x+3 = n(y 3) y +n = 3(x n). Kun ylemmästä yhtälöstä ratkaistaan x = n(y 3) 3 ja sijoitetaan alempaan, saadaan

Samankaltaiset tiedostot
joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v +

a b c d

Lukion matematiikkakilpailun alkukilpailu 2015

joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.

33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut


a b c d

a b c d

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

y + z. z + xyz

Tekijä Pitkä matematiikka

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä.

Ratkaisut vuosien tehtäviin

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13

+ + + y:llä. Vuoden 2017 lopussa oppilasmäärät ovat siis a =1,05x ja b =1,10y, mistä saadaan vuoden 2017 alun oppilasmäärien suhteeksi.

C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %

Matematiikan tukikurssi, kurssikerta 3

Matematiikan olympiavalmennus

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6

Kansainväliset matematiikkaolympialaiset 2008

Algebra I, harjoitus 5,

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

2 Pistejoukko koordinaatistossa

Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen

c) 22a 21b x + a 2 3a x 1 = a,

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.

C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %

a b c d

Kolmion merkilliset pisteet ja kulman puolittajalause

Geometriaa kuvauksin. Siirto eli translaatio

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

4.3 Kehäkulma. Keskuskulma

Laudatur 4 MAA4 ratkaisut kertausharjoituksiin

Matematiikan olympiavalmennus 2015 helmikuun helpommat

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Pyramidi 3 Geometria tehtävien ratkaisut sivu a)

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

Lukion matematiikkakilpailun avoimen sarjan ensimmäinen kierros 2014

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta

Harjoitustehtävät, joulukuu 2013, (ehkä vähän) vaativammat

Kansainväliset matematiikkaolympialaiset 2012

Matematiikan olympiavalmennus

Baltian Tie 2005 ratkaisuja

Testaa taitosi 1: Lauseen totuusarvo

Diofantoksen yhtälön ratkaisut

! 7! = N! x 8. x x 4 x + 1 = 6.

Matematiikan peruskurssi 2

a b c d

PRELIMINÄÄRIKOE. Pitkä Matematiikka

LUKUTEORIA johdantoa

Harjoitustehtävät, syyskuu Helpommat

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =

Ratkaisut vuosien tehtäviin

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)

Johdatus matemaattiseen päättelyyn

Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)

Äärellisten mallien teoria

yleisessä muodossa x y ax by c 0. 6p

y=-3x+2 y=2x-3 y=3x+2 x = = 6

Derivaatan sovellukset (ääriarvotehtävät ym.)

Kun luku kirjoitetaan tavalliseen tapaan, niin luvussa on numeroita a) pariton määrä b) 47 c) 48 d) 141

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

Tehtävä 1. Oletetaan että uv on neliö ja (u, v) = 1. Osoita, että kumpikin luvuista u ja v on. p 2j i. p j i

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä

Joulukuun vaativammat valmennustehtävät ratkaisut

Tekijä Pitkä matematiikka a) p = 2πr r = 4,5 = 2π 4,5 = 28, piiri on 28 cm. A = πr 2 r = 4,5

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.

Matematiikan olympiavalmennus 2015 toukokuun tehtävät

Kuusi haastavaa tehtävää: Euroopan tyttöjen matematiikkaolympialaiset Luxemburgissa

Tästä saadaan (määrittelyehdon täyttävät) yhtälön ratkaisut x 3 tai x 3.

57. kansainväliset matematiikkaolympialaiset Hongkongissa

Pituus on positiivinen, joten kateetin pituus on 12.

a ord 13 (a)

Ratkaisuja, Tehtävät

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Baltian Tie 2004 ratkaisuja

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

5 TASOGEOMETRIA. ALOITA PERUSTEISTA 190A. Muunnetaan 23,5 m eri yksiköihin. 23,5 m = 235 dm = 2350 cm = mm ja 23,5 m = 0,0235 km

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

52. Kansainväliset matematiikkaolympialaiset

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

Pythagoraan polku

1 Lukujen jaollisuudesta

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA

Transkriptio:

19.1. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ ÐÓÔÔÙ ÐÔ ÐÙÒ Ö Ø ÙØ 2018 1. Eevalla ja Martilla on kokonaislukumäärä euroja. Martti sanoi Eevalle: Jos annat minulle kolme euroa, niin minulla on n-kertainen määrä rahaa sinuun verrattuna. Eeva puolestaan sanoi Martille: Jos sinä annat minulle n euroa, niin minulla on kolminkertainen määrä rahaa sinuun verrattuna. Oletetaan, että molemmat väitteet pitävät paikkansa. Mitä arvoja positiivinen kokonaisluku n voi saada? Ratkaisu: Olkoon x Martin rahamäärä ja y Eevan rahamäärä. Tällöin x+3 = n(y 3) y +n = 3(x n). Kun ylemmästä yhtälöstä ratkaistaan x = n(y 3) 3 ja sijoitetaan alempaan, saadaan y +n = 3(n(y 3) 3 n) = 3ny 12n9 y +9 = 3ny 13n = n(3y 13). Koskay+9 > 0jan > 0,niinsiismyös3y 13 > 0. Lisäksihuomataan,että3y 13 y+9 eli 3y 13 jakaa luvun y+9. Tästä seuraa 3y 13 3(y+9) (3y 13) = 27+13 = 40, joten koska 3y 13 > 0, saadaan 3y 13 {1,2,4,5,8,10,20,40}. Toisaalta tietenkin 3y 13 13 2 (mod 3), joten jäljelle jäävät vain vaihtoehdot 3y 13 = 2, 3y 13 = 5, 3y 13 = 8 tai 3y 13 = 20, mistä ratkaisemallasaadaan y = 5, y = 6, y = 7taiy = 11. Vastaavatluvunnarvotsaadaanyhtälöstän = (y+9)/(3y 13): n = 1, n = 2, n = 3 ja n = 7. Vastaus: n = 1, n = 2, n = 3 ja n = 7. 2. Kolmion ABC sivut ovat a = BC, b = CA ja c = AB. Pisteet D, E ja F ovat sellaiset sivujen BC, CA ja AB pisteet, että AD, BE ja CF ovat kolmion ABC kulmien puolittajia. Määritä janojen AD, BE ja CF pituudet a:n, b:n ja c:n avulla. Ratkaisu: Lasketaan BE = x. Tunnetusti kolmion kulman puolittaja jakaa vastaisen sivun viereisten sivujen suhteessa. Siis CE = ab a+c.

Kosinilauseesta saadaan x 2 = a 2 + (ab)2 (a+c) 2 2 a2 b a+c cos( BCA). Mutta kosinilauseen mukaan on myös c 2 = a 2 +b 2 2abcos( BCA). Siis Siis Symmetrian perusteella x 2 = a 2 + (ab)2 (a+c) 2 2 a a+c (c2 a 2 b 2 ) = a2 (a+c) 2 +a 2 b 2 +a(a+c)(c 2 a 2 b 2 ) (a+c) 2 = a3 c+2a 2 c 2 +ac 3 ab 2 c (a+c) 2 = x = BE = AD = ac (a+c) 2 ( (a+c) 2 b 2). ac (a+b+c)(a b+c). a+c bc (a+b+c)( a+b+c) b+c ja CF = ab (a+b+c)(a+b c). a+b 3. Ympyrän jänteet AB ja CD leikkaavat ympyrän sisällä pisteessä M, joka on lisäksi jänteen PQ keskipiste. Pisteet X ja Y ovat janojen AD ja PQ sekä BC ja PQ leikkauspisteet, tässä järjestyksessä. Osoita, että M on janan XY keskipiste.

Ratkaisu: Määritetään pisteet O, U ja V kuvan esittämällä tavalla. CMB = DMA ja ADM = MBC, joten kolmiot BCM ja ADM ovat yhdenmuotoiset. Edelleen MVC = AUM, koska yhdenmuotoisissa kolmioissa vastinjanojen (tässä tapauksessa keskijanan ja sivun) välinen kulma on sama. Koska OVY = YMO = 90, niin OVYM on jännenelikulmio. Lisäksi OMX = XUO = 90, joten OM XU on myös jännenelikulmio. Näistä seuraa MOY = MVY = MVC = AUM = XUM = XOM, joten OYX on tasakylkinen kolmio ja OM sen korkeusjana. Siis YM = MX eli M on janan XY keskipiste. 4. Määritellään kuvaus f:z + Z + niin, että f(1) = 1 ja f(n) on luvun n suurin alkutekijä, kun n > 1. Aino ja Väinö pelaavat peliä, jossa molemmilla on kasa kiviä. Jokaisella siirtovuorolla vuorossa oleva pelaaja, jolla on m kiveä kasassaan, saa poistaa toisen kasasta korkeintaan f(m) kiveä mutta vähintään yhden kiven. (Oma kasa säilyy muuttumattomana.) Pelin voittaa se, joka ensiksi tyhjentää toisen kasan. Osoita, että

on olemassa sellainen positiivinen kokonaisluku n, että Aino häviää parhaimmallakin pelitavalla, vaikka saa aloittaa ja molemmilla on aluksi yhtä monta kiveä eli n kiveä. Ratkaisu: n = 16 on pienin ratkaisu tehtävään. Todistetaan tämä, vaikka tehtävänannossa pyydetään ainoastaan etsimään jokin n, jolla Aino häviää pelin. Seuraava tulos on siis oikeastaan tarpeeton, mutta osia siitä käytetään todistettaessa varsinaista tehtävän vaatimaa tulosta. Väite: Peli on Ainon voitto, kun n 15. Todistus: Jos n on alkuluku tai yksi, Aino voi tietenkin nollata toisen pelaajan kivien määrän aloitussiirrollaan. Yleisemmin Aino voittaa kaikki ne pelitilanteen(p, m), missä hän on siirtovuorossa, p on alkuluku ja p m. Sovelletaan tätä erityisesti niiden pelien analysoimiseen, joissa n = 2p ja p alkuluku. Aino poistakoon toiselta pelaajalta suurimman sallitun määrän eli p kiveä. Tapauksessa n = 4 huomataan, että Väinöllä ei ole tyydyttävää vastasiirtoa: sekä (3, 2) että (2, 2) ovat Ainon voittoja. Tapauksessa n = 6 pelinkuluksi muodostuu seuraava, kun Väinö yrittää ohittaa jo tunnistetut häviöasemat: 6 4 3 6 3 1 0 (Ylärivissä Ainon, alarivissä Väinön kivimäärät.) Tapauksessa n = 10 on useita ilmeiset sudenkuopat ohittavia pelejä: 10 9 8 10 5 2 0. 10 8 6 10 5 2 0 Jäljellä on tapaus n = 14: 10 6 4 10 5 2 0 14 12 10 14 7 4 0 14 10 8 tai 9 14 7 2 0 14 9 8 6 14 7 4 2 0 14 8 5 4 14 7 6 1 0. Huomattakoon viimeisestä pelistä, että Aino poistaa Väinöltä pelitilanteessa (8, 7) yhden ainoa kiven, koska (6, 6) on tunnistettu voitto. Jäljellä ovat vain tapaukset n = 8, n = 9, n = 12 ja n = 15. Tapauksessa n = 8 Ainon pelitapa on tuttu pelitilanteesta (8, 7): 8 5 4 8 6 1.

Tapauksessa n = 9 Väinön on vaikeata ohittaa tunnistettuja häviöasemia: Tapaus n = 12 on myös suoraviivainen: 9 8 6 5 9 6 4 1 0. 12 10 8 tai 9 6 tai 8 12 9 4 2 0. Edellistä voittoa käyttäen tapauksessa n = 15 jää tarkasteltavaksi 15 14 12 10 15 12 6 4 0. Väite: Väinö voittaa pelin, kun n = 16. Todistus: Jos Aino poistaa aloitussiirrollaan Väinön kasasta vain yhden kiven, Väinö voi poistaa Ainolta neljä (4 5 15), jolloin päädytään asemaan (12,15), joka on yksi tapauksessa n = 15 esiintyneistä asemista paitsi, että roolit ovat vaihtuneet, joten Väinö voittaisi tässä tapauksessa. Ainon on siis yritettävä kahden kiven poistamista tässä tapauksessa, ja pelinkulku on 16 9 8 3 1 0 16 14 12 10 8 tai 9 7 tai 8. 5. Ratkaise Diofantoksen yhtälö x 2018 y 2018 = (xy) 2017, kun x ja y ovat epänegatiivisia kokonaislukuja. Ratkaisu: Jos toinen luvuista on nolla, on toisenkin oltava. Pari (0, 0) on ratkaisu. Oletetaan nyt, että molemmat luvuista ovat nollasta poikkeavia. Nyt x 2018 > x 2018 y 2018 = (xy) 2017, joten x > y 2017. Lisäksi molempien lukujen alkutekijöiden on oltava samat. Koska y < x, on oltava alkuluku p, jolla pätee p α y, p α+1 x, p β y, p β+1 y ja α > β. Merkitään tätä p α x ja p β y. Nyt Erityisesti siis p 2018α x 2018, p 2018β y 2018, ja p 2017(α+β) (xy) 2017. min(p 2017(α+β),p 2018α ) y 2018. Koska 2018α > 2018β, on pädettävä p 2017(α+β) p 2018β, eli 2017(α + β) 2018β, eli 2017α β, mikä on mahdotonta. Ainoa ratkaisu on siis (x,y) = (0,0).