MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Samankaltaiset tiedostot
MS-C1340 Lineaarialgebra ja

2.5. Matriisin avaruudet ja tunnusluvut

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja

802320A LINEAARIALGEBRA OSA III

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66

ominaisvektorit. Nyt 2 3 6

802320A LINEAARIALGEBRA OSA III

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III

802320A LINEAARIALGEBRA OSA III

Lineaarialgebra b, kevät 2019

MS-A0004/A0006 Matriisilaskenta

Insinöörimatematiikka D

Insinöörimatematiikka D

Insinöörimatematiikka D

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Insinöörimatematiikka D

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

Insinöörimatematiikka D

Lineaarialgebra ja matriisilaskenta I

Lineaarikuvauksen R n R m matriisi

Alkeismuunnokset matriisille, sivu 57

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Kuvaus. Määritelmä. LM2, Kesä /160

Ratkaisuehdotukset LH 7 / vko 47

1 Kannat ja kannanvaihto

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

802320A LINEAARIALGEBRA OSA I

1 Lineaariavaruus eli Vektoriavaruus

Kanta ja dimensio 1 / 23

Matemaattinen Analyysi / kertaus

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

5 OMINAISARVOT JA OMINAISVEKTORIT

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

Lineaarialgebra ja matriisilaskenta I

Matematiikka B2 - TUDI

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Lineaarialgebra ja matriisilaskenta I

Kanta ja Kannan-vaihto

Ominaisarvo ja ominaisvektori

4. LINEAARIKUVAUKSET

Ortogonaalisen kannan etsiminen

Insinöörimatematiikka D

sitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Insinöörimatematiikka D

Avaruuden R n aliavaruus

JAKSO 2 KANTA JA KOORDINAATIT

Johdatus lineaarialgebraan

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

Matematiikka B2 - Avoin yliopisto

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

Insinöörimatematiikka D

Insinöörimatematiikka D

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja

10 Matriisit ja yhtälöryhmät

Lineaarialgebra II P

Lineaarialgebra, kertausta aiheita

1 Matriisit ja lineaariset yhtälöryhmät

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =

Ratkaisuehdotukset LH 3 / alkuvko 45

Similaarisuus. Määritelmä. Huom.

Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit

Lineaarikuvauksista ja niiden geometrisesta tulkinnasta

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Yleiset lineaarimuunnokset

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

Ennakkotehtävän ratkaisu

Transkriptio:

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet

Lineaarikuvaus Olkoot U ja V K -kertoimisia vektoriavaruuksia. Määritelmä 1 Kuvaus T : U V on lineaarikuvaus, jos kaikilla x, y U ja α, β K pätee T (α x + β y) = α T (x) + β T (y). Lineaarikuvaus tunnetaan, jos tiedetään, miten se kuvaa kantavektorit. 2 / 16 R. Kangaslampi Vektoriavaruudet

Lineaarikuvaus Esimerkki 2 (Lineaarikuvauksia) projektio jatkuvien kuvausten integrointi derivoituvien kuvausten derivointi matriisilla kertominen 3 / 16 R. Kangaslampi Vektoriavaruudet

Lineaarikuvaus Lineaarikuvaus voidaan aina esittää matriisilla: T (x) = Ax eräällä matriisilla A. Tämän matriisin sarakkeet muodostuvat lähtöavaruuden kantavektorien kuvien koordinaattivektoreista. On siis muistettava, että lineaarikuvauksen matriisiesitys riippuu valituista kannoista! Kun halutaan korostaa sitä, missä avaruuksien U ja V kannoissa B U ja B V matriisi on määritelty, merkitään: A = [T ] BU,B V. 4 / 16 R. Kangaslampi Vektoriavaruudet

Lineaarikuvaus Esimerkki 3 Olkoon T : P 3 P 3 lineaarikuvaus T (p)(x) = p(2 x). Olkoon P 3 :ssa kanta B = {p 1, p 2, p 3, p 4 } = {1, x, x 2, x 3 }. Saadaan T (p 1 )(x) = 1 = p 1 (x) T (p 2 )(x) = 2 x = (2p 1 p 2 )(x) T (p 3 )(x) = (2 x) 2 = 4 4x + x 2 = (4p 1 4p 2 + p 3 )(x) T (p 4 )(x) = (2 x) 3 = (8p 1 12p 2 + 6p 3 p 4 )(x) Siispä T :n matriisiksi kannassa B saadaan 1 2 4 8 [T ] B = 0 1 4 12 0 0 1 6. 0 0 0 1 5 / 16 R. Kangaslampi Vektoriavaruudet

Lineaarikuvaus Esimerkki 4 Lasketaan edellisen esimerkin lineaarikuvauksen matriisi kannan ˆB = {ˆp 1, ˆp 2, ˆp 3, ˆp 4 } = {1, 1 x, (1 x) 2, (1 x) 3 } suhteen: T (ˆp 1 )(x) = 1 = ˆp 1 (x) T (ˆp 2 )(x) = 1 (2 x) = x 1 = ˆp 2 (x) T (ˆp 3 )(x) = (1 (2 x)) 2 = (x 1) 2 = ˆp 3 (x) T (ˆp 4 )(x) = (1 (2 x)) 3 = (x 1) 3 = ˆp 4 (x), joten T :n matriisi tässä kannassa on lävistäjämatriisi 1 [T ] ˆB = 1 1. 1 6 / 16 R. Kangaslampi Vektoriavaruudet

Lineaarikuvaus Olkoot T : U V ja S : V W lineaarikuvauksia. Tällöin yhdistetty kuvaus ST : U W määritellään (ST )(u) = S(T (u)). Se on myös lineaarikuvaus. Olkoon avaruuksissa U, V ja W kannat B U, B V ja B W. Yhdistetun kuvauksen matriisi saadaan kertomalla kuvausten matriisit keskenään, eli [ST ] BU,B W = [S] BV,B W [T ] BU,B V. 7 / 16 R. Kangaslampi Vektoriavaruudet

Määritelmä 5 Olkoon T lineaarikuvaus U V. T :n nolla-avaruus (eli ydin) on N(T ) = {u U T u = 0} U. T :n kuva-avaruus on R(T ) = {T u u U} V. Lause 6 Olkoon T : U V lineaarikuvaus. Tällöin a) N(T ) on U :n aliavaruus ja b) R(T ) on V :n aliavaruus. 8 / 16 R. Kangaslampi Vektoriavaruudet

Matriisiin A = [a 1... a n ] R m n liittyvän lineaarikuvauksen L A : R n R m : L A (x) = A x kuva-avaruus on sen sarakkeiden viritelmä: Lause 7 R(L A ) = sp(a 1,..., a n ). Esimerkki 8 Projektiokuvauksen T : R 3 R 2, T (x) = (x 1, x 2 ) nolla-avaruus on selvästi N(T ) = {x = (0, 0, x 3 ) x 3 R} eli kantavektorin e 3 suuntaiset vektorit. T :n kuva R(T ) taas on koko R 2. 9 / 16 R. Kangaslampi Vektoriavaruudet

Määritelmä 9 Olkoon T : U V lineaarikuvaus. Määritellään T :n nulliteetti: ν(t ) = dim(n(t )). T :n rangi r(t ) = dim(r(t )). Nämä voivat olla äärellisiä tai äärettömiä. Matriisilaskussa matriisin rangi määritellään A :n sarakeavaruuden dimensioksi. Edellä olevan lauseen mukaan se on myös A :han liittyvän lineaarikuvauksen L A rangi. 10 / 16 R. Kangaslampi Vektoriavaruudet

Lause 10 (Lineaarialgebran peruslause eli dimensiolause) Olkoon U äärellisulotteinen ja T : U V lineaarikuvaus. Tällöin r(t ) + ν(t ) = dim(u). Todistuksen idea taululla. Esimerkki 11 Neliömatriisille A C n n r(a) = n ν(a) = 0, joten kumpi tahansa näistä ehdoista takaa, että A on kääntyvä. 11 / 16 R. Kangaslampi Vektoriavaruudet

Fakta 1: Matriisin A kuva-avaruuden kannan muodostavat ne sarakevektorit, joiden kohdalle redusoidussa porrasmuodossa on pivot-alkio. Fakta 2: Matriisin A nulliteetti on redusoidun porrasmuodon niiden sarakkeiden lukumäärä, joissa ei ole pivot-alkiota. Fakta 1:stä voi vakuuttua tarkastelemalla redusoitua porrasmuotoa: selvästi pivot-alkiolliset sarakkeet ovat lineaarisesti riippumattomat ja muut voidaan muodostaa lineaarikombinaationa niistä. Fakta 2 pohjautuu siihen, että ratkaistaessa ydintä eli yhtälöä Ax = 0 pivot-alkiottomat sarakkeet vastaavat vapaita muuttujia, ja niiden lukumäärä on ytimen dimensio. 12 / 16 R. Kangaslampi Vektoriavaruudet

Esimerkki 12 3 6 1 1 7 Etsi matriisin A = 1 2 2 3 1 kuva-avaruus, ydin, 2 4 5 8 4 rangi ja nulliteetti. Ratkaisu: Saatetaan matriisi redusoituun porrasmuotoon Gaussin eliminaatiolla. Saadaan 1 2 2 3 1 A 0 0 1 2 2. 0 0 0 0 0 Näin ollen R(A) = sp{( 3, 1, 2) T, ( 1, 2, 5) T )} ja r(a) = 2. 13 / 16 R. Kangaslampi Vektoriavaruudet

(jatkuu) Ytimen dimension on ν(a) = 3. Vapaita muuttujia ovat x 2, x 4 ja x 5 ja loput ratkeavat yhtälöparista { x 1 2x 2 + 2x 3 + 3x 4 x 5 = 0, x 3 + 2x 4 2x 5 = 0. Ytimeksi saadaan 2 1 3 1 N(A) = {x 2 0 0 0 4 2 1 + x 0 5 2 0 x 2, x 4, x 5 R}. 0 0 1 14 / 16 R. Kangaslampi Vektoriavaruudet

Lause 13 Olkoon A R n n. Tällöin seuraavat väitteet ovat yhtäpitäviä sen kanssa, että A:lla on olemassa käänteismatriisi: A:n sarakkeet muodostavan R n :n kannan Col A = R n dim Col A = n r(a) = n N(A) = {0} dim N(A) = 0 15 / 16 R. Kangaslampi Vektoriavaruudet

Lause 14 Olkoon T : U V lineaarikuvaus. Tällöin a) Jos vektorit u 1,..., u n ovat lineaarisesti riippuvat, niin T u 1,..., T u n ovat myös. b) Jos u 1,..., u n ovat lineaarisesti riippumattomat ja N(T ) = {0} (eli T on injektio), niin T u 1,..., T u n lineaarisesti riippumattomat. ovat Todistus taululla, jos ehditään. 16 / 16 R. Kangaslampi Vektoriavaruudet