Voimalaitosprosessien ohjaus



Samankaltaiset tiedostot
VOIMALAITOSTEKNIIKKA MAMK YAMK Tuomo Pimiä

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Säätötekniikan perusteet. Merja Mäkelä KyAMK

NOKIANVIRRAN ENERGIA OY

MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka. Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU

PowerDemo- käyttö- ja työohje

VOIMALAITOSTEKNIIKKA MAMK YAMK Tuomo Pimiä

Energiatekniikan automaatio - APROSharjoitustyö

Höyrykattilat Kattilatyypit, vesihöyrypiirin ratkaisut, Tuomo Pimiä

Kaukolämmitys. Karhunpään Rotaryklubi

Energiaa ja elinvoimaa

TEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) TEHTÄVÄ 2

Maakaasu kaukolämmön ja sähkön tuotannossa: case Suomenoja

Käyttötoimikunta Sähköjärjestelmän matalan inertian hallinta

BIOENERGIAHANKE

Lämpöopin pääsäännöt. 0. pääsääntö. I pääsääntö. II pääsääntö

Varavoiman asiantuntija. Marko Nurmi

Energiaa ja elinvoimaa

Säätöjen peruskäsitteet ja periaatteet parempaan hallintaan. BAFF-seminaari Olli Jalonen EVTEK 1

1 Johdanto Yhteistuotantovoimalaitokseen liittyviä määritelmiä Keravan biovoimalaitos Tehtävänanto... 5 Kirjallisuutta...

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA

Lahti Energian uusi voimalaitos KYMIJÄRVI II. Jaana Lehtovirta Viestintäjohtaja Lahti Energia Oy

Mitä on huomioitava kaasupäästöjen virtausmittauksissa

SMG-4500 Tuulivoima. Kuudennen luennon aihepiirit. Tuulivoimalan energiantuotanto-odotukset AIHEESEEN LIITTYVÄ TERMISTÖ (1/2)

Ajan, paikan ja laadun merkitys ylijäämäenergioiden hyödyntämisessä. Samuli Rinne

Lämpöpumpputekniikkaa Tallinna

Luento 4. Voimalaitosteknologiat

Pohjoismaisen sähköjärjestelmän käyttövarmuus

Sähköjärjestelmä antaa raamit voimalaitoksen koolle

Smart Generation Solutions

Viikinmäen jätevedenpuhdistamon Energiantuotannon tehostaminen

Turun Seudun Energiantuotanto Oy Naantalin uusi voimalaitos. Astrum keskus, Salo

AIRIA BioHAT UUSI VOIMALAITOSKONSEPTI. Reijo Alander TTY

Fingridin varavoimalaitosten käyttö alue- tai jakeluverkkojen tukemiseen. Käyttötoimikunta Kimmo Kuusinen

BIOVOIMALOIDEN URANUURTAJA, SÄHKÖN JA LÄMMÖN YHTEISTUOTTAJA

1 Johdanto Yhteistuotantovoimalaitokseen liittyviä määritelmiä Keravan biovoimalaitos Tehtävänanto... 5 Kirjallisuutta...

Näytesivut. Kaukolämmityksen automaatio. 5.1 Kaukolämmityskiinteistön lämmönjako

Termodynamiikan suureita ja vähän muutakin mikko rahikka

PYP II: PI-kaaviot. Aki Sorsa

Basic, comfort, superior

Pynnönen SIVU 1 KURSSI: Opiskelija Tark. Arvio

Prosessiautomaatiota LabVIEW lla NI Days NI Days LabVIEW DCS 1

Versio Fidelix Oy

SÄHKÖN TOIMITUSVARMUUS

BL20A0400 Sähkömarkkinat. Valtakunnallinen sähkötaseiden hallinta ja selvitys Jarmo Partanen

SÄHKÖMOOTTORI JA PROPULSIOKÄYTTÖ

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt

Kon HYDRAULIIKKA JA PNEUMATIIKKA

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I

Käyttövarmuuden haasteet tuotannon muuttuessa ja markkinoiden laajetessa Käyttövarmuuspäivä Johtaja Reima Päivinen Fingrid Oyj

Yksikköoperaatiot ja teolliset prosessit PROSESSIN SÄÄDÖT. Syksy 2015

Uponor Push 23A Pumppu- ja sekoitusryhmä

[TBK] Tunturikeskuksen Bioenergian Käyttö

Lämpöopin pääsäännöt

Lähienergialiiton kevätkokous

Teollisuuden energiatekniikka Peruskaavat ja käsitteet. Versio 2011

Energian talteenotto liikkuvassa raskaassa työkoneessa Heinikainen Olli

Voimajärjestelmän tehotasapainon ylläpito. Vaelluskalafoorumi Kotkassa Erikoisasiantuntija Anders Lundberg Fingrid Oyj

SÄÄTÖJÄRJESTELMIEN SUUNNITTELU

Älykkäät sähköverkot puuttuuko vielä jotakin? Jukka Tuukkanen. Joulukuu Siemens Osakeyhtiö

LVI - I N HVACON S I N Ö Ö R I T O I M I S T O RAU

Höyrykattilat Lämmönsiirtimet, Tuomo Pimiä

Vesivoiman rooli sähköjärjestelmän tuotannon ja kulutuksen tasapainottamisessa

TUTKIMUS IKI-KIUKAAN ENERGIASÄÄSTÖISTÄ YHTEISKÄYTTÖSAUNOISSA

Oljen energiakäyttö voimalaitoksessa

Näytesivut. 3.2 Toimisto- ja liiketilojen. Ilmastointijärjestelmät 57

MITTAUS- JA SÄÄTÖLAITTEET, RAPORTOINTIMALLI

Riikinvoiman ajankohtaiset

Energiaopinnot Lappeenrannan teknillisessä yliopistossa Maija Leino

N:o Uusien polttolaitosten ja kaasuturbiinien, joiden polttoaineteho on suurempi tai yhtä suuri kuin 50 megawattia päästöraja-arvot

Basic, comfort, superior

Kirjoittaja: tutkija Jyrki Kouki, TTS tutkimus

Energia-alan keskeisiä termejä. 1. Energiatase (energy balance)

Jännitestabiiliushäiriö Suomessa Liisa Haarla

Voimalaitos prosessit. Kaukolämpölaitokset 1, Tuomo Pimiä

Miten ydinvoimalan turbiini toimii lyhyt johdanto turbiiniteknologiaan

Mekatroniikan peruskurssi Luento 1 /

Lämpökeskuskokonaisuus

Voimalaitosten jännitteensäädön asetteluperiaatteet

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö

Kiinteistötekniikkaratkaisut

Rene Eskola APUJÄÄHDYTYKSEN KANNATTAVUUS SÄHKÖNTUOTANNOSSA

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA

Energiatehokkuuden analysointi

VOIMALASÄÄTIMET Sivu 1/ FinnPropOy Puhelin: Y-tunnus:

RAKENNUSAUTOMAATIOJÄRJESTELMÄ MITTAUSSEURANTAOHJE. Tampere Työ 63309EA A1211

REAALIAIKAINEN TIEDONVAIHTO

Optyma Plus New Generation Ver

R o L. V-PALLOVENTTIILI haponkestävä teräs 455- (459) sarjat SILVER LINE. Operation. Käyttö ja rakenne. Versio

Esim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p).

Voimalaitos prosessit. Kaukolämpölaitokset 1, Tuomo Pimiä

SAVUKAASUJEN VALVONTAKESKUS 1/6 HYDROSET ER - O2

Uponor Push 23B-W. Lattialämmityksen pumppuryhmä

Hevosenlannan mahdollisuudet ja haasteet poltossa ja pyrolyysissä

Energiantuotannon tuhkien hyödyntäminen. Eeva Lillman

Reaaliaikainen tiedonvaihto

Transkriptio:

Voimalaitosprosessien ohjaus Energiatekniikan automaatio TKK 2007 Yrjö Majanne, TTY/ACI Martti Välisuo, Fortum Nuclear Services Automaatio- ja säätötekniikan laitos Johdanto Automaatiolle asetettavien vaatimusten lähtökohdat Automaation toiminnot Voimalaitoksen dynamiikasta Sisältö

Automaatio- ja säätötekniikan laitos Prosessinohjauksen rajaus Voimalaitoksen prosessinohjauksen tehtävä on hallita voimalaitoksen tehontuotanto ja muu prosessin toiminta reaaliaikaisesti. Prosessinohjaus on energiantuotannon hallinnan alin taso Prosessinohjaus saa tuotanto-ohjeet tuotannonohjauksesta. Prosessinohjauksesta siirretään valikoitua ja jalostettua informaatiota tuotannonohjaukseen. Automaatio- ja säätötekniikan laitos Teollisuustuotannon aikahorisontit Liiketoiminnan ohjaus Tuotannonohjaus ja kunnossapito Prosessinohjaus 1 5 vuotta 1 tunti 1 vuosi 10 ms 1 h

Automaatio- ja säätötekniikan laitos Miksi, mitä ja miten Yksi tapa jäsentää automaation kokonaisuutta, on kysyä miksi, mitä ja miten. Kysymyksen miksi vastauksena on vaatimusten kuvaus Kysymyksen mitä vastauksena on toimintojen kuvaus Kysymyksen miten vastauksena on laitteiden ja ohjelmistojen kuvaus. Automaatio- ja säätötekniikan laitos Näkökulmia prosessinohjaukseen Ohjatun prosessin käyttäytyminen Prosessin ja tuotannon asettamat vaatimukset Vaatimukset Toiminnot Toteutus Ohjausjärjestelmä

Automaatio- ja säätötekniikan laitos Prosessinohjauksen toiminnallinen rakenne Käyttöliittymä Kenttälaitteet Automaatio- ja säätötekniikan laitos Kaasuturbiinien ohjaus Ohjausjärjestelmät; esimerkkinä kombivoimalaitos Pääautomaatiojärjestelmä Apujärjestelmät Kattilasuoja Suojauslogiikka Ohjauslogiikka Säätöalgoritmit Höyryturbiinin ohjaus Sähköjärjestelmien ohjaus G G G

Automaatio- ja säätötekniikan laitos LÄMPÖTILA (T) A B ENTROPIA (s) LÄMPÖTILA (T) C KAASUTURBIINI- PROSESSI D E HÖYRY- PROSESSI ENTROPIA (s) KATTILA + TULISTIN POLTTOAINE + PALAM.ILMA C B D A HÖYRYTURBIINI + GENERAATTORI E SYÖTTÖVESIPUMPPU G LAUHDUTIN POLTTOKAMMIO KOMPRESSORI LÄMPÖTILA (T) A B G KAASUTURBIINI + GENERAATTORI ENTROPIA (s) LÄMMÖN- TALTEEN- OTTO- KATTILA C D A POLTTOKAMMIO B KOMPRESSORI SYÖTTÖVESIPUMPPU HÖYRYTURBIINI + GENERAATTORI C G TURBIINI + GENERAATTORI D LAUHDUTIN G Automaatio- ja säätötekniikan laitos Johdanto Automaatiolle asetettavien vaatimusten lähtökohdat Automaation toiminnot Voimalaitoksen dynamiikasta

Automaatio- ja säätötekniikan laitos Prosessilaitteet Prosessilaitteita, kuten kattilaa, turbiinia, pumppuja jne. on käytettävä valmistajan ohjeiden mukaisesti. Automaatio- ja säätötekniikan laitos Tuotanto Voimalaitoksen tehtävänä on tuottaa sähköä ja usein myös kaukolämpöä tai prosessihöyryä. Yksi energialaji on tavallisesti päätuote, jonka tarve määrää voimalaitoksen tuotannon. Voimalaitoksen tulee pystyä määrättyihin tehonmuutosnopeuksiin. Sähkötehon muutosnopeus on kriittinen niille laitoksille, jotka osallistuvat sähköverkon taajuuden säätöön. Taajuuden säätö jaetaan primääriin eli sekuntitason säätöön, sekundääriin eli minuuttitason säätöön ja tertiääriin eli tuntitason säätöön. Pohjoismaissa primääristä ja sekudäärista säädöstä vastaavat lähinnä vesivoimalaitokset. Keski-Euroopassa on tavallista, että lämpövoimalaitokset osallistuvat myös primääriin säätöön.

Automaatio- ja säätötekniikan laitos Sähköverkon taajuuden primääriin eli sekunti-tason säätöön osallistuvalta tuotantoyksiköitä on tyypillisesti vaadittu, että tuotantoyksikkö kykenee muuttamaan tehoaan 2,5% nimellistehosta ajassa 5 s ja 5% nimellistehosta ajassa 30 s. Tämän jälkeen tuotantoyksikön tulee pystyä muuttamaan tehoaan 4... 8% nimellistehosta minuutissa. Voimalaitoksen tulee pystyä käyttämään suunniteltua polttoainevalikoimaa. Voimalaitosten taloudellisuutta pyritään nykyään parantamaan käyttämällä halpaa polttoainetta. Halvempi polttoaine on tavallisesti hankalammin käsiteltävää ja epätasaisempaa. Tuotanto Change of generated power 100% = nominal power ΔP e 5% 2.5% 5 30 t / s Automaatio- ja säätötekniikan laitos Tuotanto Voimalaitoksen hyvä käytettävyys on erittäin tärkeää. Suunnittelemattomat pysäytykset aiheuttavat tuotannonmenetyksiä, voimalaitoksen komponenttien rasittumista ja energiahukkaa, paperitehtaassa voimalaitoksen suunnittelematon pysähtyminen aiheuttaa usein myös paperikoneen seisokin

Automaatio- ja säätötekniikan laitos Organisaatio Voimalaitoksen automaation tulee olla yhteensopiva käyttömiehityksen kanssa. Mitä pienempi vuoromiehistö on ja mitä laajempi on kunkin operaattorin vastuualue, sitä laajempi ja täydellisempi tulee automaation olla. Kaukokäyttö ja miehittämätön käyttö antavat omat vaatimuksensa. Automaatio- ja säätötekniikan laitos Turvallisuus Suojausjärjestelmällä on ratkaiseva merkitys voimalaitoksen turvallisuudelle. Turvallisuuteen kuuluu henkilövahinkojen ja ympäristövahinkojen välttäminen. Suojauksilla estetään myös aineellisia vahinkoja, esim. laitteiden rikkoutumisia. Häiriötilanteessa operaattorin tulee voida luottaa suojauksiin niin, että hän voi keskittyä tuotannon ylläpitämiseen.

Automaatio- ja säätötekniikan laitos Taloudellisuus Voimalaitoksen tulee toimia hyvällä hyötysuhteella. Ajotavan tulee olla sellainen, että se ei lisää kunnossapitokustannuksia eikä lyhennä liian nopeasti prosessin pääkomponenttien jäljellä olevaa elinikää. Automaatio- ja säätötekniikan laitos Automaation luotettavuus ja kunnossapito Voimalaitoksen automaation tulee olla erittäin luotettavaa. esim. yksi tuotantoa häiritsevä virhetoiminto vuodessa on jo liikaa. Voimalaitoksen automaatiojärjestelmän käyttöikä on keskimäärin varsin pitkä - monta kertaa pitempi kuin muilla tietoteknisillä järjestelmillä. Tavalla tai toisella pitää varmistaa varaosien saatavuus ja mahdollisuus tehdä muutoksia.

Automaatio- ja säätötekniikan laitos Johdanto Automaatiolle asetettavien vaatimusten lähtökohdat Automaation toiminnot Voimalaitoksen dynamiikasta Automaatio- ja säätötekniikan laitos Prosessinohjauksen toiminnallinen rakenne Käyttöliittymä Kenttälaitteet Suojauslogiikka Ohjauslogiikka Säätöalgoritmit

Automaatio- ja säätötekniikan laitos Kenttälaitteet Mittausanturit ja binäärianturit tuovat tietoa prosessista prosessinohjauksen käyttöön. Moottorinohjaimet käynnistävät ja pysäyttävät sähkömoottoreita. Toimilaitteet käyttävät toimielimiä, kuten venttiileitä ja peltejä. Kaksiasentoisia toimilaitteita kutsutaan sulkutoimilaitteiksi. Toimilaitteita, joiden asentoa voi ohjata portaattomasti, kutsutaan säätötoimilaitteiksi. Suuressa voimalaitoksessa saattaa olla jopa 2000 mittausanturia, 2000 binäärianturia, 500 toimilaitetta ja 300 säätöpiiriä. Automaatio- ja säätötekniikan laitos Logiikkaohjaukset Suojaukset Suojausten tehtävä on varmistaa voimalaitoksen turvallisuus ja estää laitevauriot. Suojaukset pysäyttävät prosessilaitteita ja ohjaavat sulkutoimilaitteita vaaratilanteessa. Suojausjärjestelmä havaitsee vaaratilanteen mittausviestien raja-arvojen ylittymisestä tai binäärianturien viesteistä. Voimalaitoksen pääsuojat ovat kattilasuoja, turbiinisuoja generaattorisuoja.

Automaatio- ja säätötekniikan laitos Logiikkaohjaukset Suojaukset Tiukkojen luotettavuusvaatimusten takia suojausten laiteteknillinen toteutus on usein erilainen kuin muun prosessiautomaation. Tärkeimmät suojaukset ovat redundanttisia järjestelmässä on rinnakkaisuutta siten, että yksittäinen vika ei estäisi suojaustoimintoa. Joissakin tapauksissa koko suojauspiiri on kaksinkertainen, kun taas joissakin tapauksissa antureita on kaksi tai kolme. Standardissa SFS 5712, Höyrykattilat. Höyrykattilalaitos. Rekisteröitävälle höyrykattilalle määritellään suojausvaatimuksia. Automaatio- ja säätötekniikan laitos Yksittäisohjaukset ja lukitukset Yksittäisohjauksella tarkoitetaan yhden toimilaitteen, sähkömoottorin tai vastaavan ohjausta. Yksittäisohjaukseen liittyy tavallisesti useita käskyjä ja ehtoja, kuten lukituksia. Lukitusten tehtävä on estää ihmistä tai automaatiota käynnistämästä laitteita tai ohjaamasta toimilaitteita väärässä järjestyksessä ja väärissä tilanteissa. Monet suojausehdot ovat samalla lukitusehtoja.

Automaatio- ja säätötekniikan laitos Ilmapuhaltimen ohjaus Automaatio- ja säätötekniikan laitos Vaihto-ohjaukset Voimalaitoksessa on usein joitakin redundanttisia prosessilaitteita. On esim. tavallista, että on kolme syöttövesipumppua, joista kaksi riittää täyden kuorman ajoon. Silloin on yleensä olemassa vaihto-ohjaus, joka käynnistää automaattisesti seisovan pumpun, jos jompikumpi käynnissä olevista pumpuista pysähtyy häiriön takia.

Automaatio- ja säätötekniikan laitos Askelohjaukset Askelohjelman eli ohjaussekvenssin tehtävä on käynnistää tai pysäyttää määrätty osajärjestelmä. Joissakin tapauksissa koko voimalaitos voidaan käynnistää yhdellä askelohjelmalla eli "yhdellä napilla". Automaatio- ja säätötekniikan laitos

Automaatio- ja säätötekniikan laitos Automaatio- ja säätötekniikan laitos Pääsäädöt Pitää tehontuotannon (eli kuorman) yhtä suurena kuin hetkellinen kulutus Tärkein tuotantosuure on sähköteho tai vastapaine tai lähtevän kaukolämpöveden lämpötila Myös tuorehöyryn paineen säätö kuuluu pääsäätöihin. Säädöt Säätöpiirien hierarkkinen jako Stabiloivat säädöt Pitävät prosessisuureet ohjearvoissaan. Kompesoivat häiriöiden ja kuormanmuutosten vaikutukset. Tärkeitä säädettäviä suureita höyryn lämpötilat lieriön pinta syöttövesivirta savukaasujen happipitoisuus.

Automaatio- ja säätötekniikan laitos Säädöt Voimalaitoksen pääsäädöt Voimalaitoksen pääsäätöjä ovat kattilan höyrynpainesäätö ja tuotantotehojen säädöt. Höyryn painetta voidaan säätää joko höyryn kulutuksen puolelta turbiinin pääsäätöventtiileillä (etupainesäätö) tai höyryn tuotannon puolelta polttoaineteholla. Kummassakin tapauksessa säätöön liittyy myötäkytkentä höyryvirrasta polttoaineen syöttöön. Sähkötehoa säädetään sillä keinolla, kumman höyryn paineen säätö jättää vapaaksi. Jos höyryn painetta säädetään polttoaineteholla, niin sähkötehoa säädetään turbiinin pääsäätöventtiileillä. Tämä vaihtoehto on näistä kahdesta nopeampi: jos sähkötehoa suurennetaan nopeasti, turbiini "ryöstää" hetkellisesti kattilasta enemmän tehoa, kuin sinne polton kautta tulee. Automaatio- ja säätötekniikan laitos Kiinteän paineen ajotapa Kattila seuraa ajotapa

Automaatio- ja säätötekniikan laitos Turbiinin etupainesäätö Turbiini seuraa ajotapa Automaatio- ja säätötekniikan laitos Turbiinin vastapainesäätö Kattila kiinteällä paineella Sähkötehon sijasta voidaan säätää vastapainekuormaa, esim. kaukolämpötehoa. mahdollisia samat vaihtoehdot kuin sähkötehon säädössä: vastapainekuormaa säädetään siis joko polttoaineteholla tai turbiinin pääsäätöventtiileillä. Sähköteho määräytyy epäsuorasti vastapainetehon kautta. Prosessihöyrytukkia syötetään joko turbiinin perästä, jolloin kyseessä on siis vastapainekuorma, tai turbiinin väliotosta.

Automaatio- ja säätötekniikan laitos Turbiinin vastapainesäätö Kattila kiinteällä paineella Automaatio- ja säätötekniikan laitos Vastapaine turbiinin väliotosta Väliotosta syötettävän tukin painetta säädetään väliottolinjassa sijaitsevalla säätöventtiilillä. Höyrytukin syöttö saattaa tulla turbiinin eri tehotasoilla eri väliotosta. kutakin väliottolinjan venttiiliä kohti on yksi tukin paineen säädin. säätimien asetusarvot on porrastettu siten, että pienipaineisempaan väliottoon liittyvässä säätimessä on aina hiukan ylempi tukin paineen asetusarvo

Automaatio- ja säätötekniikan laitos Eri kuormia vastaavat väliotot Asetusarvojen porrastus Automaatio- ja säätötekniikan laitos Lieriökattilan lieriön pinnansäätö Muita tärkeitä säätöjä Lieriökattilan lieriön pinnansäätö Lieriön pintaa säädetään kaskadisäädöilä: lieriön pinnan säädin antaa ohjearvon alasäätimelle, joka säätää syöttöveden ja tuorehöyryn virtauseroa (ns. kolmipistesäätö). Toimilaitteena on syöttöveden säätöventtiili tai nopeusohjattu syöttövesipumppu.

Automaatio- ja säätötekniikan laitos Lieriön pinnansäätö Automaatio- ja säätötekniikan laitos Pinta Syöttöveden säätöventtiili Höyryvirta Manuaalilla Lieriön pinnansäätö Automaatilla Ohjearvo

Automaatio- ja säätötekniikan laitos Polttoaineen ja ilman säätö Pääsäädin, joka on höyryn paineen säädin, sähkötehon säädin tai vastapainekuorman säädin, antaa polttoainetehon asetusarvon. Polttoainetehon asetusarvo menee polttoaineen jakoon: siitä muodostetaan pääpolttoaineen ja mahdollisten tukipolttoaineiden tehojen asetusarvot ja näistä muodostetaan syöttimien nopeuksien asetusarvot. Polttoainetehon asetusarvosta muodostetaan myös kokonaisilmavirran asetusarvo. Polttoaineen ja palamisilman säätö Leijupolttokattilassa kokonaisilmavirran ohjearvo jaetaan leijuilmaan, sekundääri-ilmaan ja tertiääri-ilmaan. Savukaasun happipitoisuuden säädin antaa tyypillisesti korjauksen sekundääri-ilman asetukseen. Automaatio- ja säätötekniikan laitos

Automaatio- ja säätötekniikan laitos Automaatio- ja säätötekniikan laitos Polttoaineen ja ilman ristiinlukitus

Automaatio- ja säätötekniikan laitos Ilmamäärän säätö Automaatio- ja säätötekniikan laitos Ilmamäärän säätö

Automaatio- ja säätötekniikan laitos Höyryn lämpötilojen säätö. Tuorehöyryn lämpötilan säätö Jotta voimalaitoksen hyötysuhde olisi hyvä, höyryn lämpötila pidetään lähellä suurinta sallittua arvoa. Höyryn lämpötila ei saa nousta sallittua arvoa suuremmaksi, koska ylilämpö lyhentää tulistimien elinikää. Höyryn lämpötilan vaihtelu aiheuttaa lämpöjännityksiä, mikä myös lyhentää tulistimien elinikää. Nyrkkisääntö on, että höyryn lämpötilan säätö toimii hyvin, jos lämpötilan vaihteluväli on alle 10 astetta. Tulistimen jälkeistä höyryn lämpötilaa säädetään vesiruiskutuksella, joka on ennen tulistinta. Säätökytkentänä on kaskadi, jossa alasäätimen säätösuureena on ruiskutuksen jälkeinen lämpötila. Automaatio- ja säätötekniikan laitos Tuorehöyryn lämpötilan säätö

Automaatio- ja säätötekniikan laitos Tulistimen lähtölämpötila Tulistimen tulolämpötila Ruiskun säätöventtiili Manuaalilla Tuorehöyryn lämpötilan säätö Automaatilla Set point Automaatio- ja säätötekniikan laitos Johdanto Automaatiolle asetettavien vaatimusten lähtökohdat Automaation toiminnot Voimalaitoksen dynamiikasta

Automaatio- ja säätötekniikan laitos Energian siirtyminen, muuntuminen ja varastoituminen voimalaitoksessa Voimalaitos koostuu peräkkäisistä energian siirto-, muunto- ja varastoitumisprosesseista. Polttoaine sisältää kemiallisesti sitoutunutta energiaa. Polttoaineen siirto- ja jakokuljettimet syöttävät sen tulipesään, jossa palaminen muuntaa kemiallisen energian lämpöenergiaksi. Lämpöenergia siirtyy höyrystimessä ja tulistimissa vesihöyrypiiriin. Tämä siirtyminen tapahtuu säteilyn, konvektion ja johtumisen kautta. Höyry kuljettaa energian turbiiniin, joka muuntaa energian mekaaniseksi. Turbiinin akseli siirtää mekaanisen energian generaattoriin, joka muuntaa energian sähköiseksi. Automaatio- ja säätötekniikan laitos Energian siirtyminen, muuntuminen ja varastoituminen voimalaitoksessa Voimalaitosprosessi sisältää useita energiavarastoja, joiden sisältämä energia muuttuu tehonmuutoksissa. Näiden muuttuvien energiavarastojen takia voimalaitos on dynaaminen prosessi. Polttoainesiilot ovat ilmeinen energiavarasto. Niiden tarkoituksena on olla puskurina siltä varalta, että polttoaineen siirtojärjestelmässä tapahtuu häiriö. Leijupetiin varastoituu palamatonta polttoainetta. Kivihiilen poltossa tämä varasto on suhteellisen suuri, koska kivihiilimurska palaa hitaasti esim. turpeeseen verrattuna. Leijupeti on myös lämpöenergian varasto, joka muuttuu, jos pedin lämpötila muuttuu.

Automaatio- ja säätötekniikan laitos Automaatio- ja säätötekniikan laitos Energian siirtyminen, muuntuminen ja varastoituminen voimalaitoksessa Höyrystin on suuri energiavarasto. Höyrystimessä kiertää kylläistä vettä ja höyrykuplia. Siinä tapahtuu siis kaksifaasivirtausta ja siksi sen mallintaminen on suhteellisen hankalaa. Höyrystintä voidaan pitää eräänlaisena höyryakkuna, josta vapautuu energiaa, kun paine laskee. Paineen laskiessa tapahtuu useita ilmiöitä: höyrystymislämpötila laskee jolloin höyrystys lisääntyy ja sen myötä höyrystimen lämpötila laskee, vesi-höyryseoksen höyrypitoisuus kasvaa ja sen myötä tilavuus kasvaa, lieriön pinnankorkeus nousee pinnankorkeuden säätö pienentää syöttövesivirtausta, höyrystimessä olevan vesihöyryseoksen massa vähenee ja sen myötä energia vähenee, höyrystymislämpö suurenee, veden tiheys suurenee.

Automaatio- ja säätötekniikan laitos Energian siirtyminen, muuntuminen ja varastoituminen voimalaitoksessa Tulistimien energia muuttuu paineen funktiona. Paineen kasvaessa tulistimissa olevan höyryn massa lisääntyy. Samalla energia lisääntyy, sillä energia on sitoutunut massaan. Höyrystimen ja tulistimien putkimateriaali on lämpövarasto, joka muuttuu, kun materiaalin lämpötila muuttuu. Materiaalin lämpötila seuraa suurin piirtein putken sisällä virtaavan veden lämpötilaa. Käynnistyksen aikana turbiinin ja generaattorin roottori on muuttuva liike-energian varasto. Kun generaattori on verkkoon tahdistettuna, pyörimisnopeus on vakio, eikä roottorin liike-energia muutu. Automaatio- ja säätötekniikan laitos Höyrystimen höyry-vesiseos Kattilan muuttuvat energiavarastot Lieriön paine KP-tulistimissa ja KP-höyrylinjoissa oleva höyry Tuorehöyryn paine Tulistimen ja höyrylinjojen metalli Höyryn lämpötila Välitulistimissa ja VP-höyrylinjoissa oleva höyry VP-höyryn paine

Automaatio- ja säätötekniikan laitos Tyypillisiä dynaamisia kokeita Tuotantoyksikön askelvastekoe Kokeen tarkoitus on osoittaa, miten nopeisiin tehonmuutoksiin tuotantoyksikkö kykenee. Kaikki säätöpiirit ovat automaatilla. Sähkötehon ohjearvoa muutetaan askelmaisesti esim. 10% nimellistehosta. Arvioidaan sähkötehon vasteen nopeutta sekä havaitaan höyryn paineen ja tulistuslämpötilojen heilahdus. Automaatio- ja säätötekniikan laitos Termisen hitauden määrityskoe Kokeen tarkoitus on määrittää, millainen on prosessin dynamiikka ilman säätöjä. Tätä tietoa tarvitaan tehonsäädön suunnittelussa ja virittämisessä. Sähkötehon säätö ja höyrynpaineen säätö ovat käsiohjauksella (eli pois päältä). Polttoaineen syöttöä muutetaan askelmaisesti esim. 10% nimellistehoa vastaavasta arvosta. Tuloksena ovat sähkötehon ja höyrynpaineen vasteet. Jos höyryn painetta säädetään turbiiniventtiileillä, koe on mahdollista tehdä myös niin, että höyryn painesäätö on päällä.

Automaatio- ja säätötekniikan laitos Höyrykapasiteetin määrityskoe Kokeen tarkoitus on määrittää, miten kattilan höyryja energiavarasto muuttuu paineen funktiona. Tätä tietoa tarvitaan tehonsäädön suunnittelussa ja virittämisessä. Sähkötehon säätö ja höyrynpaineen säätö ovat käsiohjauksella. Turbiinin pääsäätöventtiilien asentoa muutetaan askelmaisesti. Höyrynpaineen ja höyryvirran vasteista määritetään kattilan höyrykapasiteetti. Automaatio- ja säätötekniikan laitos Kokeessa tapahtuu seuraavaa. Höyrykapasiteetin määrityskoe Koska polttoaineen syöttö pysyy vakiona, on kattilan energiantuotto vakio. Kun turbiinin pääsäätöventtiilejä avataan, kattilasta lähtevän höyryn entalpiavirta kasvaa heti uuteen arvoon ja alkaa sitten hitaasti vähetä kohti muutosta edeltänyttä arvoa. Höyrynpaine pienenee tasaisesti ja asettuu lopulta vakioksi. Niin kauan kuin entalpiavirta on suurempi kuin ennen muutosta, kattilan energia vähenee. Kattilan energiakapasiteetti on kattilan energian muutoksen suhde paineen muutokseen

Automaatio- ja säätötekniikan laitos Automaatio- ja säätötekniikan laitos Sikäli kuin höyryn ominaisentalpia on likimain vakio, voidaan määrittää kattilan höyrykapasiteetti Ch, joka on kattilassa olevan veden ja höyryn massan muutoksen suhde paineen muutokseen.

Automaatio- ja säätötekniikan laitos Avoimen termodynaamisen prosessin dynaamiset taseet Massatase Olkoon m järjestelmän sisältämä massa ja Σq m järjestelmän kontrollipinnan läpi kulkevien massavirtojen summa. Avoimen järjestelmän massatase on silloin Automaatio- ja säätötekniikan laitos Energiatase Järjestelmän energia E koostuu liike-energiasta Ek, potentiaallenergiasta Ep ja sisäisestä termisestä energiasta U. E = E + E + U k p Voimalaitoksen prosesseissa sisäenergia U on niin hallitseva, että liike-energia ja potentiaalienergia voidaan usein jättää huomiotta.

Automaatio- ja säätötekniikan laitos Ainevirran mukana siirtyvää energiaa kuvataan suureella energiavirta q E. Se voidaan lausua kontrollipinnan läpi virtaavan aineen ominaisenergian ε ja massavirran q m avulla. q E = ε q m Mekaaniset tehot voidaan jakaa hydrauliseen tehoo P h ja muihin mekaanisiin tehoihin P m. Hydraulinen teho on p Ph = paw = q ρ m p, w ja ρ ovat virtaavan aineen paine, virtausnopeus ja tiheys. A on virtauspoikkipinta. Energiatase Automaatio- ja säätötekniikan laitos Olkoon Σq e energiavirtojen summa, ΣΦ Iämpötehojen summa, ΣP h hydraulisten tehojen summa ja ΣP m muiden mekaanisten tehojen summa. Avoimen järjestelmän energiatase on silloin d E = q + Φ+ P + P dt E h m Usein saadaan riittävä tarkkuus käyttämällä sisäenergiaa U kokonaisenergian E sijasta. Silloin d U = q + Φ+ P + P dt U h m Energiatase