Autonomisuus metsässä. Heikki Hyyti Studia Militaria

Samankaltaiset tiedostot
Älyä metsäkoneeseen 3D-laserkeilauksella Heikki Hyyti, Konenäköpäivät, #Reset17

Metsäkoneiden sensoritekniikka kehittyy. Heikki Hyyti, Aalto-yliopisto

Maastolaserkeilauksen mahdollisuudet metsävaratiedon hankinnassa ja puunkorjuussa. Harri Kaartinen , FOREST BIG DATA -hankkeen tulosseminaari

Forest Big Data -tulosseminaari

Kymmenen vuotta maastolaserkeilaustutkimusta käytännön kokemuksia

Puukarttajärjestelmä hakkuun tehostamisessa. Timo Melkas Mikko Miettinen Jarmo Hämäläinen Kalle Einola

Tree map system in harvester

Väylät, metsät ja kaupungit (piste)pilveen

Puiden biomassan, puutavaralajien ja laadun ennustaminen laserkeilausaineistoista

Maastokartta pistepilvenä Harri Kaartinen, Maanmittauspäivät

Forest Big Data (FBD) -tulosseminaari Helsingin yliopiston metsätieteiden laitos & Maanmittauslaitoksen paikkatietokeskus (FGI)

Laserkeilauksella kattavaa tietoa kaupunkimetsistä

Satelliittipaikannuksen tarkkuus hakkuukoneessa. Timo Melkas Mika Salmi Jarmo Hämäläinen

Automaattinen betonin ilmamäärämittaus

Kansallinen maastotietokanta. KMTK Kuntien tuotantoprosessit: Selvitys mobiilikartoitusmenetelmistä

tulevaisuuden teknologiaratkaisut machine kasvinviljelyssä efficient machines Assisting and adaptive agricultural

Olosuhdetieto. Metsäntutkimuksen ja päätöksenteon apuna. Metsäteho Timo Tokola. UEF // University of Eastern Finland

Puuta koskettamaton hakkuukonemittaus. Arto Visala, Matti Öhman, Mikko Miettinen Aalto-Yliopisto (TKK), Automaatio- ja systeemitekniikan laitos

Tosi elävä virtuaalimalli Mika Karaila Tutkimuspäällikkö Valmet Automation

Autonomisen liikkuvan koneen teknologiat. Hannu Mäkelä Navitec Systems Oy

DIGIBONUSTEHTÄVÄ: MPKJ NCC INDUSTRY OY LOPPURAPORTTI

Infrastruktuurista riippumaton taistelijan tilannetietoisuus INTACT

Ympäristön aktiivinen kaukokartoitus laserkeilaimella: tutkittua ja tulevaisuutta

Infrastruktuurista riippumaton taistelijan tilannetietoisuus INTACT

Satelliittipaikannus

Luento 10: Optinen 3-D mittaus ja laserkeilaus

Tulevaisuuden autonomiset laivat. Mika Hyvönen Yliopistotutkija, TkT

Metsikön rakenteen ennustaminen 3D-kaukokartoituksella

FYSP101/K1 KINEMATIIKAN KUVAAJAT

Satelliittipaikannuksen tarkkuus hakkuukoneessa

Matterport vai GeoSLAM? Juliane Jokinen ja Sakari Mäenpää

Biomassatulkinta LiDARilta

Simulaattoreiden ja virtuaalitodellisuuden hyödyntäminen metsäalalla. Antti Peltola, Creanex Oy

Puun kasvu ja runkomuodon muutokset

Systemaattisuus työmalleissa puunkorjuussa

Puunkorjuu ja toimitukset automatisoituvat. Lapin Metsätalouspäivät Tuomo Moilanen Ponsse Oyj

Laserkeilaus puustotunnusten arvioinnissa

TILOJEN 3D-VIRTUAALIMALLI TUKEE PÄÄTÖKSENTEKOA JA SÄÄSTÄÄ KAIKKIEN AIKAA

Algoritmi III Vierekkäisten kuvioiden käsittely. Metsätehon tuloskalvosarja 7a/2018 LIITE 3 Timo Melkas Kirsi Riekki Metsäteho Oy

Rautatiekasvillisuudenhallinta laserkeilauksen avulla

Maaston ja tiestön kantavuuden ennustaminen. Jori Uusitalo Jari Ala-ilomäki Harri Lindeman Tomi Kaakkurivaara Nuutti Vuorimies Pauli Kolisoja

5 syytä hyödyntää ensiluokkaista paikannustarkkuutta maastotyöskentelyssä

Pienpuun paalauksen tuottavuus selville suomalais-ruotsalaisella yhteistyöllä

Kohti puuhuollon digitalisaatiota

TRESTIMA. Digitaalisten tekniikoiden mahdollisuudet metsätaloudessa , Seinäjoki. Simo Kivimäki

Trimblen mobiilikartoitusportfolio. Trimble MX9 Trimble MX2 Trimble MX7

Algoritmi I kuvioiden ja niille johtavien ajourien erottelu. Metsätehon tuloskalvosarja 7a/2018 LIITE 1 Timo Melkas Kirsi Riekki Metsäteho Oy

Metsätehon tuloskalvosarja 9/2017 Timo Melkas Kirsi Riekki Metsäteho Oy

TKT224 KOODIN KOON OPTIMOINTI

Pikaohje LandNova simulaattorin käyttöön(tarkemmat ohjeet käyttöohjeessa ja mallinnusohjeessa):

Lauri Korhonen. Kärkihankkeen latvusmittaukset

Kaupunkimallit

Monimutkaisesta datasta yksinkertaiseen päätöksentekoon. SAP Finug, Emil Ackerman, Quva Oy

Talvikunnossapidon laadun seuranta

RFID ja etäanturit sovelluksia ja uutta teknologiaa. Kaarle Jaakkola VTT Technical Research Centre of Finland

X PAD for Android Ensimmäinen, kehittynein

Kehittyvien satelliittiaineistojen mahdollisuudet

KOKOUSKUTSU TEKNILLINEN KORKEAKOULU Automaatio- ja systeemitekniikan osasto Osastoneuvoston kokous 3/2006

AS TENTTIJÄRJESTYS LUKUVUOSI päiv as

Puustotietojen keruun tekniset vaihtoehdot, kustannustehokkuus ja tarkkuus

Videon tallentaminen Virtual Mapista

Open Arctic Challenge , Oulu Petri Jääskeläinen

SMACC Välkky-hanke: 3D-tulostuksella kilpailukykyä pk-yrityksiin

Prognos Julkaisusuunnitelmat

VALTION MAATALOUSKONEIDEN TUTKIMUSLAITOS FINNISH RESEARCH INSTITUTE OF ENGINEERING IN AGRICULTURE AND FORESTRY

SIMO tutkimuskäytössä. SIMO seminaari 23. maaliskuuta 2011 Antti Mäkinen Simosol Oy

Palopaikan valokuvaaminen ja dokumentointi

SPS ZOOM D Laserkeilain

Kylmäjärjestelmien etävalvonta

Kohti jatkuvatoimista koneistutusta. Veli-Matti Saarinen Heikki Hyyti Tiina Laine Markus Strandström

CLOSE TO OUR CUSTOMERS

Puun läpimitan mittauksen tarkkuus ja tehokkuus laser- ja digitaalikuvatekniikkaan perustuen

Älyvaatteet työympäristössä

Puukarttajärjestelmä hakkuun tehostamisessa

MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA

Trimble Forestry. Juha Käppi, ,

Kansallinen maastotietokanta. KMTK Kuntien tuotantoprosessit: Selvitys MMStuotantoprosessista

Tiedonkeruun miljoonat pisteet

Monilähdetietoa hyödyntävien karttaopasteiden tarve puunkorjuussa haastattelututkimus hakkuukoneenkuljettajille

Puuhuollon digitalisaatio ja metsäkonetiedon mahdollisuudet

Leica ScanStation 2 Poikkeuksellisen nopea, uskomattoman joustava

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Kannettavaa teknologiaa

RAKENNUSAUTOMAATIOJÄRJESTELMÄ MITTAUSSEURANTAOHJE. Tampere Työ 63309EA A1211

Tarkkuuden hallinta mittausprosessissa

Teledyne Optech Titan -monikanavalaser ja sen sovellusmahdollisuudet

Witos Paving-pilottiprojekti

Miehittämättömän lennokin ottamien ilmakuvien käyttö energiakäyttöön soveltuvien biomassojen määrän nopeassa arvioinnissa

Digitalisaation hyödyt teollisuudessa

Digitalisaatio ja maatilojen materiaali- ja resurssitehokkuus. SALO Heikki Aro

Mittaustulosten tilastollinen käsittely

Lemminkäinen Infra oy. Lämpökameravertailu PIR ELY Kuru-Parkano

VAATIMUKSIA YKSINKERTAISILLE VIKAILMAISIMILLE HSV:N KJ-VERKOSSA

Konfiguraatiotyökalun päivitys

Metsävarojen inventoinnissa ollaan siirtymässä

Hissimatkustajien automaattinen tunnistaminen. Johan Backlund

Se on sinussa. Virtuaalinen ja laajennettu todellisuus. Jari Kotola Sovelto Aamiaisseminaari Tampere

METSÄKONEET 770D HARVESTERIT 770D

Hiab XS 033 Kapasiteettiluokka 2,8 3,3 tm

Todellinen 3D-ohjauksensuuntauslaite

Transkriptio:

Autonomisuus metsässä Heikki Hyyti

Autonomisuus metsässä Autonomisuus? Autonomisuuden haasteita Paikannustarkkuus Ympäristön havainnointi metsässä Metsäkoneen asennon mittaus ja säätö Automaatioasteen lisääminen Metsäkoneen nosturin tarkempi säätäminen Automaatiotoiminnot Kuljettajaa avustavat järjestelmät http://pointcloud.fi/ 2

Autonomisuus, mitä se on? Autonominen tekee itsenäisiä päätöksiä Mitä tarvitaan, että jokin kykenee tähän? Ympäristön havainnointi Myös havainnointi on aktiivista toimintaa Päätöksenteko havaintojen perusteella Mahdollisesti kommunikointi muiden kanssa päätöksenteon tueksi Autonomisuus metsässä, miksi? Metsätyön tehostaminen Kuljettajan avustaminen Metsän kartoitus ja työjäljen dokumentointi 3

Autonomisuuden haasteita

Paikannustarkkuus metsässä Metsäkoneen paikannustarkkuus on noin 3 m metsässä [1] Keskiarvoistettua paikkatietoa kun on pysytty paikallaan Kaartisen ym. mittauksissa yhden taajuuden satelliittipaikannusvastaanottimilla keskivirhe oli laitteesta riippuen 4,2 9,3 m [2]. Samassa testissä IMU-integroiduilla laitteilla keskivirhe oli 0,7 m [2]. Kartoitettujen puiden erottelussa tarkkuus olisi oltava alle metrin luokkaa, automaattiajossa, kartoituksessa jne. paljon tarkempi. [1] Rasinmäki, J., & Melkas, T. (2005). A method for estimating tree composition and volume using harvester data. Scandinavian journal of forest research, 20(1), 85-95. [2] Kaartinen, H., Hyyppä, J., Vastaranta, M., Kukko, A., Jaakkola, A., Yu, X.,... & Kaijaluoto, R. (2015). Accuracy of kinematic positioning using Global Satellite Navigation Systems under forest canopies. Forests, 6(9), 3218-3236. 5

Miten paikannustarkkuutta voi parantaa? Anturitiedon yhdistäminen Esimerkiksi inertiatietoa ja satelliittipaikannusta yhdistäen Kaartinen ym. on päässyt 0,7 m keskivirheeseen [2]. Miten päästä vielä tarkempaan paikannustarkkuuteen puihin nähden? Samoin kuin eläimet ja ihmiset tekevät. Yhdistämällä näkökyky navigointiin Koneelle kolmiulotteinen näkökyky on helpoin toteuttaa laserkeilauksen avulla. Pistepilvi on harvaa kolmiulotteista tietoa kohteista ympärillä. Vähemmän mittauksia kuin kamerakuvassa, mutta tietoa on usein joka suunnasta. Lisäksi etäisyystieto helpottaa ympäröivän maailman hahmottamista Näkökyky toimii paremmin, jos se yhdistetään asentotietoon. [2] Kaartinen, H., Hyyppä, J., Vastaranta, M., Kukko, A., Jaakkola, A., Yu, X.,... & Kaijaluoto, R. (2015). Accuracy of kinematic positioning using Global Satellite Navigation Systems under forest canopies. Forests, 6(9), 3218-3236. 6

Pistepilvitieto ja anturifuusio Inertiamittausanturit tuottavat asentotiedon ja arvion kiihtyvyydestä Nykyään on saatavilla edullisia MEMS (mikro-elektro-mekaaninen järjestelmä) inertiamittalaitteita (IMU). Mittaavat kulmanopeutta ja kiihtyvyyttä kolmeen eri suuntaan >100Hz taajuudella Haasteena mittalaitteen mittausvirheet (bias eli nollakohtavirhe ja gain eli vahvistusvirhe, riippuvat lämpötilasta) -> mittauksia on vaikea käyttää Maan vetovoimasta johtuvan kiihtyvyysmittauksen avulla voidaan vähentää gyroskooppien bias-virhettä ja näin saada asentomittaus tarkemmaksi [3]. [3] Hyyti, H., & Visala, A. (2015). A DCM Based Attitude Estimation Algorithm for Low-Cost MEMS IMUs. International Journal of Navigation and Observation, 2015. http://dx.doi.org/10.1155/2015/503814 & https://github.com/hhyyti/dcm-imu 7

Pistepilvitieto ja anturifuusio Inertiamittausanturit tuottavat asentotiedon ja arvion kiihtyvyydestä Nykyään on saatavilla edullisia MEMS (mikro-elektro-mekaaninen järjestelmä) inertiamittalaitteita (IMU). Kiihtyvyystieto on edelleen hyvin epävarmaa (tuntematon bias ja gain) Kun siitä integroidaan nopeus, virheet kasaantuvat ja laitteen nopeus päätyy helposti johonkin väärään arvoon. Kun tästä nopeudesta integroidaan paikka, virheet kasaantuvat entisestään. Kiihtyvyystiedon kanssa voidaan tehdä samoin kuin edellisellä sivulla kulmanopeuden ja kiihtyvyyden kanssa, jos nopeudesta voidaan antaa jokin muu mittaus, jolla kiihtyvyysmittauksen tuntematon bias voidaan poistaa. 8

Pistepilvitieto ja anturifuusio Inertiamittausanturi voidaan yhdistää laserkeilaimeen Tällöin laserkeilain mittaa ympäristön tasaisin aikavälein Kahdesta perättäisestä mittauksesta luodaan malli Malleja verrataan ja lasketaan mallien välillä tapahtunut siirtymä. Kun myös tiedetään kahden mittauksen välinen aika, voidaan tiedoista laskea mittalaitteen nopeus tällä välillä. Nopeustietoa voidaan verrata kiihtyvyyksistä integroituun nopeuteen. Näiden erotuksesta voidaan arvioida virheellisen biaksen suuruus. Kun bias vähennetään tiedoista, malli tarkentuu ja myös pistepilvien välinen ero pienenee. 9

Pistepilvitieto ja anturifuusio https://youtu.be/4anyv6fzhyi 10

Yhtäaikainen paikannus ja kartoitus Vielä edellistäkin tarkempi paikka saadaan luomalla koko ajan karttaa havaitusta ympäristöstä Tätä prosessia kutsutaan nimellä yhtäaikainen paikannus ja kartoitus SLAM (Simultaneous Localization and Mapping) Aallossa ensimmäinen metsäslam jo 2007 Forestrix projektissa [4,5]. Jos puut voi laserkeilata ja kartoittaa metsäkoneesta, niin oma paikka voidaan mitata puihin nähden hyvin tarkasti. Samalla laitteistolla voidaan kerätä valtavat määrät pistepilvitietoa ja liittää se luotuun karttaan. Tällä kartalla metsäkoneen oma paikka on hyvin tarkka. Kartta voidaan kiinnittää tarkasti oikeaan paikkaan lentolaserkeilattuun puustotietoon tai tarkkoihin satelliittipaikannustietoihin nähden silloin kun niitä on saatavilla. [4] Miettinen, M., Ohman, M., Visala, A., & Forsman, P. (2007). Simultaneous localization and mapping for forest harvesters. In Proceedings of IEEE International Conference on Robotics and Automation (pp. 517-522). [5] Öhman, M., Miettinen, M., Kannas, K., Jutila, J., Visala, A., & Forsman, P. (2008). Tree measurement and simultaneous localization and mapping system for forest harvesters. In Field and Service Robotics (pp. 369-378). 11

Tree height (m) Yhtäaikainen paikannus ja kartoitus 3D-map of looped measuring drive 10 5 87 81 70 71 65 68 0 73 74 66 76 77 78 103 96 97 88 59 120 89 85 60 109 104 91 72 61 63 67 118 101 92 79 62 58 50 57 119 116 99 86 53 55 48 40 44 49 52 51 102 98 94 83 75 95 108 69 64 123 113 121 114 84 56 45 39 43 42 115 82 46 47 128 122 111 80 54 33 40 34 37 29 38 136 124 117 107 105100 106 90 41 35 36 30 134 125 93 129 110 112 23 27 26 8 18 25 31 127 131 126 157 28 32 133 132 171 182 7 17 20 139 130 135 137 22 10 141 3 19 138 140 151 152 159 186 166 156 5 4 11 21 144 160 172 143 145 15 9 6 2 20 10 142 146 147 164 177 153 1 12 13 14 148 149 150 154 158 155 16 161 162 167 168 176 188 214 215 163 24 165 0 169 170 175 178 180 181 201 203 213 183 187 193197 205210 174 179 185 184 190 196 199 212 y (m) 189 191 211 192 195-10 194 202 198 200 206 207208 204 209-20 -30-50 -40-30 -20-10 x (m) 0 10 20 12

Puomin asennon mittaus Nosturin puomin mittaus on osa metsäkoneen paikan ja asennon mittausta Voidaan tehdä kalliisti ja monella mittalaitteella instrumentoimalla jokainen nivel Instrumentaatio tulee olla työympäristön kestävää (vesi, lumi, aurinko, kolhut, ) Voidaan tehdä myös laserkeilauksen avulla Samalla kun laserkeilataan ympäristöä, voidaan laserkeilata myös metsäkoneen puomin asento ja paikka Sopivalla mittalaitteiden asettelulla päästään todella edulliseen ja toimivaan ratkaisuun Oikealla on toteutettu 3D keilain 2D laserskannerista ja nosturin käännöstä. 13

Puomin asennon mittaus https://youtu.be/hbilupbr4r4 14

Automaatioasteen lisääminen

Nosturin säätö Metsäkoneen puomin tarkka paikka on haastava mitata ja säätää Joustavat ja kevyet rakenteet, vapaa heiluri, koneen huojuminen kumipyörillä Onnistuu reaaliaikaisesti epälineaarisella malliprediktiivisellä säätimellä [6,7]. Metsäkoneen dynaaminen malli huomioon Optimaalinen säätö tietyn mittaisella estimointihorisontilla tulevaisuuteen (muutama sekunti) Työkoneen, puomin ja työkalun yhtäaikainen säätö mahdollista samanaikaisesti. [6] Kalmari, J., Backman, J., & Visala, A. (2014). Nonlinear model predictive control of hydraulic forestry crane with automatic sway damping. Computers and Electronics in Agriculture, 109, 36-45. [7] Kalmari, J. (2015). Nonlinear Model Predictive Control of a Hydraulic Forestry Crane, Väitöskirja, Aalto-yliopisto, http://urn.fi/urn:isbn:978-952-60-6325-6 16

Autonomisen toiminnan demo NeoSilvix projektissa etsittiin kuusentaimia muun kasvillisuuden seasta ja perattiin automaattisesti löydettyjen taimien ympäristö https://youtu.be/n3xeesscuna 17

Kuljettajaa avustavat järjestelmät Metsäkoneen kuljettaja voisi hyötyä monella tavalla hänelle annettavasta lisätiedosta Paremmat kartat, korkeusmallit ja niiden visualisointi hakkuu ja raivaustyössä Ajourasuunnitelmat (mahdollisesti automaattisesti) korkeusmallien, laserkeilauksen ja kasvumallien perusteella Metsäkoneen ja metsätraktorin yhteistyön parantaminen: jaettu kartta ja työsuunnitelma -> mittaan sahatut tukit voidaan yksilöidä ja kartoittaa Ajoreittien automaattinen optimointi metsätraktorin ajoa varten, jotta kuljetettavaksi tulee oikea määrä oikeaa laatua puuta, eikä kuormasta tule liian painava Vältetään pahimmat maastovauriot ja säästetään polttoainetta ja aikaa Puiden yksilöinti säilyy tarvittaessa kasattavaan pinoon asti. 18

Kuljettajaa avustavat järjestelmät Saatavilla olevaa tietoa pitää pystyä esittämään kuljettajalle tehokkaasti Kuljettajan aika ei saa kulua tietokoneen kanssa pelaamiseen, vaan työn on tehostuttava lisälaitteita käyttämällä Nykyinen karttakuva on mahdollista ottaa tehokkaampaan käyttöön Karttakuvan päälle voi lisätä oleellista tietoa, jota metsäkone havaitsee ja mittaa. Operatiivisen tiedon näyttäminen vaikeampaa, koska kuljettaja ei ehdi seurata näyttöä Uudet mahdollisuudet lisätyn todellisuuden avulla Kuljettajalle voidaan näyttää hänen näkemänsä päälle ympäristöstä mitattua tietoa ja tietoa koneen tulevista liikkeistä. Mahdollisuus pistepilvitiedon avulla röntgennäköön yöllä ja huonolla säällä Käyttöliittymästä tulee olla enemmän hyötyä kuin haittaa. 19

Lisätyn todellisuuden käyttöliittymä Haasteena kuljettajan pään asennon ja paikan mittaaminen ArUco tunnisteet hytin seinillä ja laseissa tunnisteita näkevä kamera Integroitu inertiamittausten kanssa, jotta nopeat liikkeet huomataan. Kuljettajan näkymän päälle piirretään tarkasti kohdistetusti pistepilvitiedosta luotu malli ympäristöstä. Pään asennon ja paikan mittaamista ja käyttöliittymää on toteuttanut diplomityönään Tuomo Palonen [8]. [8] Palonen, T. (2016). Augmented Reality Based Human Machine Interface for Semiautonomous Work Machines, Diplomityö, Aalto-yliopisto, http://urn.fi/urn:nbn:fi:aalto-201611025386 20

Laajennetun todellisuuden demo https://youtu.be/iphlkvekzz4 21

Teollisuusesimerkki Argone Oy

Metsän mittaussovellutuksia Esimerkkejä Argone Oy:n julkisista metsän mittaussovellutuksista Lisätietoja: Argone Oy mikko.miettinen@argone.fi Puukarttajärjestelmä Metsäteho Raportti [9] Tuloskalvot [10] Esimerkkivideo Ohjelma [11] [9] Melkas, T., Miettinen, M., Hämäläinen, J., & Einola, K. (2014). Puukarttajärjestelmä hakkuun tehostamisessa. Metsäteho Oy Raportti, 230, 20. http://www.metsateho.fi/wp-content/uploads/2015/02/raportti_230_puukarttajarjestelma_hakkuun_tehostamisessa_tm_ym.pdf [10] Melkas, T., Miettinen, M., Hämäläinen, J., & Einola, K. (2014). Puukarttajärjestelmä hakkuun tehostamisessa. Metsäteho Oy Tuloskalvosarja. http://www.metsateho.fi/wpcontent/uploads/2015/02/tuloskalvosarja_2014_01_puukarttajarjestelma_hakkuun_tehostamisessa_tm_ym.pdf 23 [11] Argone Oy (2013). Optical Tree Measurement System (OTMS). Youtube-video. https://youtu.be/tlbwxvf9prw

Metsän mittaussovellutuksia Esimerkkejä Argone Oy:n julkisista metsän mittaussovellutuksista Lisätietoja: Argone Oy mikko.miettinen@argone.fi Urapainumat ja liikenopeus Metsäteho Tuloskalvot [12] Esimerkkivideot Ohjelma [13] Ajovideo [14] [12] Hämäläinen, J., Ala-ilomäki, J., Lindeman, H., Miettinen, M. (2016). Metsäkoneen urapainumat laserilla. Forest Big Data tulosseminaariesitys http://www.metsateho.fi/wp-content/uploads/miettinen_argone_fbd_tulosseminaari.pdf [13] Argone Oy (2016). Elk, ajoura 4. ajo, koealat 42,41,40. Youtube-video. https://youtu.be/xzgbevqubsu [14] Argone Oy (2016). Elk, koealat 42,41,40, mittausohjelmisto. Youtube-video. https://youtu.be/_pivhiavh2i 24

Kiitos! Heikki Hyyti