tntf. Esimerkki 5.0. Estimoitu tntf on voitu saada esim. seuraavalla tavalla. Asetetaan ARMAp, q)-malli havaintovektorille eli X t = c + φ X t + + φ p X t p + ε t + θ ε t + + θ q ε t q, ε t N0, σ 2 ) 2. ML-menetelmällä saadaan estimoitua mallin parametrit ĉ, φ,..., φ p, θ..., θ q, σ) Estimoitu ARMA-malli havaintovektorille on X t = ĉ + φ X t + + φ p X t p + ε t + θ ε t + + θ q ε t q, ε t N0, σ 2 ). 3. Estimoidusta ARMA-mallista lasketaan havaintovektorin komponentin X teoreettinen odotusarvo µ = E[X t ] ja teoreettinen autokovarianssi Γτ) = E[X t µ)x t τ µ)]. 4. Odotusarvon µ ja autokovarianssin Γ avulla muodostetaan Gaussinen tntf f. Kullback-Leiblerin informaatio on Ig f) = gx) loggx))dx R n gx) logfx))dx. R n Koska g on X :n tntf, niin Ig f) = gx) logfx)/gx))dx = E[logfX)/gx))]. R n 47

9 Jensenin epäyhtälön nojalla Ig f) = E[logfX)/gX))] log E[fX)/gX)] = log gx)fx)/gx)dx R n = log fx)dx log = 0. R n Kullback-Leiblerin informaation on aina ei-negatiivinen. Lisäksi se on nolla silloin ja vain silloin kun f g. Tavoitteena olisi Ig f) = 0, jotta malli olisi täsmälleen oikea. Arvatenkaan emme pääse täsmälleen oikeaan malliin estimoinnilla, mutta voimme pyrkiä mahdollisimman lähelle: pyritään valitsemaamalli ja siten valitsemaan f), jolla Ig f) on mahdollisimman pieni! Nyt Ig f) = gx) loggx)) R }{{} n ei riipu f:stä Näytteiden avulla 5 voitaisiin approksimoida dx gx) logfx))d = E[logfX M) ))] R m gx) logfx))dx. R } n {{} minimoidaan tätä! m logfx m) )), 5.2.5) mikäli voitaisiin toistaa havaintovektorin ottoa useasti. Nyt pidetään funktiota logfx)) estimaattorina odotusarvolle. Akaike lisäsi Kullback-Leibler informaatioon ylimääräisen termin, sillä k= n logfx k )) k= ei ole odotusarvon 5.2.5) harhaton estimaattori. Korjaustermi poistaa harhaa. Pienille n:n arvoille on olemassa parempia korjaustermejä harhan poistamiseen. 5.3 Mallidiagnostiikka ARMA-prosessin parametrit ĉ, φ,..., φ p, θ,..., θ q, σ) on saatu estimoitua. Onko estimoitu malli hyvä?. Empiiriseen pohjaan tukeutuvat epäformaalit tarkistusmenetelmät: Mallin autokorrelaation ja havaintovektorin otosautokorrelaation vertailu Residuaalien eli jäännöstermien kuvaajien tutkiminen 5 suurten lukujen lain erikoisversio riippuvien satunnaismuuttujien tapauksessa 48

10 Ylisovittaminen mallia pidetään hyvänä. 2. Formaalit tilastollisen testauksen tarkistusmenetelmät: Box-Ljung-testi Malli on niin hyvä kuin teoria kertoo sen olevan Residuaalien tarkastelu Estimoidun mallin X t = ĉ + φ X t + + φ p X t p + ε t + θ ε t + + θ q ε t q avulla voidaan laatia yhden askeleen lineaarinen pienimmän neliösumman ennuste X t arvolle X t, kun tunnetaan X t, X t 2,..., X. Havaitun arvon X t = a t ja ennusteen X t = X t a,..., a t ) välinen erotus ε t := a t X t on nimeltään residuaali. Esimerkiksi AR)-prosessille ε t := a t ĉ φa t. Määritelmä 5.4. Standardoitu residaali on missä Rt) = a t X t a,..., a t ) rt), rt) = E[X t X t ) 2 ]. Tyypillisesti piirretään residuaalien otosautokorrelaation kuvaaja. Residuaalien autokorrelaation tulisi muistuttaa valkoisen kohinan autokorrelaatiota. Ylisovittaminen Ylisovittamisen tarkoitus on varmentaa, että estimoitu ARMAp, q)-malli säilyy samana, vaikka dataan yritettäisiin sovittaa monimutkaisempaa mallia. Estimoidaan myös ARMAp +, q)- ja ARMA-p, q + )-mallien parametrit. Jos uudet estimoidut parametrit ovat lähellä entisiä ja uusien parametrien residuaalivarianssi ei sanottavasti alita vanhan mallin residuaalivarianssia, niin mallia pidetään riittävän hyvänä. Jos vanhojen ja uusien parametrien välillä on huomattava ero, on estimoitujen parametrien käyttö riskaabelia. Jos uudet korkeamman kertaluvun parametrit ovat suurehkoja, niin vanha malli saattaa vaikuttaa riittämättömältä kuitenkin mallin käyttötarkoitus ratkaisee. 49

11 5.3.2 Box-Ljung-testisuure Yksittäisten residuaalin otosautokorrelaation arvojen ρ R k) sijaan voidaan tarkastella yhtä lukua: m Q = n ρ R k) 2. Tämä ei ole vielä Box-Ljung-testisuure!) k=0 Koska n ρ R k) tulisi noudattaa mallin mukaan likipitäen normaalijakautuneen valkoisen kohinan jakaumaa, 7 niin Q on vastaavasti lähes χ 2 -jakautunut vapausasteella m. Asetetaan hypoteesi H : Residuaali on valkoista kohinaa Suuri Q:n arvo on epätodennäköinen, kun hypoteesi H on totta. Hypoteesi H hylätään tasolla α, mikäli missä P χ 2 m) < χ 2 αm)) = α. Q > χ 2 αm) Paremmin χ 2 -jakaumaa approksimoi Box-Ljung testisuure: Q BL = nn + 2) m k= ρ R k) 2 n k 7 Ei-triviaalia näyttää: tilastotieteen stokastiikkaan vivahtavaa osa-aluetta Theorem kirjassa Brockwell, Peter J., Davis, Richard A.: Time Series: Theory and Methods ) 50

Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio.

Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio. Määritelmä 4.3. Estimaattoria X(Y ) nimitetään lineaariseksi projektioksi, jos X on lineaarinen kuvaus ja E[(X X(Y )) Y] 0 }{{} virhetermi Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi

Lisätiedot

Likimääräisratkaisut ja regularisaatio

Likimääräisratkaisut ja regularisaatio Luku 3 Likimääräisratkaisut ja regularisaatio Käytännön inversio-ongelmissa annettu data y ei aina ole tarkkaa, vaan sisältää häiriöitä. Tuntemattomasta x on annettu häiriöinen data y F (x + }{{}}{{} ε.

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH 8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin

Lisätiedot

Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t

Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Valkoinen kohina ε t 2 1 0 1 2 Voimme tehdä saman laskun myös yleiselle välille [ a, a], missä 0 < a

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) Tavoitteet (teoria): Hallita multinormaalijakauman määritelmä. Ymmärtää likelihood-funktion ja todennäköisyystiheysfunktion ero. Oppia kirjoittamaan

Lisätiedot

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0).

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0). Esimerkki 9 Esimerkissä 6 miniminormiratkaisu on (ˆx, ˆx (, 0 Seuraavaksi näytetään, että miniminormiratkaisuun siirtyminen poistaa likimääräisongelman epäyksikäsitteisyyden (mutta lisääntyvän ratkaisun

Lisätiedot

9. Tila-avaruusmallit

9. Tila-avaruusmallit 9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia

Lisätiedot

3.2.2 Tikhonovin regularisaatio

3.2.2 Tikhonovin regularisaatio 3 Tikhonovin regularisaatio Olkoon x 0 R n tuntematon, M R m n teoriamatriisi ja y Mx + ε R m (316 annettu data Häiriöherkässä ongelmassa pienimmän neliösumman miniminormiratkaisu x M + y Q N (M x + M

Lisätiedot

P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.

P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx. Yhteenveto: Satunnaisvektorit ovat kuvauksia tn-avaruudelta seillaiselle avaruudelle, johon sisältyy satunnaisvektorin kaikki mahdolliset reaalisaatiot. Satunnaisvektorin realisaatio eli otos on jokin

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 7 8

Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Kevät 2011 1 Iteratiivisista menetelmistä Tähän mennessä on tarkasteltu niin sanottuja suoria menetelmiä, joissa (likimääräinen) ratkaisu saadaan

Lisätiedot

6.5.2 Tapering-menetelmä

6.5.2 Tapering-menetelmä 6.5.2 Tapering-menetelmä Määritelmä 6.7. Tapering on spektrin estimointimenetelmä, jossa estimaattori on muotoa f m (ω) = 1 m ( ) k w 2π m Γ(k)e ikω, k= m missä Γ on otosautokovarianssifunktio ja ikkunafunktio

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) Tavoitteet (teoria): Hahmottaa aikasarjan klassiset komponentit ideaalisessa tilanteessa. Ymmärtää viivekuvauksen vaikutus trendiin. ARCH-prosessin

Lisätiedot

Tilastollinen päättömyys, kevät 2017 Harjoitus 6B

Tilastollinen päättömyys, kevät 2017 Harjoitus 6B Tilastollinen päättömyys, kevät 7 Harjoitus 6B Heikki Korpela 8. helmikuuta 7 Tehtävä. Monisteen teht. 6... Olkoot Y,..., Y 5 Nµ, σ, ja merkitään S 5 i Y i Y /4. Näytä, että S/σ on saranasuure eli sen

Lisätiedot

Likimääräisratkaisut ja regularisaatio

Likimääräisratkaisut ja regularisaatio 48 Luku 4 Likimääräisratkaisut ja regularisaatio Ryhdytään tarkastelemaan klassisia approksimatiivisia ratkaisumenetelmiä huonosti asetetuille tai häiriöherkille äärellisulotteisille lineaarisille ongelmille

Lisätiedot

5.7 Uskottavuusfunktioon perustuvia testejä II

5.7 Uskottavuusfunktioon perustuvia testejä II 5.7 Uskottavuusfunktioon perustuvia testejä II Tässä pykälässä pohditaan edellä tarkasteltujen kolmen testisuureen yleistystä malleihin, joiden parametri on useampiulotteinen, ja testausasetelmiin, joissa

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. marraskuuta 2007 Antti Rasila () TodB 30. marraskuuta 2007 1 / 19 1 Lineaarinen regressiomalli ja suurimman uskottavuuden menetelmä Minimin löytäminen

Lisätiedot

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Kuusinen/Heliövaara 1 Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:

Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: 4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä

Lisätiedot

2. Teoriaharjoitukset

2. Teoriaharjoitukset 2. Teoriaharjoitukset Demotehtävät 2.1 Todista Gauss-Markovin lause. Ratkaisu. Oletetaan että luentokalvojen standardioletukset (i)-(v) ovat voimassa. Huomaa että Gauss-Markovin lause ei vaadi virhetermien

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Paikannuksen matematiikka MAT

Paikannuksen matematiikka MAT TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Paikannuksen matematiikka MAT-45800 4..008. p.1/4 Käytännön järjestelyt Kotisivu: http://math.tut.fi/courses/mat-45800/ Luennot:

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 4

Inversio-ongelmien laskennallinen peruskurssi Luento 4 Inversio-ongelmien laskennallinen peruskurssi Luento 4 Kevät 20 Regularisointi Eräs keino yrittää ratkaista (likimääräisesti) huonosti asetettuja ongelmia on regularisaatio. Regularisoinnissa ongelmaa

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen

Lisätiedot

Vastaavasti voidaan määritellä korkeamman kertaluvun autoregressiiviset prosessit.

Vastaavasti voidaan määritellä korkeamman kertaluvun autoregressiiviset prosessit. Autokovarianssi: (kun τ 0) Γ t (τ) = E[(X t µ t )(X t τ µ t τ )] ( ) ( = E[ φ k ε t k φ j ε t τ j )] = = j=0 φ j+k E[ε t k ε t τ j ] k,j=0 φ j+k σ 2 δ k,τ+j k,j=0 = σ 2 φ j+k δ k,τ+j = = k,j=0 φ τ+2j I

Lisätiedot

l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on

l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 018 Harjoitus B Ratkaisuehdotuksia Tehtäväsarja I 1 (Monisteen tehtävä 14) Olkoon f Y (y; θ) tilastollinen malli, jonka

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

4.2.2 Uskottavuusfunktio f Y (y 0 X = x)

4.2.2 Uskottavuusfunktio f Y (y 0 X = x) Kuva 4.6: Elektroniikassa esiintyvän lämpökohinan periaate. Lämpökohinaa ε mallinnetaan additiivisella häiriöllä y = Mx + ε. 4.2.2 Uskottavuusfunktio f Y (y 0 X = x) Tarkastellaan tilastollista inversio-ongelmaa,

Lisätiedot

Maximum likelihood-estimointi Alkeet

Maximum likelihood-estimointi Alkeet Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X

Lisätiedot

3.6 Su-estimaattorien asymptotiikka

3.6 Su-estimaattorien asymptotiikka 3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä

Lisätiedot

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6) Mat-.3 Koesuunnittelu ja tilastolliset mallit kevät Keskipisteen lisääminen k -faktorikokeeseen (ks. Montgomery 9-6) Esim (Montg. ex. 9-, 6-): Tutkitaan kemiallisen prosessin saannon Y riippuvuutta faktoreista

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 6: 1 Kalmanin suodatin Aiemmin käsitellyt

Lisätiedot

4.3.6 Eräitä diskreettejä Markov-kenttiä

4.3.6 Eräitä diskreettejä Markov-kenttiä 0.4 0.35 Gauss l1 Cauchy 0.3 0.25 0.2 0.15 0.1 0.05 0 10 8 6 4 2 0 2 4 6 8 10 Kuva 4.20: L2-priorin tnft, Cauchy-priorin tntf kun α = α = 2. 2π π 2π ja L1-priorin tntf kun 4.3.6 Eräitä diskreettejä Markov-kenttiä

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma

Lisätiedot

6.1 Autokovarianssifunktion karakterisaatio aikatasossa

6.1 Autokovarianssifunktion karakterisaatio aikatasossa 6. Spektraalianalyysi Tällä kurssilla on käyty läpi eräitä stationääristen aikasarjojen ominaispiirteitä, kuten aikasarjaa mallintavan stokastisen prosessin X t odotusarvo E[X t ] ja autokovarianssifunktio

Lisätiedot

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Tilastotieteen kertaus. Kuusinen/Heliövaara 1 Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa

Lisätiedot

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2 HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 017 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I 1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾. 24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ

Lisätiedot

6.2.3 Spektrikertymäfunktio

6.2.3 Spektrikertymäfunktio ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

Kohdeyleisö: toisen vuoden teekkari

Kohdeyleisö: toisen vuoden teekkari Julkinen opetusnäyte Yliopisto-opettajan tehtävä, matematiikka Klo 8:55-9:15 TkT Simo Ali-Löytty Aihe: Lineaarisen yhtälöryhmän pienimmän neliösumman ratkaisu Kohdeyleisö: toisen vuoden teekkari 1 y y

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat

Lisätiedot

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Väliestimointi TKK (c) Ilkka Mellin (2005) 1 Väliestimointi Todennäköisyysjakaumien parametrien estimointi Luottamusväli Normaalijakauman odotusarvon luottamusväli Normaalijakauman

Lisätiedot

Käänteismatriisi 1 / 14

Käänteismatriisi 1 / 14 1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (005) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

2. Uskottavuus ja informaatio

2. Uskottavuus ja informaatio 2. Uskottavuus ja informaatio Aluksi käsittelemme uskottavuus- ja log-uskottavuusfunktioita Seuraavaksi esittelemme suurimman uskottavuuden estimointimenetelmän Ensi viikolla perehdymme aiheeseen lisääkö

Lisätiedot

ARMA mallien ominaisuudet ja rakentaminen

ARMA mallien ominaisuudet ja rakentaminen MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Viikko 4: 1 ARMA-mallien ominaisuudet 1 Stationaaristen

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Ennustaminen ARMA malleilla ja Kalmanin suodin

Ennustaminen ARMA malleilla ja Kalmanin suodin Ennustaminen ARMA malleilla ja Kalmanin suodin MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017

Lisätiedot

Pienimmän neliösumman menetelmä (PNS)

Pienimmän neliösumman menetelmä (PNS) neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1

Lisätiedot

Pienimmän neliösumman menetelmä (PNS)

Pienimmän neliösumman menetelmä (PNS) neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1

Lisätiedot

Pienimmän neliösumman menetelmä (PNS)

Pienimmän neliösumman menetelmä (PNS) neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 8B Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 8B Ratkaisuehdotuksia. HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 8B Ratkaisuehdotuksia Tehtäväsarja I 1. Jatkoa Harjoitus 8A tehtävään 3. Muodosta odotusarvolle µ approksimatiivinen

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

3. Teoriaharjoitukset

3. Teoriaharjoitukset 3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x

Lisätiedot

Ominaisarvot ja ominaisvektorit 140 / 170

Ominaisarvot ja ominaisvektorit 140 / 170 Ominaisarvot ja ominaisvektorit 140 / 170 Seuraavissa luvuissa matriisit ja vektori ajatellaan kompleksisiksi, ts. kertojakuntana oletetaan olevan aina kompleksilukujoukko C Huomaa, että reaalilukujoukko

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET

TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET 16..015 1. a Poliisivoimien suuruuden lisäksi piirikuntien rikostilastoihin vaikuttaa monet muutkin tekijät. Esimerkiksi asukkaiden keskimääräinen

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 4

031021P Tilastomatematiikka (5 op) viikko 4 031021P Tilastomatematiikka (5 op) viikko 4 Jukka Kemppainen Mathematics Division Tilastollinen aineisto Tilastolliset menetelmät ovat eräs keino tutkia numeerista havaintoaineistoa todennäköisyyslaskentaa

Lisätiedot

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 7 Harjoitus 6 Ratkaisuehdotukset 6.. Olkoon f : G R, G = {(x, x ) R x > }, f(x, x ) = x x. Etsi differentiaalit d k f(, ), k =,,. Ratkaisu:

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

9. laskuharjoituskierros, vko 12-13, ratkaisut

9. laskuharjoituskierros, vko 12-13, ratkaisut 9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t

Lisätiedot

Ratkaisuehdotukset LH 7 / vko 47

Ratkaisuehdotukset LH 7 / vko 47 MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

Epälineaaristen yhtälöiden ratkaisumenetelmät

Epälineaaristen yhtälöiden ratkaisumenetelmät Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot