Lyhyt yhteenvetokertaus nodaalimallista SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY
Ei enää tarkastella neutronien kulkua, vaan työn alla on simppeli tuntemattoman differentiaaliyhtälöryhmä D + Σa + Σ = ( νσ f + νσ f ) k D + Σ a eff = Σ Kaikki parametrit ovat tunnettuja, vain ja pitää ratkaista. SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY
Logiikka yhtälöiden muodostamisessa Halutaan yhtälö useamman vuosuureen välille niin, että yksi vuo voidaan ratkaista muiden suhteen. Fysikaalinen ehto, jonka täyttyminen voidaan vaatia, on virran jatkuvuus. Pitää siis pystyä ilmaisemaan virta vuosuureiden avulla. Kun tämä tehdään kahden eri vuosuurejoukon avulla ja merkitään nämä yhtä suuriksi, ollaan päästy tavoitteeseen, eli on yhtälö, jossa on vain vuosuureita ja tunnettuja parametreja. Nodaalimallin, eli valitun muotofunktioesityksen ainoa tehtävä on muodostaa vuon ja virran välille yhtälö, joka mahdollistaa virran lausumisen vuon avulla. yhmävuon ja virran välillä ei ole yksinkertaista riippuvuutta, mutta moodivuon ja virran välillä on! Siispä kirjoitetaan jatkuvuusyhtälöt ryhmävirralle, ja yritetään veivata sellainen matriisi, joka muuttaa ryhmävirran moodivirraksi, kirjoittaa moodivirran moodivuon avulla, ja lopuksi muuttaa moodivuon takaisin ryhmävuoksi. Lopputuloksena saadaan x-matriisi, joka ilmoittaa ryhmävirran suoraan ryhmävoiden avulla, eli saatiin se yllä toivottu yhtälö vuon ja virran välille. Siis: reunaehdot ryhmäkannassa, vuon ja virran yhteys moodikannassa, ja kantojen muutokset -matriisien avulla molempiin suuntiin. SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY
SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY rakennuspalikkaa: -matriisit (ryhmä-moodi-muunnosmatriisit) ja F-kertoimet (vuo-virtakontribuutiokertoimet). -matriisi saadaan diffuusioyhtälön diagonalisoinnista (=sen ominaisvektoreista), ja moodivoiden kupevuudet B vastaavista ominaisarvoista niin, että em. Yhtälö voidaan kirjoittaa ekvivalentissa diagonalisoidussa muodossa ja voiden välillä on yhteys = B B = =,
Yhteys vuon ja virran välille Vuon ja virran välinen riippuvuus saadaan kuvaamalla vuo sopivilla muotofunktioilla, jolloin virta saadaan muotofunktion derivaatasta. Analyyttisilla kantafunktioilla vuo on = A CS( bi z) + B SN( bi z) Ja sen derivaatat rajapinnoilla i + C Koska halutaan yhteys vuon keskiarvojen ja reuna-arvojen sekä derivaattojen välille, eliminoidaan A, B ja C derivaattojen lausekkeista ratkaisemalla ne reuna- ja keskiarvovoiden lausekkeista ja sijoittamalla derivaattojen lausekkeisiin. Nyt on siis olemassa vakiokertoimet F, jotka kuvaavat kunkin vuosuureen (3 kpl) kontribuution kuhunkin derivaattaan: SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY
Similariteettimuunnos Koska haluttiin yhteys ryhmävoiden ja ryhmävirtojen välille, mutta F-kertoimet laskettiin moodikannassa, pitää yhtälöihin vielä leipoa sisään tarvittavat similariteettimuunnokset ryhmäkannasta moodikantaan ja takaisin: Koska kaikki yllä olevat kertoimet ovat tunnettuja vakioita (saadaan algebrallisesti -ryhmävaikutusaloista), voidaan matriisit kertoa valmiiksi, jolloin saadaan x-matriisi F: Tämä kytkentäkerroinmatriisi kertoo nyt suoraan kunkin vuosuureen kontribuution kuhunkin virtasuureeseen, joten sen avulla saadaan kirjoitettua vuon ratkaisemiseen käytettävät nodaaliyhtälöt naapurinoodien välille: SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY
Jatkuvuusyhtälö rajapinnan ylittävälle virralle ästä voidaan siirtää termit, joissa on a b = b b, vasemmalle puolelle ja ratkaista s muut vuosuureet oletetaan tunnetuiksi (Gauss-Seidel-iteraatio). SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY