Forest Big Data (FBD) -tulosseminaari Helsingin yliopiston metsätieteiden laitos & Maanmittauslaitoksen paikkatietokeskus (FGI)
|
|
- Aleksi Tuominen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Forest Big Data (FBD) -tulosseminaari Helsingin yliopiston metsätieteiden laitos & Maanmittauslaitoksen paikkatietokeskus (FGI) Markus Holopainen, Aluepohjaista inventointia vai yksinpuintulkintaa? Harri Kaartinen, Maastolaserkeilauksen mahdollisuudet metsävaratiedon hankinnassa ja puunkorjuussa Ville Kankare, Puiden biomassan, puutavaralajien ja laadun ennustaminen laserkeilausaineistosta
2 Laserkeilaus metsävarojen hallinnassa: hieman historiaa 1977 Solodukhin ym. julkaisevat 1. artikkelin profiloivaan laseriin perustuvasta puiden mittaamisesta 1980-luku, Nelson ym. tutkivat profiloivan laserin mahdollisuuksia laajojen alueiden metsien inventoinnissa E. Naesset julkaisee 1. artikkelin laserkeilaukseen (ALS) perustuvasta puustotunnusten estimoinnissa 1999 Hyyppä & Inkinen, 1. artikkeli ALS-yksinpuintulkintamenetelmästä Aluepohjaisen ALS-inventointimenetelmän kehittäminen, mm. Naesset (2002) Useita aluepohjaiseen inventointiin liittyviä tutkimushankkeita (mm. Hyyppä & Maltamo) Digitaaliseen fotogrammetriaan (ilmakuvamittaukseen) perustuva yksinpuintulkintamenetelmä (Korpela 2004) Aluepohjainen laserkeilausinventointi operatiiviseen käyttöön metsäsuunnittelussa Suomessa Puulajiositteiden / puutavaralajien ennustaminen ALS-aineistoista, tutkimuksia 2008 SA-tutkimushankkeita, joissa tavoitteena lasermittausten entistä parempi hyödyntäminen (täsmämetsätalous) Maastolaserkeilausmenetelmien kehittäminen SA:n Laserkeilauksen huippuyksikkö ( ), Forest Big Data hanke ( )
3 Laserkeilauksen avulla tarkempaa metsävaratietoa kuviotasolta puu(oksa)tasolle
4 Yksinpuintulkinnan pullonkauloja Puiden paikannustarkkuus maastossa mitatun ja lentolaserkeilauksella tulkitun puun yhdistäminen Puulajitulkinta Erilaiset tulkinta-algoritmit tuottavat erilaisia tuloksia Korkeapulssisen laseraineiston hinta Yksinpuintulkinnan toimivuus vaikeammissa puusto-olosuhteissa kyseenalainen (tiheät metsiköt, useampijaksoiset, sekapuustot, nuoret kehitysluokat)
5 DIGILE/D2I/Forest Big Data, Task2.1/ UH & FGI Keskeisiä tavoitteita: Runkulukusarjan mittaamisen / ennustamisen tarkentaminen Puuston laatutunnusten mittaaminen Yksinpuintulkintamenetelmien kehittäminen Keskeisiä tuloksia: Seuraavan sukupolven metsävaratieto visiopaperi. Holopainen, M., Vastaranta, M. & Hyyppä, J Outlook for the next generation s precision forestry in Finland. Forests 2014, 5(7), Monilähteinen yksinpuintulkinta testi esimerkkileimikolla Vastaranta, M., Saarinen, N., Kankare, V., Holopainen, M., Kaartinen, H., Hyyppä, J. & Hyyppä, H Multisource single-tree inventory in the prediction of tree quality variables and logging recoveries. Remote Sensing, 2014, 6, Automaattisten menetelmien kehittäminen puutunnusten (läpimitat, runkokäyrä, oksat) TLSmittaukseen: Liang, X., Kankare, V., Yu, X., Hyyppä, J. & Holopainen, M Automatic stem curve measurement using terrestrial laser scanning. IEEE Transactions on Geoscience and Remote Sensing (TGRS), 52(3): ALS & TLS (MLS) yhdistelmä runkolukusarjan, puutavaralajien ja puiden ulkoisten laatutunnusten mittaamisessa; Kankare, V., Vauhkonen, J., Tanhuanpää, T., Holopainen, M., Vastaranta, M., Joensuu, M., Krooks, A., Hyyppä, J., Hyyppä, H., Alho, P. & Viitala, R Accuracy in estimation of timber assortments and stem distribution A comparison of airborne and terrestrial laser scanning techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 97:89-97, Kankare, V., Joensuu, M., Vauhkonen, J., Holopainen, M., Tanhuanpää, T., Vastaranta, M., Hyyppä, J., Hyyppä, H., Alho, P., Rikala, J., Sipi, M. Estimation of timber quality of Scots pine with terrestrial laser scanning. Forests 2014, 5: Satelliittipaikannuksen tarkkuus metsäolosuhteissa: Kaartinen, H., Hyyppä, J., Vastaranta, M., Kukko, A., Jaakkola, A., Yu, Xiowei, Pyörälä, J. Liang, X., Liu, J., wang, Y., Kaijaluoto, R., Melkas, T., Holopainen, M. & Hyyppä, H Accuracy of kinematic positioning using global satellite navigation systems under forest canopies. Forests 2015, 6, ; doi: /f
6 Tulevaisuuden metsävaratieto Ajantasainen hilatason inventointi + runkolukusarjan ja laatutunnusten tarkentaminen puukohtaisella tiedolla
7 Vision: tree attribute update using Multisource single tree inventory (MS-STI) 2Dscanning Harvester MLS Tree map, species TLS First thinning MLS SAR TLS Calipers etc. Reference data Harvester Tree Attribute Update Remote Sensing Aerial images ALS Prior second thinning or clear-cut Stem distribution Tree quality
8 Evo testikenttä seuraavan sukupolven metsävaratiedon keräämiseen Alueen koko 4 km x 6 km, 91 metsikkökoelaa (32 x 32 m) Perinteiset maastomittaukset, puiden tarkka paikannus Maastolaserkeilausmittaukset: TLS-, MLS-, PLS (personal laser scanning) Kaukokartoitusaineistoja Satelliittiaineistot: Korkean resolution optisen ja mikroaaltoalueen aineistot: World View2,Terra-SAR-X stereo (TSX stereo), Tandem X (TDX INSAR) Lentokonemittaukset (MML): Ilmakuvia ja laseraineistoja eri korkeuksilta kuvattuna
9 ALS- vs ilmakuvapintamalli
10 DSI
11 Airborne laser scanning (ALS) vs Digital stereo imagery (DSI) Accuracies in Random Forest predictions using DSI and ALS metrics. Differences in DSI and ALS derived CHMs in mature Scots pine stand. Canopy gaps are missing from the DSI. Department of Forest Sciences/ Mikko Vastaranta
12 Aluepohjaista inventointia vai yksinpuintulkintaa? Yhteenveto Aluepohjainen inventointi / nykyiseen metsävaratietoon perustuvat lisäarvosovellukset Vaatimustaso: rasteritason metsävaratiedon tulee olla riittävän tarkkaa & ajantasaista Nykyinen tai nykyisenkaltainen metsävaratieto riittää moniin lisäarvosovelluksiin: sähköinen puukauppa (ostotarjousten teko & hyväksyminen), puuston laatuluokitus, Boniteetti & metsän arvo, Korjuukelpoisuus Yksinpuintulkinta: Metsävaratieto leimikkosuunnittelussa ja puunkorjuun ohjauksessa / logistiikassa vaatimustaso: runkolukusarjan & puuston laatutunnusten ennustamisen tarkkuus sillä tasolla, että hakkuut voi suunnitella ilman metsässä käyntiä & metsävaratietoa voi suoraan hyödyntää koko puunkorjuun logistiikkaketjussa Tavoitetila tulevaisuuden metsävaratiedolle Haasteita / keskeisiä kysymyksiä (aluepohjainen inventointi / yksinpuintulkinta) Kuinka usein uusi ALS-aineisto hankitaan? ALS-aineistojen pulssitiheys? Muiden 3D RS-menetelmien hyödyntäminen? Ilmakuvat / korkean resoluution satelliittikuvat? Monikanavainen keilaus? Maastomittausten määrä? Taimikkoinventointien tarkentaminen? Missä yksinpuintulkinta toimii ja missä ei? Optimaalinen ALS-TLS-/MLS-yhdistelmä? Monilähteinen yksinpuintulkinta? Hakkuukonetiedon hyödyntäminen? Mittaus vs mallinnus?
13 Kohti operatiivista yksinpuintulkintaa
14 Kiitos ja kumarrus FBD! Munchenin kaukokartoituskonferenssissa Forest Big Data hankkeen ilosanomaa levittämässä, kevät vasemmalta Jari Vauhkonen, Mikko Vastaranta, Ninni Saarinen, Ville Kankare, Ville Luoma & Topi Tanhuanpää EffFibre 14
Puiden biomassan, puutavaralajien ja laadun ennustaminen laserkeilausaineistoista
Puiden biomassan, puutavaralajien ja laadun ennustaminen laserkeilausaineistoista MMT Ville Kankare Metsätieteiden laitos, Helsingin yliopisto Laserkeilauksen huippuyksikkö 8.3.2016 1 Sisältö I. Biomassaositteet
Kymmenen vuotta maastolaserkeilaustutkimusta käytännön kokemuksia
Kymmenen vuotta maastolaserkeilaustutkimusta käytännön kokemuksia MMT Ville, Kankare Laserkeilaustutkimuksen huippuyksikkö Metsätieteiden laitos, Helsingin yliopisto Kymmenen vuotta maastolaserkeilaustutkimusta
Metsikön rakenteen ennustaminen 3D-kaukokartoituksella
8.10.2017 1 Metsikön rakenteen ennustaminen 3D-kaukokartoituksella Dosentti (MMT) Mikko Vastaranta Metsätieteiden laitos, Helsingin yliopisto Laserkeilaustutkimuksen huippuyksikkö mikko.vastaranta@helsinki.fi
Koostimme Metsätieteen aikakauskirjan erikoisnumeroon
Metsätieteen aikakauskirja t i e t e e n t o r i Markus Holopainen, Mikko Vastaranta ja Juha Hyyppä Yksityiskohtaisen metsävaratiedon tuottaminen kohti täsmämetsätaloutta? e e m t a Johdanto Koostimme
Maastolaserkeilauksen mahdollisuudet metsävaratiedon hankinnassa ja puunkorjuussa. Harri Kaartinen , FOREST BIG DATA -hankkeen tulosseminaari
Maastolaserkeilauksen mahdollisuudet metsävaratiedon hankinnassa ja puunkorjuussa Harri Kaartinen 9.3.2016, FOREST BIG DATA -hankkeen tulosseminaari Maastolaserkeilaus Staattinen laserkeilaus, keilain
Laserkeilaus puustotunnusten arvioinnissa
Uusi Teknologia mullistaa puun mittauksen Metsäpäivät 7.11.2008 Laserkeilaus puustotunnusten arvioinnissa Markus Holopainen Helsingin yliopisto Metsävarojen käytön laitos markus.holopainen@helsinki.fi
Metsävarojen inventoinnin keskeinen kiinnostuksen
Metsätieteen aikakauskirja 1/2015 Ville Kankare, Mikko Niemi, Mikko Vastaranta, Markus Holopainen ja Juha Hyyppä Puustobiomassan kartoituksen ja seurannan kehittäminen e e m t a Luonnonvarariskien hallinta
Olosuhdetieto. Metsäntutkimuksen ja päätöksenteon apuna. Metsäteho Timo Tokola. UEF // University of Eastern Finland
Olosuhdetieto Metsäntutkimuksen ja päätöksenteon apuna Metsäteho 22.6.2016 Timo Tokola Metsätiedon kehittämisen kokonaisuus Tokola 21.11.2016 2 Tausta ja sisältö Olosuhdetieto puunkorjuussa Suvinen et
Laserkeilauksella kattavaa tietoa kaupunkimetsistä
Laserkeilauksella kattavaa tietoa kaupunkimetsistä Topi Tanhuanpää HY, Metsätieteiden osasto / UEF, Historia- ja maantieteiden osasto Kaupunkimetsät: Mitä ne ovat? Kaupungissa ja sen laitamilla kasvavien
Puulajitulkinta laserdatasta
Ilmakuvien tarve metsäsuunnittelussa? Taksaattoriklubin seminaari, Paikkatietomarkkinat 2009 Puulajitulkinta laserdatasta Jari Vauhkonen Esityksen sisältöä Millaista (puulaji-)tietoa laserkeilaindata sisältää?
Laserkeilaus osana puuhuoltoa
Metsätehon seminaari 24.5.2011 Laserkeilaus osana puuhuoltoa Markus Holopainen Helsingin yliopisto, Metsätieteiden laitos Aalto-yliopisto, Maanmittaustieteiden laitos markus.holopainen@helsinki.fi Esityksen
Paikkatietomarkkinat / Taksaattoriklubi 4.11.2014 Mitä Laserkeilauksen huippuyksikkö merkitsee metsätieteille? Markus Holopainen Helsingin yliopisto,
Paikkatietomarkkinat / Taksaattoriklubi 4.11.2014 Mitä Laserkeilauksen huippuyksikkö merkitsee Markus Holopainen Helsingin yliopisto, Metsätieteiden laitos markus.holopainen@helsinki.fi Mitä Laserkeilauksen
Tree map system in harvester
Tree map system in harvester Fibic seminar 12.6.2013 Lahti Timo Melkas, Metsäteho Oy Mikko Miettinen, Argone Oy Kalle Einola, Ponsse Oyj Project goals EffFibre project 2011-2013 (WP3) To evaluate the accuracy
Laserkeilauksen hyödyntäminen metsätaloudellisissa
Metsätieteen aikakauskirja 4/2008 Tieteen tori Matti Maltamo, Petteri Packalén, Janne Uuttera, Esa Ärölä ja Juho Heikkilä Laserkeilaustulkinnan hyödyntäminen metsäsuunnittelun tietolähteenä Johdanto Laserkeilauksen
Kohti puuhuollon digitalisaatiota
Kohti puuhuollon digitalisaatiota Forest Big Data -hankkeen päätuloksia Metsätehon tuloskalvosarja 11/2016 Jarmo Hämäläinen (toim.) Metsäteho Oy Forest Big Data -visio Kaikkia metsäalan toimijoita palveleva
Puuston runkolukusarjan ja laatutunnusten mittaus kaukokartoituksella
Metsätehon raportti 223 1.8.2013 Puuston runkolukusarjan ja laatutunnusten mittaus kaukokartoituksella Esiselvitys ja käytännön testi Jari Vauhkonen Ville Kankare Topi Tanhuanpää Markus Holopainen Mikko
Forest Big Data perusteita seuraavan sukupolven metsävaratietojärjestelmälle
Forest Big Data perusteita seuraavan sukupolven metsävaratietojärjestelmälle Jarmo Hämäläinen Metsäteho Oy Metsätieteen päivä 12.11.2014, Helsinki Taustalla Puutavaralogistiikka 2020 kehittämisvisio ja
Puun kasvu ja runkomuodon muutokset
Puun kasvu ja runkomuodon muutokset Laserkeilaus metsätieteissä 6.10.2017 Ville Luoma Helsingin yliopisto Centre of Excellence in Laser Scanning Research Taustaa Päätöksentekijät tarvitsevat tarkkaa tietoa
Puustotietojen keruun tekniset vaihtoehdot, kustannustehokkuus ja tarkkuus
Puustotietojen keruun tekniset vaihtoehdot, kustannustehokkuus ja tarkkuus Janne Uuttera Metsätehon seminaari 8.5.2007 Metsävaratietojärjestelmien tulevaisuus Tausta Tietojohtamisen välineissä, kuten metsävaratietojärjestelmissä,
Vaihtoehtoisia malleja puuston kokojakauman muodostamiseen
Vaihtoehtoisia malleja puuston kokojakauman muodostamiseen Jouni Siipilehto, Harri Lindeman, Jori Uusitalo, Xiaowei Yu, Mikko Vastaranta Luonnonvarakeskus Geodeettinen laitos Helsingin yliopisto Vertailtavat
Laserkeilauspohjaiset laskentasovellukset
Laserkeilauspohjaiset laskentasovellukset Petteri Packalén Matti Maltamo Laseraineiston käsittely: Ohjelmistot, formaatit ja standardit Ei kovin monia ohjelmia laserpisteaineiston käsittelyyn» Terrasolid
LASERKEILAUS METSÄVAROJEN HALLINNASSA. markus.holopainen@helsinki.fi, juha.hyyppa@fgi.fi, mikko.vastaranta@helsinki.fi, hannu.hyyppa@aalto.
The Photogrammetric Journal of Finland, Vol. 22, No. 3, 2011 LASERKEILAUS METSÄVAROJEN HALLINNASSA Markus Holopainen 1, Juha Hyyppä 2, Mikko Vastaranta 1 ja Hannu Hyyppä 3 1 Helsingin yliopisto, Metsätieteiden
MARV Metsikkökoealaharjoitus Aluepohjaiset laserpiirteet puustotunnusten selittäjinä. Ruuduille lasketut puustotunnukset:
MARV1-11 Metsikkökoealaharjoitus Aluepohjaiset laserpiirteet puustotunnusten selittäjinä Metsikkökoealojen puuston mittaukseen käytetty menetelmä, jossa puut etsitään laseraineistosta/ilmakuvilta ja mitataan
Biomassatulkinta LiDARilta
Biomassatulkinta LiDARilta 1 Biomassatulkinta LiDARilta Jarno Hämäläinen (MMM) Kestävän kehityksen metsävarapalveluiden yksikkö (REDD and Sustainable Forestry Services) 2 Sisältö Referenssit Johdanto Mikä
Älyä metsäkoneeseen 3D-laserkeilauksella Heikki Hyyti, Konenäköpäivät, #Reset17
Älyä metsäkoneeseen 3D-laserkeilauksella Heikki Hyyti, Konenäköpäivät, #Reset17 Älyä metsäkoneeseen 3D-laserkeilauksella Mitä tehdään ja miksi? COMBAT/Pointcloud -hanke Metsäkoneiden kehityksen haasteita
SIMO tutkimuskäytössä. SIMO seminaari 23. maaliskuuta 2011 Antti Mäkinen Simosol Oy
SIMO tutkimuskäytössä SIMO seminaari 23. maaliskuuta 2011 Antti Mäkinen Simosol Oy Alkuvaiheet SIMOn juuret Helsingin Yliopiston metsävarojen käytön laitoksella mahdollistivat ohjelmiston luontevan soveltamisen
Paikkatietoa metsäbiomassan määrästä tarvitaan
Biomassan estimointi laseraineiston, ilmakuvien ja maastomittausten perusteella Esitys Metsätieteen Päivän Taksaattorisessiossa 26.10.2011 Reija Haapanen, Sakari Tuominen ja Risto Viitala Paikkatietoa
ARVO ohjelmisto. Tausta
ARVO ohjelmisto Tausta Jukka Malinen, Metla Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research Institute www.metla.fi Ennakkotiedon tarve - Metsänomistaja 25.1.2010 2 Ennakkotiedon
Puuston tilavuus ja kasvu ovat metsien inventoinnin
Juha Hyyppä, Markus Holopainen, Mikko Vastaranta ja Eetu Puttonen Yksittäisten puiden ittaus ja uutosten seuranta laserkeilauksella e e t a Johdanto Puuston tilavuus ja kasvu ovat etsien inventoinnin perustietoja.
Ympäristön aktiivinen kaukokartoitus laserkeilaimella: tutkittua ja tulevaisuutta
Ympäristön aktiivinen kaukokartoitus laserkeilaimella: tutkittua ja tulevaisuutta Sanna Kaasalainen Kaukokartoituksen ja Fotogrammetrian Osasto Ilmastonmuutos ja ääriarvot 13.9.2012 Ympäristön Aktiivinen
Kaukokartoituspohjainen metsien inventointi Suomessa - mitä tästä eteenpäin? Petteri Packalen
Laserkeilausseminaari 2017 MML 12.10.2017 Kaukokartoituspohjainen metsien inventointi Suomessa - mitä tästä eteenpäin? Petteri Packalen Metsien inventointi Suomessa Kaksi erityyppistä inventointia: Valtakunnan
Maastokartta pistepilvenä Harri Kaartinen, Maanmittauspäivät
Maastokartta pistepilvenä 22.3.2018 Harri Kaartinen, Maanmittauspäivät 2018 1 Sisältö Pistepilvi aineistolähteenä Aineiston keruu Aineistojen yhdistäminen ja käsittely Sovellukset 22.3.2018 Harri Kaartinen,
Earth Observation activities in University of Eastern Finland
Group on Earth Observations (GEO) yhteistyö ja sovellukset Suomessa SYKE 23-24.5.2018 Earth Observation activities in University of Eastern Finland Timo Kumpula Department of Geographical and Historical
Kehittyvästä metsätiedosta lisätehoa puuhuoltoon. Jarmo Hämäläinen Metsäteho Oy
Kehittyvästä metsätiedosta lisätehoa puuhuoltoon Jarmo Hämäläinen Metsäteho Oy Puunhankinnan uudet tavat ja työkalut Teollisuuden Metsänhoitajien, Koneyrittäjien ja Metsätehon yhteisseminaari. Metsäpäivät
Kehittyvien satelliittiaineistojen mahdollisuudet
VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Kehittyvien satelliittiaineistojen mahdollisuudet Forest Big Data loppuseminaari, Heureka 8.3.2016 Tuomas Häme, Laura Sirro, Yrjö Rauste VTT VTT:n satelliittikuvatutkimusaiheet
ARVO ohjelmisto. Tausta
ARVO ohjelmisto Tausta Jukka Malinen, Metla Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research Institute www.metla.fi Ennakkotiedon tarve - Metsänomistaja 11.2.2010 2 Ennakkotiedon
Metsävaratieto ja sen käytön mahdollisuudet. 4.12.2014 Raito Paananen Metsätietopäällikkö Suomen metsäkeskus Julkiset palvelut, Keski-Suomi
Metsävaratieto ja sen käytön mahdollisuudet 4.12.2014 Raito Paananen Metsätietopäällikkö Suomen metsäkeskus Julkiset palvelut, Keski-Suomi Sisältö 1. Julkisin varoin kerättävien metsävaratietojen keruun
Lentolaserkeilausta on hyödynnetty kaupunkimittauksessa
Tieteen tori Metsätieteen aikakauskirja 4/2014 Topi Tanhuanpää, Ville Kankare, Mikko Vastaranta, Ninni Saarinen, Markus Holopainen, Juha Raisio, Tommi Sulander, Juha Hyyppä ja Hannu Hyyppä 3D-tiedosta
Kasvava metsävaratiedon kysyntä. Metsässä puhaltavat uudet tuulet seminaari, 11.9.2012, Mikkeli Kari T. Korhonen, Metla/VMI
Kasvava metsävaratiedon kysyntä Metsässä puhaltavat uudet tuulet seminaari, 11.9.212, Mikkeli Kari T. Korhonen, Metla/VMI Maapinta-alasta 75 % on metsää 1. Suomen metsävaratiedot Puuston määrä 2,3 miljardia
Tiheäpulssinen ja monikanavainen laserkeilausaineisto puulajeittaisessa inventoinnissa
Metsätieto ja sähköiset palvelut -hankkeen lopputulosseminaari Helsinki, 22.1.2019 Tiheäpulssinen ja monikanavainen laserkeilausaineisto puulajeittaisessa inventoinnissa Petteri Packalen, Eetu Kotivuori,
Puuston määrän ja laadun inventointi sekä metsävarojen
Mikko Vastaranta, Markus Holopainen, Harri Kaartinen, Hannu Hyyppä ja Juha Hyyppä Uudistuneet metsien maastomittaustarpeet e e m t a Maastomittausten tarpeellisuus Puuston määrän ja laadun inventointi
Kaukokartoitusmenetelmien hyödyntämis- mahdollisuuksista maaainesten oton valvonnassa ja seurannassa
Kaukokartoitusmenetelmien hyödyntämis- mahdollisuuksista maaainesten oton valvonnassa ja seurannassa Riitta Teiniranta, Pekka Härmä, Markus Törmä, Jari Rintala ja Mikko Sane Suomen Ympäristökeskus Maa-aineispäivät
Kymmenen vuotta puulajin perässä Mihin päästiin? Ilkka Korpela, HY/Metsätieteiden laitos
Kymmenen vuotta puulajin perässä Mihin päästiin? Ilkka Korpela, HY/Metsätieteiden laitos Yhteistyössä - opiskelijat Metsäylioppilaat paikantaneet ja mitanneet noin 3000 puuta/v 2007-2017 Yhteistyössä yritykset
Autonomisuus metsässä. Heikki Hyyti Studia Militaria
Autonomisuus metsässä Heikki Hyyti Autonomisuus metsässä Autonomisuus? Autonomisuuden haasteita Paikannustarkkuus Ympäristön havainnointi metsässä Metsäkoneen asennon mittaus ja säätö Automaatioasteen
Laserkeilaus ja metsäsovellukset Juho Heikkilä, metsätiedon johtava asiantuntija
Laserkeilaus ja metsäsovellukset 5.11.2018 Juho Heikkilä, metsätiedon johtava asiantuntija Metsäkeskuksen metsävaratieto Laserinventointi aloitettiin 2010. 1. kierros valmis 2020. Metsävaratietoa 12,4
Laserkeilaus metsävarojen hallinnassa
1 Helsingin yliopiston metsätieteiden laitoksen julkaisuja 5 Publicationer vid Helsingfors universitets institution för skogsvetenskaper 5 University of Helsinki Department of Forest Sciences Publications
DroneKnowledge Towards knowledge based export of small UAS remote sensing technology Kohti tietämysperusteisen UAS kaukokartoitusteknologian vientiä
DroneKnowledge Towards knowledge based export of small UAS remote sensing technology Kohti tietämysperusteisen UAS kaukokartoitusteknologian vientiä Tekes Challenge Finland Vaihe 1 Projekti, 1.6-14.11.2016
Metsävarojen inventoinnissa ollaan siirtymässä
Timo Melkas ja Arto Visala Hakkuukoneella kerätyn mittaustiedon hyödyntäminen e e m t a Laserkeilauksen ja hakkuukonemittausten yhdistämisellä tarkkaa puukohtaista tietoa Metsävarojen inventoinnissa ollaan
Metsäkeilauksista suunnistuskarttoja?
Metsäkeilauksista suunnistuskarttoja? Suunnistuskartoittajien talvipäivä 5.2.2011 Jussi Peuhkurinen 2 Arbonaut lyhyesti Perustettu 1994 Päätoimisto Joensuussa Sivutoimistot Helsingissä ja Vermontissa Konsultointi-,
INTENSITEETTITIEDON HYÖDYNTÄMINEN LASERKEILAUKSESSA. mallinnuksen instituutti. sanna.kaasalainen@fgi.fi, antero.kukko@fgi.fi, hannu.hyyppa@aalto.
The Photogrammetric Journal of Finland, Vol. 22, No. 3, 2011 INTENSITEETTITIEDON HYÖDYNTÄMINEN LASERKEILAUKSESSA Sanna Kaasalainen 1, Antero Kukko 1 ja Hannu Hyyppä 2 1 Geodeettinen Laitos, Kaukokartoituksen
LASERKEILAUS METSÄOMAISUUDEN TALOUDELLISEN ARVONMÄÄRITTÄMISEN APUVÄLINEENÄ. Markus Holopainen 1, Kauko Viitanen 2
The Photogrammetric Journal of Finland, Vol. 22, No. 3, 2011 LASERKEILAUS METSÄOMAISUUDEN TALOUDELLISEN ARVONMÄÄRITTÄMISEN APUVÄLINEENÄ Markus Holopainen 1, Kauko Viitanen 2 1 Helsingin yliopisto, Metsätieteiden
Forest Big Data Visio tulevaisuuden metsätiedosta
Forest Big Data Visio tulevaisuuden metsätiedosta Pekka T. Rajala, Ex-Kehitysjohtaja, Stora Enso Metsä Maaseudun hyvä tulevaisuus -seminaari Keski-Pohjanmaan kansanopisto, Kälviä, Tehokas puuhuolto 2025
Metsävaratiedon saatavuus ja käytettävyys energiapuun hankinnassa
Metsävaratiedon saatavuus ja käytettävyys energiapuun hankinnassa Dos. Jari Vauhkonen Yliopistonlehtori, HY (-> 28.2.2014) Yliopistotutkija, ISY (1.3.2014 ->) Sisältöä 1. Kaukokartoituspohjainen metsävaratieto
METSÄTIEDOT KOHTI 2020-LUKUA Janne Uuttera UPM
METSÄTIEDOT KOHTI 2020-LUKUA 15.4.2015 Janne Uuttera UPM Esityksen sisältö 1. Lähihistorian kehitysaskeleet 2. Seuraavan sukupolven järjestelmän visioita 3. Lähitulevaisuuden kehitysaskeleet UPM Metsäkeskuksen
Korkearesoluutioisten E-SAR-tutkakuvien tarkkuus puusto tunnusten koealatason estimoinnissa
Metsätieteen aikakauskirja t u t k i m u s a r t i k k e l i Markus Holopainen, Sakari Tuominen, Mika Karjalainen, Juha Hyyppä, Hannu Hyyppä, Mikko Vastaranta, Teppo Hujala ja Timo Tokola Korkearesoluutioisten
Metsäkoneiden sensoritekniikka kehittyy. Heikki Hyyti, Aalto-yliopisto
Metsäkoneiden sensoritekniikka kehittyy, Metsäkoneiden sensoritekniikka kehittyy Miksi uutta sensoritekniikkaa? Tarkka paikkatieto metsässä Metsäkoneen ja puomin asennon mittaus Konenäkö Laserkeilaus Tietolähteiden
Laserkeilaus (Lapin) metsävarojen hyödyntämisessä. Anssi Juujärvi Lapin metsätalouspäivät
metsävarojen hyödyntämisessä Anssi Juujärvi Lapin metsätalouspäivät 28.1.2016 -Metsävaratietojen tuottaminen -Metsävaratietojen hyödyntäminen -Mikä muuttuu 1.1.2016 alkaen 28.1.2016 Suomen metsäkeskus
menetelmiä metsävaratietojen
Uusia menetelmiä metsävaratietojen hyödyntämiseen Pett eri Weckström (toim Euroopan maaseudun kehittämisen maatalousrahasto: Eurooppa investoi maaseutualueisiin JYVÄSKYLÄN AMMATTIKORKEAKOULU JAMK.FI.)
MetKu Metsävaratiedon kustannushyötyanalyysi
MetKu Metsävaratiedon kustannushyötyanalyysi Annika Kangas, Arto Haara, Markus Holopainen, Ville Luoma, Petteri Packalen, Tuula Packalen, Roope Ruotsalainen ja Ninni Saarinen 1 Haara & Kangas METsävaratiedon
PUUSTOBIOMASSAN ENNUSTAMINEN HARVAPULSSISELLA LENTOLASERKEILAUSAINEISTOLLA
PUUSTOBIOMASSAN ENNUSTAMINEN HARVAPULSSISELLA LENTOLASERKEILAUSAINEISTOLLA Aapo Lindberg Maisterintutkielma Helsingin Yliopisto Metsätieteiden laitos Metsävaratiede- ja teknologia Toukokuu 2016 Tiedekunta/Osasto
Puun läpimitan mittauksen tarkkuus ja tehokkuus laser- ja digitaalikuvatekniikkaan perustuen
Metsätieteen aikakauskirja t u t k i m u s a r t i k k e l i Timo Melkas Mikko Vastaranta Markus Holopainen Jani Kivilähde Timo Melkas, Mikko Vastaranta, Markus Holopainen, Jani Kivilähde ja Mikko Merimaa
MAASTOSSA MITATTAVAN MINIMILÄPIMITAN VAIKUTUS PUUSTOTULKINTAAN JA KUOLLEEN PYSTYPUUSTON ENNUSTAMINEN LASERKEILAUSPOHJAISESSA METSÄNINVENTOINNISSA
University of Eastern Finland Luonnontieteiden ja metsätieteiden tiedekunta Faculty of Science and Forestry MAASTOSSA MITATTAVAN MINIMILÄPIMITAN VAIKUTUS PUUSTOTULKINTAAN JA KUOLLEEN PYSTYPUUSTON ENNUSTAMINEN
Suomessa metsätalousmaa on perinteisesti jaettu
Lauri Korhonen Latvuspeittävyys, sen mittaaminen ja kansainvälinen metsän määritelmä Suomessa metsätalousmaa on perinteisesti jaettu kolmeen pääryhmään: metsämaahan, kitumaahan ja joutomaahan. Metsämaalla
Hakkuukoneen paikannetulla hakkuulaitteella kerätyn puutiedon hyödyntäminen lentolaserkeilaukseen perustuvan puustotulkinnan aputietona
Hakkuukoneen paikannetulla hakkuulaitteella kerätyn puutiedon hyödyntäminen lentolaserkeilaukseen perustuvan puustotulkinnan aputietona Atte Saukkola Pro gradu tutkielma Helsingin yliopisto Metsätieteiden
Forest Big Data, uuden sukupolven metsävara7etojärjestelmät Tapio Räsänen Metsäteho Oy
Forest Big Data, uuden sukupolven metsävara7etojärjestelmät Tapio Räsänen Metsäteho Oy Bitcomp Oy:n kesäseminaari 4.6.2015 Vantaa www.metsateho.fi Tehokas puuhuolto 2025 -visio Tehostuva, täsmäohjattu
Metsätieteiden kenttäkurssi (FOR110) Hyytiälä 2016 Hyde-info
Metsätieteiden kenttäkurssi (FOR110) Hyytiälä 2016 Hyde-info 12.4.2016 Metsätieteiden yhteiset opinnot lähtökohdat Luovat perustan pääaineiden ja opintosuuntien syventäville opinnoille Metsätieteiden yhteiset
Metsätieteen aikakauskirja
Metsätieteen aikakauskirja t u t k i m u s a r t i k k e l i Janne Uuttera Janne Uuttera, Perttu Anttila, Aki Suvanto ja Matti Maltamo Yksityismetsien metsävaratiedon keruuseen soveltuvilla kaukokartoitusmenetelmillä
Puutavaran mittauksen visio 2020
Puutavaran mittauksen visio 2020 Tarkka ja kustannustehokas määrän ja laadun mittaus osana puutavaralogistiikkaa Metsätehon tuloskalvosarja 9/2012 30.8.2012 Timo Melkas, Jarmo Hämäläinen 1 Puuraaka-aineen
LASERPISTEAINEISTON JA KUVIO- SEKÄ KOEALAKOHTAISTEN MAASTOMITTAUSTEN VERTAILU EVON OPETUSMETSÄN ALUEELLA
LASERPISTEAINEISTON JA KUVIO- SEKÄ KOEALAKOHTAISTEN MAASTOMITTAUSTEN VERTAILU EVON OPETUSMETSÄN ALUEELLA Ammattikorkeakoulun opinnäytetyö Metsätalouden koulutusohjelma Evo, kevät 2014 Jarkko Illman & Jarno
Puukarttajärjestelmä hakkuun tehostamisessa. Timo Melkas Mikko Miettinen Jarmo Hämäläinen Kalle Einola
Puukarttajärjestelmä hakkuun tehostamisessa Timo Melkas Mikko Miettinen Jarmo Hämäläinen Kalle Einola Tavoite Tutkimuksessa selvitettiin hakkuukoneeseen kehitetyn puukarttajärjestelmän (Optical Tree Measurement
Osaamispohjainen kasvu 3D-digitalisaation, robotiikan, paikkatiedon ja kuvankäsittelyn sekä -laskennan yhdistetyssä teknologiamurroksessa
Osaamispohjainen kasvu 3D-digitalisaation, robotiikan, paikkatiedon ja kuvankäsittelyn sekä -laskennan yhdistetyssä teknologiamurroksessa (COMBAT-konsortio) Tilannekuvaraportti 2015 Prof. H. Kaartinen
VMI-koealatiedon ja laserkeilausaineiston yhdistäminen metsäsuunnittelua varten
VMI-koealatiedon ja laserkeilausaineiston yhdistäminen metsäsuunnittelua varten Kuortaneen metsäsuunnitteluseminaari 10.09.2007 Aki Suvanto, Joensuun yliopisto Petteri Packalén, Joensuun yliopisto Matti
Metsätuhoihin liittyvät riskit, kuten kuivuus-, lumi-,
Metsätieteen aikakauskirja 1/2015 Tieteen tori Mikko Vastaranta, Eija Honkavaara, Ninni Saarinen, Markus Holopainen ja Juha Hyyppä Tuuli- ja lumituhojen kartoitus ja mallinnus useampiaikaisten kaukokartoituspintamallien
HELSINGIN KAUPUNKI KAUPUNGINKANSLIA 1 (6) Rahoituksen hakija. Hankkeen perustiedot. Hankkeen yhteistyökumppanit INNOVAATIORAHASTO HAKEMUS 2017
1 (6) Täytä lomake huolellisesti, puutteellisesti täytettyjä hakemuksia ei käsitellä. Vastaa hakemuslomakkeen kohtiin tiivisti ja täsmällisesti. Käytä vastaukseen kussakin kohdassa maksimissaan 1 000 merkkiä.
Talousnäkökulmia jatkuvapeitteiseen metsänhoitoon
Talousnäkökulmia jatkuvapeitteiseen metsänhoitoon Janne Rämö Metsätieteiden laitos, Helsingin yliopisto Taloudellis-ekologinen optimointi -tutkimusryhmä (prof. Tahvonen, Assmuth, Parkatti, Pekkarinen,
Tukkiröntgendata sahapuun ohjauksessa
Tukkiröntgendata sahapuun ohjauksessa Tapio Räsänen Metsäteho Oy FOREST BIG DATA hankkeen tulosseminaari 8.3.2016 Heureka, Vantaa Kehittämistavoitteet Tavoitteena on parantaa puutuoteteollisuuden arvoketjun
Gradu UASI-hankkeesta
Maatalouden tarpeet Metsätalouden tarpeet Kasvitaudit ja rikkataudit Heikki Jyväskylän yliopisto 8.3.2011 Maatalouden tarpeet Metsätalouden tarpeet Kasvitaudit ja rikkataudit 1 Johdanto ja motivointi Maatalouden
NUMEERISET ILMAKUVAT TAIMIKON PERKAUSTARPEEN MÄÄRITTÄMISESSÄ
NUMEERISET ILMAKUVAT TAIMIKON PERKAUSTARPEEN MÄÄRITTÄMISESSÄ Selvitettiin numeeristen ilmakuva-aineistojen hyödyntämismahdollisuuksia taimikon puustotunnusten ja perkaustarpeen määrittämisessä. Tuukka
Tietojenkäsittelytieteen tutkimusmetodit J. Parkkinen, M. Hauta-Kasari & V. Heikkinen
Multi-scale Geospatial Analysis of Forest Ecosystems Tahko 22.-23.3.2011 Tietojenkäsittelytieteen tutkimusmetodit J. Parkkinen, M. Hauta-Kasari & V. Heikkinen Tutkimus yleisesti Radiometrisen informaation
Nikkarilan Laserkeilausprojekti
Tomi Miettinen Nikkarilan Laserkeilausprojekti Opinnäytetyö Metsätalouden koulutusohjelma Toukokuu 2009 Opinnäytetyön päivämäärä 6.5.2009 Tekijä Tomi Miettinen Koulutusohjelma ja suuntautuminen Metsätalouden
Monilähdetietoa hyödyntävien karttaopasteiden tarve puunkorjuussa haastattelututkimus hakkuukoneenkuljettajille
Monilähdetietoa hyödyntävien karttaopasteiden tarve puunkorjuussa haastattelututkimus hakkuukoneenkuljettajille Jarkko Kauppinen, Kari Väätäinen, Simo Tauriainen, Kalle Einola ja Matti Sirén Forest Big
Tukkiröntgendata sahapuun ohjauksessa
Tukkiröntgendata sahapuun ohjauksessa Tapio Räsänen Metsäteho Oy FOREST BIG DATA hankkeen tulosseminaari 8.3.2016 Heureka, Vantaa Kehittämistavoitteet Tavoitteena on parantaa puutuoteteollisuuden arvoketjun
Climforisk - Climate change induced drought effects on forest growth and vulnerability
Climforisk - Climate change induced drought effects on forest growth and vulnerability Aleksi Lehtonen METLA ja HY www.metla.fi/life/climforisk 1 Kick-off kokous - aikataulu 9.00 Tilaisuuden avaus (Mikko)
Hakkuukone metsätiedon lähteenä
Hakkuukone metsätiedon lähteenä Tapio Räsänen Metsäteho Oy Metsätieto ja sähköiset palvelut seminaari 8.11.2016 Paikkatietomarkkinat 2016 Mitä hakkuukoneet tekevät? Puunkorjuu on Suomessa täysin koneellistettu
LASERKEILAUSPOHJAISESTA PUUSTOTULKINNASTA JOHDETTUJEN PUUSTOTUNNUSTEN JA HAKKUUESITYSTEN LUOTETTAVUUS KITTILÄN LASERKEILAUSALUEEN YKSITYISMETSISSÄ
OPINNÄYTETYÖ Juha Mikkola 2013 LASERKEILAUSPOHJAISESTA PUUSTOTULKINNASTA JOHDETTUJEN PUUSTOTUNNUSTEN JA HAKKUUESITYSTEN LUOTETTAVUUS KITTILÄN LASERKEILAUSALUEEN YKSITYISMETSISSÄ METSÄTALOUDEN KOULUTUSOHJELMA
LASERKEILAUS- JA KUVA-AINEISTOJEN AUTOMAATTINEN TULKINTA KARTTOJEN AJANTASAISTUKSESSA
The Photogrammetric Journal of Finland, Vol. 22, No. 3, 2011 LASERKEILAUS- JA KUVA-AINEISTOJEN AUTOMAATTINEN TULKINTA KARTTOJEN AJANTASAISTUKSESSA Leena Matikainen 1, Juha Hyyppä 1, Kirsi Karila 1, Matti
MOTTI metsäsuunnittelussa ja siihen liittyvässä tutkimuksessa
MOTTI metsäsuunnittelussa ja siihen liittyvässä tutkimuksessa Jari Hynynen Metla, Vantaan toimintayksikkö SIMO-seminaari 2.11.2007 / Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research
PUU LIIKKEELLE JA UUSIA TUOTTEITA METSÄSTÄ
PUU LIIKKEELLE JA UUSIA TUOTTEITA METSÄSTÄ Metsätieto ja sähköiset palvelu 1 Metsätieto ja sähköiset palvelu Biotalous ja puhtaat ratkaisut Kärkihanke 2: Puu liikkeelle ja uusia tuotteita metsästä Toimenpide
Digitalisaatio mullistaa metsäalaa
Digitalisaatio mullistaa metsäalaa Jarmo Hämäläinen Metsäteho Oy Pielisen Karjalan TULEVAISUUSFOORUMI 2018 4.10.2018, Valtimo Metsäteho on tutkimus- ja kehitysyhtiö, jonka toimialana metsäteollisuuden
Tulevaisuuden ratkaisu datan yhdistämiseen ja jakeluun. Forest Big Data Tulosseminaari, Miika Rajala, Risto Ritala TTY
Tulevaisuuden ratkaisu datan yhdistämiseen ja jakeluun Forest Big Data Tulosseminaari, 8.3.2016 Miika Rajala, Risto Ritala TTY Datalähteet Metsädatan lähteitä Laserpohjainen inventointi (SMK) Satelliittipohjainen
Kaukokartoitustiedon käyttö LUKE:ssa
Kaukokartoitustiedon käyttö LUKE:ssa Sakari Tuominen sakari.tuominen@luke.fi Metsien kartoitus: Valtakunnan metsien inventointi VMI VMI perustuu systemaattiseen ryvästettyyn koealaotantaan 5 vuoden inventointikierrolla
Kuvioraja-aineiston virheiden korjaaminen numeeristen ortoilmakuvien ja automaattisen segmentoinnin avulla
Metsätieteen aikakauskirja t u t k i m u s a r t i k k e l i Sakari Tuominen ja Anssi Pekkarinen Sakari Tuominen Kuvioraja-aineiston virheiden korjaaminen numeeristen ortoilmakuvien ja automaattisen segmentoinnin
Luento 10: Optinen 3-D mittaus ja laserkeilaus
Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 19.10.2004) Luento 10: Optinen 3-D mittaus ja laserkeilaus AIHEITA Optinen 3-D digitointi Etäisyydenmittaus
Puuston mittaus etäisyyden- ja kulmanmittauslaitteella
Metsätieteen aikakauskirja t i e d o n a n t o Jouko Laasasenaho Jouko Laasasenaho, Jyrki Koivuniemi, Timo Melkas ja Minna Räty Puuston mittaus etäisyyden- ja kulmanmittauslaitteella Laasasenho, J., Koivuniemi,
Ilmastoon reagoivat metsän kasvun mallit: Esimerkkejä Suomesta ja Euroopasta
Ilmastoon reagoivat metsän kasvun mallit: Esimerkkejä Suomesta ja Euroopasta MMT Sanna Härkönen Metsäasiantuntija sanna.harkonen@bitcomp.fi Sisältö SISÄLTÖ Metsän kasvun ennustaminen: tulevaisuuden haasteita
Avoin datapolitiikka ja avoimen lähdekoodin toimintamalli- Metsäva
Avoin datapolitiikka ja avoimen lähdekoodin toimintamalli Metsävarakartat Metsäntutkimuslaitos, Vantaa PL 18, 01301 VANTAA email: erkki.tomppo@metla.fi http://www.metla.fi/pp/etom/index-en.htm Metsävarakartat
Puuhuollon digitalisaatio ja metsäkonetiedon mahdollisuudet
Puuhuollon digitalisaatio ja metsäkonetiedon mahdollisuudet Jarmo Hämäläinen Metsäteho Oy Metsäkonetieto 2018 -seminaari Tiedekeskus Heureka, Vantaa Digitalisaatio mahdollistaa kehityshyppäyksen Tehokas
Suomen metsäkeskuksen metsävaratieto ja sen hyödyntäminen
Suomen metsäkeskuksen metsävaratieto ja sen hyödyntäminen 22.3.2017 Magnus Nilsson, metsätietopäällikkö metsätieto- ja tarkastuspalvelut Metsäkeskuksen metsävaratieto Laserinventointi aloitettiin 2010
Satelliittipaikannuksen tarkkuus hakkuukoneessa. Timo Melkas Mika Salmi Jarmo Hämäläinen
Satelliittipaikannuksen tarkkuus hakkuukoneessa Timo Melkas Mika Salmi Jarmo Hämäläinen Tavoite Tutkimuksen tavoite oli selvittää nykyisten hakkuukoneissa vakiovarusteena olevien satelliittivastaanottimien