Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset



Samankaltaiset tiedostot
Lauselogiikka Tautologia


Loogiset konnektiivit

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi

Pikapaketti logiikkaan

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...

1 Logiikkaa. 1.1 Logiikan symbolit

LOGIIKKA johdantoa

Kirjoita käyttäen propositiosymboleita, konnektiiveja ja sulkeita propositiologiikan lauseiksi:

HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset

Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos.

T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (lauselogiikka )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 12 (opetusmoniste, kappaleet )

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Ratkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (opetusmoniste, lauselogiikka )

Lisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi

Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13

FI3 Tiedon ja todellisuuden filosofia LOGIIKKA. 1.1 Logiikan ymmärtämiseksi on tärkeää osata erottaa muoto ja sisältö toisistaan:

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

Ratkaisu: Yksi tapa nähdä, että kaavat A (B C) ja (A B) (A C) ovat loogisesti ekvivalentit, on tehdä totuustaulu lauseelle

MS-A0402 Diskreetin matematiikan perusteet

MAT Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

811120P Diskreetit rakenteet

Vastaoletuksen muodostaminen

Propositiot: Propositiot ovat väitelauseita. Totuusfunktiot antavat niille totuusarvon T tai E.

Insinöörimatematiikka A

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Logiikka 1/5 Sisältö ESITIEDOT:

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

Testaa taitosi 1: Lauseen totuusarvo

Rakenteiset päättelyketjut ja avoin lähdekoodi

1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ

4 Matemaattinen induktio

T Syksy 2005 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet )

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.

Predikaattilogiikkaa

Luonnollisen päättelyn luotettavuus

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

Johdatus logiikkaan I Harjoitus 4 Vihjeet

1. Logiikan ja joukko-opin alkeet

Tietotekniikka ja diskreetti matematiikka

T Logiikka tietotekniikassa: perusteet Kevät 2008 Laskuharjoitus 5 (lauselogiikka ) A ( B C) A B C.

Tekijä Pitkä Matematiikka 11 ratkaisut luku 1

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

13. Loogiset operaatiot 13.1

T Kevät 2006 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet )

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

Ratkaisu. Ensimmäinen kuten P Q, toinen kuten P Q. Kolmas kuten P (Q R):

Diskreetit rakenteet. 3. Logiikka. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1

sin x cos x cos x = sin x arvoilla x ] π

T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (Predikaattilogiikka )

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

Johdatus matemaattiseen päättelyyn

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

815338A Ohjelmointikielten periaatteet

Logiikkaa Matematiikan mestariluokka, kevät 2010 Harjoitus 1a ( )

Konnektiivit. On myös huomattava, että vain joillakin luonnollisen kielen konnektiiveilla on vastineensa lauselogiikassa.

Totuusjakaumat. Totuusjakauma eli valuaatio v on kuvaus v : {p 0, p 1, p 2,...} {0, 1}. Käytämme jatkossa joukolle {0, 1} merkintää B.

3. Predikaattilogiikka

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1

Python-ohjelmointi Harjoitus 2

Juuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Matematiikan peruskurssi 2

T Kevät 2005 Logiikka tietotekniikassa: erityiskysymyksiä I Kertausta Ratkaisut

Modus Ponens. JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15. Modus Ponens. Ketjusääntö. Päättelyketju.

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

5/20: Algoritmirakenteita III

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

815338A Ohjelmointikielten periaatteet Harjoitus 7 Vastaukset

T kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

LOGIIKKA, TIETÄMYS JA PÄÄTTELY

13. Loogiset operaatiot 13.1

Matematiikan perusteista logiikkaa ja joukko-oppia LaMa 1U syksyllä 2010

5.1 Semanttisten puiden muodostaminen

Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Todistusteoriaa. Kun kielen syntaksi on tarkasti määritelty, voidaan myös määritellä täsmällisesti, mitä pätevällä päättelyllä tarkoitetaan.

Johdatus matematiikkaan

Insinöörimatematiikka IA

JOHDATUS MATEMATIIKKAAN

Matematiikan peruskäsitteitä

Sijoitusmenetelmä Yhtälöpari

Johdatus logiikkaan (Fte170)

Johdatus matemaattiseen päättelyyn (5 op)

Opintomoniste logiikan ja joukko-opin perusteista

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

Johdatus logiikkaan 1

Johdatus logiikkaan 1

Transkriptio:

Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset 2000-08-03T10:30/12:00 Huomaa, että joihinkin kysymyksiin on useampia oikeita vastauksia, joten nämä ovat todellakin vain mallivastaukset. 1 Logiikkaa 1. Ovatko seuraavat suomenkielen lauseet logiikan lauseita? Jos ovat, niin ovatko ne suljettuja vai avoimia? Ovatko ne atomilauseita vai yhdistettyjä lauseita? Määritä niiden totuusarvo niissä tapauksissa, joissa se on mahdollista. Perustele vastauksesi. a. Pitäisikö minun mennä nukkumaan? Ei ole logiikan lause, sillä se ei väitä mitään. b. Elvis elää. On logiikan suljettu atomilause, jonka totuusarvo on epätosi, sillä lauseella on totuusarvo, joka on joko tosi tai epätosi, lausetta ei voida jakaa osalauseisiin ja tiettävästi Elvis on kuollut. c. Hän on tämän kurssin opettaja. On logiikan avoin atomilause, sillä lauseessa on muuttuja hän, joka korvaamalla jollakin vakiolla saadaan aikaan lause, joka on joko tosi tai epätosi. d. Jyväskylässä sataa aina ja paistaa harvoin. On logiikan suljettu yhdistetty lause, sillä lauseella on totuusarvo, joka on joko tosi tai epätosi, lause voidaan jakaa osalauseisiin Jyväskylässä sataa aina ja Jyväskylässä paistaa harvoin. Lause on epätosi, sillä tänä aamuna ei satanut, ja tämä konjunktiolause on täten epätosi. e. On olemassa hyvä ihminen. On logiikan suljettu yhdistetty lause, sillä lauseella on totuusarvo, joka on tosi tai epätosi, lausetta ei voida jakaa osalauseisiin mutta siinä on eksistentiaalikvanttori. Kysymys totuusarvosta on mielipidekysymys. f. Kaikkien maiden proletaarit, liittykää yhteen! Ei ole logiikan lause, sillä se ei väitä mitään. g. Kaikkien maiden proletaarit ovat liittyneet yhteen. Lause on logiikan suljettu yhdistetty lause, jonka totuusarvo on epätosi, sillä lauseella on totuusarvo, joka on joko tosi tai epätosi, lausetta ei voida jakaa osalauseisiin mutta se sisältää universaalikvanttorin, ja tiettävästi kaikkien maiden proletaarit eivät ole liittyneet yhteen. 2. Kirjoita seuraavat suomenkieliset lauseet logiikan kaavoiksi. Käytä kvanttoreita ja konnektiiveja tarpeen mukaan ja kirjoita atomilauseet muotoon äiti(maija, antti). a. Auto on kostea, koska satoi. satoi kostea(auto) b. Koska puu on pitkä ja pensas matala, on taivas sininen. (pitkä(puu) matala(pensas)) sininen(taivas) 1

c. 1 on suurempi kuin 2. Jos 1 on suurempi kuin 2, niin 1 on suurempi kuin 3. Siis 1 on suurempi kuin 3. (1 > 2 (1 > 2 1 > 3)) 1 > 3 d. Don Knuth on matemaatikko ja Don Knuth on tietotekniikan guru, joten Don Knuth on matematiikan guru. (matemaatikko(donknuth) tietotekniikanguru(donknuth)) matematiikanguru(donknuth) e. Jos Jyväskylä on miljoonakaupunki, niin kuu on juustoa. miljoonakaupunki(jyväskylä) juustoa(kuu) 3. Kirjoita kaava A (B C) käyttäen pelkästään a) Sheerin viivaa b) Peircen nuolta. a) Totuustaulusta huomataan, että A B (A B). Kirjoitetaan nyt konnektiivit,, ja Sheerin viivaa käyttäen: A A A (A A) A A A B (A B) (A B) (A B) (A B) A B A B ( A B) A B (A A) (B B) A B A B (A A) B ((A A) (A A)) (B B) Sitten käytetään näitä hyväksi itse tehtävässä: A (B C) A (((B B) (B B)) (C C)) (A (((B B) (B B)) (C C))) (A (((B B) (B B)) (C C))) b) Vastaavasti huomataan, että A B (A B). Kirjoitetaan tällä kertaa edellä mainitut konnektiivit Peircen nuolta käyttäen: A A A (A A) A A A B A B ( A B) A B (A A) (B B) A B (A B) (A B) (A B) (A B) A B A B ((A A) B) ((A A) B) 2

Ja sitten itse tehtävä: A (B C) A (((B B) C) ((B B) C)) (A A) ((((B B) C) ((B B) C)) (((B B) C) ((B B) C))) 4. Kirjoita tehtävän 2 lauseet päättelyn muotoon (ts. muuttuu :ksi). Tutki, mitkä niistä ovat päteviä päättelyitä (ts. missä niistä johtopäätös seuraa loogisesti oletuksista). Perustele. a. Auto on kostea, koska satoi. satoi kostea(auto). Tämä ei ole pätevä päättely, sillä jos auto oli sateen alla katoksen alla, se ei kastunut. b. Koska puu on pitkä ja pensas matala, on taivas sininen. {pitkä(puu), matala(pensas)} sininen(taivas) Tämä on pätevä päättely, koska taivas on sininen, joten alkuperäinen kaava on aina tosi. c. 1 on suurempi kuin 2. Jos 1 on suurempi kuin 2, niin 1 on suurempi kuin 3. Siis 1 on suurempi kuin 3. {1 > 2, 1 > 2 1 > 3} 1 > 3. Tämä on pätevä päättely, sillä alkuperäisen implikaatiokaavan vasen puoli on epätosi, joten itse implikaatio on tosi. Huomaa myös, että päättelyllä on implikaation eliminointi -päättelysäännön muoto. d. Don Knuth on matemaatikko ja Don Knuth on tietotekniikan guru, joten Don Knuth on matematiikan guru. {matemaatikko(donknuth), tietotekniikanguru(donknuth)} matematiikanguru(donknuth). Tämä ei ole pätevä päättely, sillä Don Knuth ei ole matematiikan guru. (Asian voi myös huomata siitä, ettei päättelyllä ole minkään päättelysäännön muotoa, mutta tämä on epävarma lähestymistapa.) e. Jos Jyväskylä on miljoonakaupunki, niin kuu on juustoa. miljoonakaupunki(jyväskylä) juustoa(kuu). Tämä on pätevä päättely (ainakin toistaiseksi), koska Jyväskylä ei ole miljoonakaupunki. 5. Osoita totuustaulujen avulla, että de Morganin lait todella pätevät. A B A B (A B) A B A B (A B) A B t t t e e e e t t e e t e t t t e t e t t e t t e e e t t t t t A B A B (A B) A B A B (A B) A B t t t e e e e t t e t e e t e t e t t e t e e t e e e t t t t t Siis de Morganin lait ovat tautologioita. 6. Osoita, että negaation tuonti on pätevä päättelysääntö. Vihje: tarkastele kaavaa (A e) A. A e A on pätevä päättelysääntö täsmälleen silloin kun kaava (A e) A on tosi. Se on tautologia: (A e) A ( A e) A A A A A t. Siis negaation tuonti on pätevä päättelysääntö. 7. Sievennä kaava ((P Q) (P Q)) ((Q P ) (P Q)). ((P Q) (P Q)) (P Q) ( P Q) ((P Q) P ) ((P Q) Q) (P P ) (P Q) (P Q) (Q Q) (Q P ) (P Q) 3

Koska kaavat ((P Q) (P Q)) ja (Q P ) (P Q) ovat loogisesti ekvivalentit, on kysymyksen implikaatiokaava tautologia. Siis kysymyksen kaava sievenee loogiseksi vakioksi t. 2 λ-laskentaa 8. Ovatko seuraavat kaavat λ-lausekkeita? Perustele. a. xxx On: x on λ-lauseke, ja kahden λ-lausekkeen asettaminen peräkkäin tuottaa λ-lausekkeen, joten xx ja sitten xxx ovat λ-lausekkeita. b. x y Ei, sillä kaava ei ole mitään kolmesta sallitusta muodosta (kaavasta puuttuu λ). c. ((λx y)(λx y)) z On: ensimmäisen muodon mukaan y on λ-lauseke, joten kolmannen muodon mukaan λx y on λ-lauseke. Tarkasteltava kaava on nyt toista λ-lausekemuotoa. d. valitse true (2/1) (2/0) On, sillä nimi valitse tarkoittaa erästä λ-lauseketta ja sen perässä olevat alikaavat ovat eri muotoisia λ-lausekkeita, ja nämä laitettuna peräkkäin ovat toista λ-lausekemuotoa. 9. (Tehtävä poistettu.) 10. Sievennä seuraavat λ-lausekkeet. Merkitse näkyviin kaikki välivaiheet. [Merkitse lopuksi näkyviin kunkin kaavan tyyppi.] a. ((λx x)(λx λy x)) 1 0 b. ((λx x)(λx λy y)) 1 0 c. (λx 0)(1/0) a. ((λx x)(λx λy x)) 1 0 (λx λy x)) 1 0 (λy 1) 0 1 b. ((λx x)(λx λy y)) 1 0 (λx λy y) 1 0 (λy y) 0 0 c. (λx 0)(1/0) 0 tai (λx 0)(1/0) (λx 0) 0 11. Määritellään Sievennä seuraavat lausekkeet. a. null? null b. null? (cons 1 0) c. car (cons 1 0) d. cdr (cons 1 0) cons x y c = c x y car d = d (valitse true) cdr d = d (valitse false) null x = true null? d = d λx λy false a. null? null (λd d λx λy false)(λx true) (λx true)(λx λy false) true b. null? (cons 1 0) (λd d λx λy false)((λx λy λc c x y) 1 0) (λd d λx λy false)((λy λc c 1 y) 0) (λd d λx λy false)(λc c 1 0) (λc c 1 0)(λx λy false) (λx λy false) 1 0) (λy false) 0) false 4

c. car (cons 1 0) (λd d (valitse true))((λx λy λc c x y) 1 0) (λd d (valitse true))(λy λc c 1 y) 0) (λd d (valitse true))(λc c 1 0) (λc c 1 0)(valitse true) (valitse true) 1 0 ((λx x)(λx λy x)) 1 0 (λx λy x) 1 0 (λy 1) 0 1 d. cdr (cons 1 0) (λd d (valitse false))((λx λy λc c x y) 1 0) (λd d (valitse false))(λy λc c 1 y) 0) (λd d (valitse false))(λc c 1 0) (λc c 1 0)(valitse false) (valitse false) 1 0 ((λx x)(λx λy y)) 1 0 (λx λy y) 1 0 (λy y) 0 0 12. (Tehtävä poistettu.) 13. Kirjoita λ-abstraktio, joka -sievenee toisen asteen polynomiksi, kun sille annetaan parametreina polynomin kertoimet a, b ja c. (Vihje: Polynomi on muuttujansa funktio.) λa λb λc λx a x x + b x + c 14. Laske (sieventämällä sopivaa λ-lauseketta) polynomin x 2 + 3x + 5 arvo kohdassa x = 1. Käytä edellisessä tehtävässä kirjoittamaasi λ-abstraktiota. ((λa λb λc λx a x x + b x + c) 1 3 5) ( 1) ((λb λc λx 1 x x + b x + c) 3 5) ( 1) ((λc λx 1 x x + 3 x + c) 5) ( 1) (λx 1 x x + 3 x + 5) ( 1) 1 ( 1) ( 1) + 3 ( 1) + 5 1 + ( 3) + 5 3 15. (Lisätehtävä halukkaille. Vaikea!) Kirjoita λ-abstraktio, joka -sievenee argumentilla f sellaiseksi lausekkeeksi l, että f l sievenee lausekkeeksi l. Pidä huoli, että λ-abstraktiosi toimii kaikilla λ-abstraktiotyyppisillä argumenteilla f. λf (λx f(x x))(λx f(x x)) 5