Fotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami



Samankaltaiset tiedostot
Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson

Kosmos = maailmankaikkeus

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA

Fotometria ja avaruuskuvien käsittely

7.4 Fotometria CCD kameralla

NOT-tutkielma. ~Janakkalan lukio 2013~ Jenita Lahti, Jenna Leppänen, Hilla Mäkinen ja Joni Palin

Jupiter-järjestelmä ja Galileo-luotain II

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Fotometria. Riku Honkanen, Antti Majakivi, Juuso Nissinen, Markus Puikkonen, Roosa Tervonen

Planeetan määritelmä

Mustien aukkojen astrofysiikka

Aurinko. Tähtitieteen peruskurssi

Supernova. Joona ja Camilla

AURINKOKUNNAN RAKENNE

CCD-kamerat ja kuvankäsittely

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan

Miika Aherto Niko Nurhonen Wilma Orava Marko Tikkanen Anni Valtonen Mikkelin lukio. NGC246 kauniskuva / psnj044 spektri

Maan ja avaruuden välillä ei ole selkeää rajaa

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Kosmologia ja alkuaineiden synty. Tapio Hansson

SATURNUS. Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin jälkeen

AKAAN AURINKOKUNTAMALLI

spiraaligalaksi on yksi tähtitaivaan kauneimmista galakseista. Sen löysi Charles Messier 1773 ja siksi sitä kutsutaan Messierin kohteeksi numero

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009

2. MITÄ FOTOMETRIA ON?

8. Fotometria (jatkuu)

Tähtitaivaan alkeet Juha Ojanperä Harjavalta

Lataa Polaris - Heikki Oja. Lataa

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.

1. Polarimetria. voidaan tutkia mm. planeettojen ilmakehien ja tähtien välistä pölyä.

Atomien rakenteesta. Tapio Hansson

Aloitetaan kyselemällä, mitä kerholaiset tietävät aurinkokunnasta ja avaruudesta ylipäänsä.

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo

HÄRKÄMÄEN HAVAINTOKATSAUS

Aurinkokunta. Jyri Näränen Paikkatietokeskus, MML

Planetologia: Tietoa Aurinkokunnasta

Havaitsevan tähtitieteen peruskurssi I

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET

8. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot ja Thomas Hackman (Kalvot JN & TH) HTTPKI, kevät 2010, luennot 8-9 0

Kokeellisen tiedonhankinnan menetelmät

Planetaariset sumut Ransun kuvaus- ja oppimisprojekti

Fysiikka 8. Aine ja säteily

11. Astrometria, ultravioletti, lähiinfrapuna

Polarimetria. Teemu Pajunen, Kalle Voutilainen, Lauri Valkonen, Henri Hämäläinen, Joel Kauppo

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

10. Fotometria. Havaitsevan tähtitieteen peruskurssi I, Kevät 2013 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)

Ensimmäinen matkani aurinkokuntaan

Pienkappaleita läheltä ja kaukaa

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1

Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily

Merkintöjä planeettojen liikkeistä jo muinaisissa nuolenpääkirjoituksissa. Geometriset mallit vielä alkeellisia.

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5

Tähtitieteen historiaa

CERN-matka

Syntyikö maa luomalla vai räjähtämällä?

perushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi

Kvanttifysiikan perusteet 2017

7. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot ja Mikael Granvik (Kalvot JN, TH & MG) HTTPKI, kevät 2011, luennot 7-8

Shrödingerin yhtälön johto

8. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot ja Thomas Hackman (Kalvot JN, TH, VMP)

9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria

8a. Kestomagneetti, magneettikenttä

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Cygnus tapahtuma Vihdin Enä-Sepän leirikeskuksessa

Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit

ASTROFYSIIKAN TEHTÄVIÄ VI

LUENTO Kyösti Ryynänen

1 Laske ympyrän kehän pituus, kun

POLARIMETRIA. NOT-tiedekoulun 2011 tutkielma. Tekijät: Aherto, Joona Kivijärvi, Juuso Koivunen, Miika Korhonen, Vili Väkevä, Sakari

aurinkokunnan kohteet (planeetat, kääpiöplaneetat, kuut, asteroidit, komeetat, meteoroidit)

9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Syksy 2017 Thomas Hackman (Kalvot JN, TH, MG & VMP)

Sähköstatiikka ja magnetismi

yyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk

3.1 Varhaiset atomimallit (1/3)

Exploring aurinkokunnan ja sen jälkeen vuonna Suomi

10. Polarimetria. 1. Polarisaatio tähtitieteessä. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria

Fy06 Koe Kuopion Lyseon lukio (KK) 1/7

7.-8. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot 1.3. ja Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)

Havaitsevan tähtitieteen peruskurssi I, yhteenveto

9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria

5. Kaukoputket ja observatoriot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

2. Fotonit, elektronit ja atomit

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.

Havaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu. Luento , V-M Pelkonen

Lappeenrannan Teekkarilaulajat ry:n lyhyt historia

Havaitsevan tähtitieteen peruskurssi I

Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi

Fotometria. () 30. syyskuuta / 69. emissioviiva. kem. koostumus valiaine. absorptioviiva. F( λ) kontinuumi

Myytävänä olevat tölkinvedin kukkarot

Ulottuva Aurinko Auringon hallitsema avaruus

Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50"

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

DEE Aurinkosähkön perusteet

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin!

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n AU päässä

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY

Transkriptio:

1 Fotometria 17.1.2011 Eskelinen Atte Korpiluoma Outi Liukkonen Jussi Pöyry Rami

2 Sisällysluettelo Havaintokohteet 3-5 Apertuurifotometria ja PSF-fotometria 5 CCD-kamera 5-6 Havaintojen tekeminen 6 Kuvien käsittely 6-7

3 Fotometria on tähtitieteessä käytetty tekniikka, jolla mitataan sähkömagneettisen säteilyn intensiteettiä. Intensiteetti tarkoittaa kohteen säteilyn voimakkuutta pinta-alayksikköä kohden. Tähtitieteessä kohteen kirkkautta kuvataan magnitudeina. Fotometria voidaan tehdä kahdella eri tavalla, apertuurifotometrialla tai PSF-fotometrialla. Havaintokohteet Fotometrialla voidaan tutkia monia eri taivaankappaleita. Seuraavassa on esitelty lyhyesti eri kohteita, joihin fotometriaa käytetään yleisesti. Asteroidit Asteroidit ovat Aurinkoa kiertäviä "pikkuplaneettoja", jotka ovat lisänimensä mukaisesti varsinaisia planeettoja pienempiä kappaleita. Niitä pienempiä kohteita kutsutaan meteoroideiksi, mutta raja asteroidin ja meteoroidin välillä on hyvin häilyvä. Yleisesti ottaen yli 50m läpimittaista kappaletta voi kutsua asteroidiksi. Toisaalta asteroidi voi olla myös suurikokoinen: esim. 1000 km läpimittainen kääpiöplaneetta Ceres voidaan laskea myös asteroidiksi. Asteroideja on hyvin paljon eri muotoisia, eivätkä ne suinkaan aina ole planeettojen tapaan lähes palloja. Asteroidit muodostuvat lähinnä kivistä ja pölystä, mutta ne voivat lisäksi sisältää metalleja ja olla jäisiä ja kraattereiden peittämiä. Suurin osa niistä sijaitsee asteroidivyöhykkeellä Marsin ja Jupiterin välissä. Kvasaarit ja blasaarit Kvasaarit ovat erittäin kirkkaita ja kaukaisia kohteita. Niiden oletetaan olevan tavallisia galakseja, joiden keskusta on normaalia paljon voimakkaammin näkyvissä. Kvasaarin kirkaus voi olla jopa samaa luokkaa kuin 100 "tavallisen" galaksin kirkkaus yhteensä. Tällainen erikoistapaus galaksista voi syntyä, jos galaksin keskustassa on supermassiivinen musta aukko. Sen massa voi olla jopa tuhat miljoonaa Auringon massaa. Musta aukko vetää sisuksiinsa ympäröivää kaasua, mikä kuumenee voimakkaasti ja alkaa lähettää kirkasta ja voimakasta valoa. Kaasu muodostaa aukon ympärille kiekon ja joiltakin puolilta tätä kiekkoa kaasu suihkuaa lähes valonnopeudella poispäin kvasaarista. Blasaari on kvasaarin erikoistapaus; jos

4 kaasusuihkut osoittavat suoraan Maata kohti, kyseessä on blasaari. Tällöin kirkkaustaso ja säteilyn välittämä energia pinta-alayksikköä kohti eli säteilyn intensiteetti on paljon suurempi kuin kvasaarissa. Esimerkkejä blasareista ovat mm. BL Lac ja 3C 84. AM Hercules -tyypin kataklysminen muuttuja AM Hercules -tyypin kataklysminen muuttuja koostuu yleisimmin valkoisesta ja punaisesta kääpiöstä, jotka kiertävät toisiaan. Systeemi lähettää paljon röntgensäteilyä ja sekä lineaarista että ympyräpolarisoitunutta valoa (polarisoituminen tarkoittaa aallon värähtelyn suuntaa verrattuna koko aallon etenemissuuntaan). Tämän tyyppiset systeemit ovat melko harvinaisia. Valkoinen kääpiö on erittäin tiivis ja tiheä tähtityyppi, joka on syntynyt suunnilleen Auringon kokoisen tähden muututtua punaiseksi jättiläiseksi elinkaarensa lopussa ja pölläytettyä uloimmat osansa ympäröivään avaruuteen. Valkoinen kääpiö on jäljelle jäänyt tiheä ydin, jonka kokoluokka on planeettojen tasoa ja massa tähtien luokkaa. Punainen kääpiö sen sijaan on himmeä punainen tähti, joka on maksimissaan suunnilleen puolet Auringon läpimitasta. Se ei ole hirvittävän kuuma verrattuna esim. Aurinkoon, koska se polttaa fuusiossa vetyä huomattavasti vähemmän. Se on kuitenkin kooltaan siis suurempi kuin valkoinen kääpiö, ja punainen kääpiö voikin muuttua ajan myötä valkoiseksi kääpiöksi. AM Hercules -tyypin kataklysmisessä muuttujassa nämä tähdet siis kiertävät toisiaan. Valkoista kääpiötä kutsutaan suuremman kirkkautensa takia primääritähdeksi ja punaista kääpiötä sekundääriseksi. AM Hercules -tyypissä valkoinen kääpiö on hyvin magneettinen ja sen voimakas magneettikenttä pystyy vetämään puoleensa lähellä kiertävän punaisen kääpiön ainetta, lähinnä vety- ja heliumkaasua. Tämä kaasu suihkuilee valkoisen kääpiön ympärillä samankaltaisilla radoilla kuin sauvamagneetin ympärille ripoteltu rautajauhe asettuu. Valkoisen kääpiön pohjois- ja etelänavoilla nämä kaasusuihkut törmäävät tähden pintaan noin 3000 km/s nopeudella, jolloin systeemi lähettää röntgensäteilyä. Esimerkki AM Hercules -tyypin kataklysmisestä muuttujasta on RX J0719.2-6557. Planeetat: Jupiter ja Uranus Jupiter on Aurinkokunnan suurin planeetta. Se on oikea jättiläisplaneetta, sillä sen massa on noin 2,5 kertaa suurempi kuin muiden Aurinkokunnan planeettojen yhteensä. Se koostuu pääasiassa nestemäisestä vedystä ja heliumista, ja sen kaasukehässä on valtavia virtauksia ja pyörremyrskyjä. Suurin myrsky Jupiterilla, ns. Suuri punainen pilkku, on pinta-alaltaan kokoluokkaa 20000km x 10000km. Jupiter on väritykseltään punertava ja sitä kiertää useita kuita.

5 Uranus voidaan laskea myös jättiläisplaneetaksi. Se koostuu pääasiassa kivestä ja jäisestä vedystä, heliumista sekä metaanista. Juuri metaani aiheuttaa Uranuksen vihertävän värin. Uranuksen massa on noin 14 Maapallon massaa ja sen etäisyys Auringosta on noin 19 kertainen Maan ja Auringon keskietäisyyteen toisistaan. Tämä tarkoittaa sitä, että Uranuksen pinnalla on todella kylmä, noin -220 celsiusastetta. Uranuksella on myös useita kuita. Valitsimme Uranuksen varsinaiseksi havaintokohteeksemme tutkielmassamme. Apertuurifotometria ja PSF-fotometria Apertuurifotometriassa mitataan säteilyn energiaan, joka tulee ympyrän muotoisen alueen sisältä. Saadusta arvosta vähennetään tausta, jolloin saadaan tähdestä tullut energia. Tähden lähettämän säteilyn energia saadaan kaavasta: N*=NAP - npix Nsky, jossa: NAP on apertuurista mitattu energia, npix on apertuurin pinta-ala ja Nsky on tausta pikseliä kohti. PSF kertoo minkä muotoiseksi tähti kuvautuu kaukoputken polttotasolle. Menetelmiä käytetään erilaisissa tilanteissa. Tässä tutkimuksessa ei kuvata himmeitä tähtiä eikä tähtiä, jotka ovat tiheässä, kuten tähtijoukkoja, joten menetelmäksi valittiin apertuurifotometria, sen nopeuden, helppouden ja tarkkuuden takia. CCD-kamera CCD-kameraa käytetään yleisesti tähtitieteessä sen hyvien ominaisuuksien vuoksi verrattuna valokuvausemulsioon. CCD-siru koostuu valoherkistä osista eli pikseleistä, jotka on järjestetty suorakulmaisen muotoiselle alueelle. CCD-kameralla voidaan havaita jopa läshes 100 prosenttia saapuneista fotoneista. Lisäksi kuvia voidaan välittömästi käsitellä digitaalisesti. Suuria CCDsiruja on kuitenkin hankala valmistaa, joten kameralla saadaan vain pieni näkökenttä. Lisäksi nelikulmaiset pikselit aiheuttavat palikkamaisuutta. Näistä syistä johtuen harrastelijat suosivat edelleen normaalia valokuvaa.

6 Fotonien havaitseminen perustuu valosähköiseen ilmiöön. Kun fotoni osuu tyhjennysalueelle riittävällä energialla, se irrottaa elektronin, joka on vapaa liikkumaan. Elektroni siirtyy elektrodin läheisyyteen sen aiheuttaman sähkökentän ansiosta ja irrotuksesta syntynyt aukko siirtyy tyhjennysalueen ulkopuolelle, jolloin tieto pikselille saapuneista fotoneista tallentuu. Pikseleihin tallentuneet varaukset mitataan siirtämällä ne rivi kerrallaan sarjarekisteriin ja sieltä jokainen pikseli lukuelektroniikalle. Havaintojen tekemisen vaiheet ovat seuraavat: 1. Kameran jäähdyttäminen 2. Dark-kuvien ottaminen tarkoittaa pimeän virran mittaamista ottamalla kuvia suljin kiinni 3. Flat-field-kuvien tarkoituksena on tasoittaa pikselien välisiä eroja 4. CCD-kameran nollatason selvittämiseksi otetaan bias-kuvia 5. Kaukoputki tarkennetaan riittävän tumman taustataivaan avulla 6. Kohteiden havaitseminen Kuvan käsittely Kuvan käsittelyn tarkoituksena on korjata teleskoopin aiheuttamia häiriöitä ja tuoda mahdollisesti esiin piilossa olevia yksityiskohtia. Kuvia voidaan parantaa huomattavasti, mutta epätarkkuuksia ei voida koskaan täysin poistaa. Kuvista valitaan lopuksi tarkoitukseen sopivimmat. Bias vähennykset Bias kuvat otetaan nollan sekunnin valotusajalla, jolloin ne sisältävät vain kameran aiheuttaman epätarkkuuden. Näitä kuvia on hyvä ottaa useita ja käyttää niiden keskiarvoa kuvien muokkauksessa. Kuvaa muokatessa ensimmäisenä vähennetään

7 bias-kuvien keskiarvo muokattavasta kuvasta, jolloin kuvan taustakohina pienenee. Nykyisin kuitenkin suurin osa CCD-kameroista vähentää dark-kuvat atomaattisesti. Flat korjaus Flat-kuvilla korjataan kameran pikseleiden välisiä eroja, joka parantaa kuvan laatua. Niiden avulla saadaan myös eliminoitua peilin pölystä johtuvat virheet, sekä valmistusvirheistä koituvia virheitä. Kuvat otetaan tasaisesti valistusta taustasta esim. auringonlaskun jälkeisestä taivaasta. Jokaisella käytettävällä filtterillä otetaan omat flat-kuvat, koska kuvat ovat eri näköisiä eri aallonpituksilla. Muokatessa kuvaa eri filttereillä otetuista flat-kuvista muodostetaan keskiarvot, joilla muokattava kuva jaetaan.

8 Lähteet - http://koti.mbnet.fi/andu/not/php/fotometria.pdf - http://fi.wikipedia.org/wiki/t%c3%a4htitiede - http://www.helsinki.fi/astro/opetus/kurssit/havaitseva/ httpki_7-8_fotometria.ppt.pdf