LUJIEN JA ULTRALUJIEN TERÄSTEN OPTIMAALISET TYÖSTÖPARAMETRIT KONEPAJAVALMISTUKSESSA

Samankaltaiset tiedostot
KONEISTUS KUUMAVALSSATUT TERÄSLEVYT JA -KELAT

Lastuavat työkalut A V A 2007/2008

Porausta tehdään erilaisilla työstökoneilla niin sorvissa, porakoneissa kuin koneistuskeskuksissa.

Ultralujien terästen konepajakäytettävyys

UDDEHOLM VANADIS 4 EXTRA. Työkaluteräksen kriittiset ominaisuudet. Käyttökohteet. Ominaisuudet. Yleistä. Työkalun suorituskyvyn kannalta

KJR-C2006 Lastuava työstö E. Niemi & P. Kyrenius & P. H. Andersson K2015 Kiitokset prof. Esko Niemelle materiaalista

Jabro Tools tuotevalikoima

Mittaa työstettävään kappaleeseen teräs FE 355 (myöntölujuus 355 N/mm 2 ) 40mm*40mm*8mm keskikohta.

SISÄLLYSLUETTELO. Poranterät pikateräksestä ja kovametallista Kierretapit Jyrsinterät pikateräksestä

MIILUX KULUTUSTERÄSTUOTTEET JA PALVELUT. - Kovaa reunasta reunaan ja pinnasta pohjaan -

UDDEHOLM VANCRON 40 1 (6) Työkaluteräksen kriittiset ominaisuudet. Yleistä. Ominaisuudet. Käyttökohteet. Työkalun suorituskyvyn kannalta

Uudet tuotteet

KYMENLAAKSON AMMATTIKORKEAKOULU Energiatekniikan koulutusohjelma / kunnossapito. Mika Lallukka KONEISTUKSEN PERUSTEIDEN OPETUSMATERIAALIEN LAADINTA

MVX TOOLS NEWS. Viimeisellä teknologialla suunniteltu erittäin tukevarunkoinen pora. Suuret halkaisijat ø 33.5 ~ ø 63.0 nyt saatavana B202FI

PVD-pinnoite Pidentää työkalujen käyttöikää, mutta parantaa myös luotettavuutta ja tuottavuutta!

UDDEHOLM VANADIS 6. Työkaluteräksen kriittiset ominaisuudet. Yleistä. Ominaisuudet. Käyttökohteet. Työkalun suorituskyvyn kannalta

TITEXin XD -teknologia: Uusi ulottuvuus syvänreiänporauksessa.

Teetkö töitä teräksestä valmistettavien rakennuspalkkien kanssa? Miten olet automatisoinut tuotantoasi?

UDDEHOLM UNIMAX 1 (5) Yleistä. Käyttökohteet. Mekaaniset ominaisuudet. Ominaisuudet. Fysikaaliset ominaisuudet

UDDEHOLM VANADIS 60. Käyttökohteet. Yleistä. Ominaisuudet. Erityisominaisuudet. Taivutuslujuus. Fysikaaliset ominaisuudet 1 (5)

SSAB Boron OPTIMOIDUT KARKAISUOMINAISUUDET

ArchiCad:istä Inventoriin ja NC-jyrsin mallin teko

UUTUUS. KULMA EXTREME Tehokkaampaan jyrsintään. UUSI TUOTE. Tasojyrsintä. Kulmajyrsintä. Urajyrsintä. Nousuinterpolaatio.

Super. Line SUPER LAATU SUPER HINTA SUPER SAATAVUUS 2016 LAAJENNETTU JULKAISU. SuperLine Oy Gühring AB Lämmittäjänkatu 4 A Helsinki

SAHAT. Rensi Finland Oy Yrittäjäntie KLAUKKALA

ONGELMAT ROUHINTASORVAUKSESSA JA -JYRSINNÄSSÄ PROBLEMS IN ROUGH TURNING AND MILLING

2 Materiaalitekniikka. 6 CNC- tekniikan perusteet

Apollo SPEEDY Syöttölaite

Erikoisjyrsin karkaistuun teräkseen Suurnopeus- sekä kuivaan työstöön Viimeistelyyn Kovuuksiin UUSI PINNOITE! Kaikki hinnat ilman Alv.

SÄRMÄYS, RAEX KULUTUS- TERÄKSET, ULTRALUJAT OPTIM QC TERÄKSET

Uppokipinätyöstö. ValuAtlas & CAE DS Muotin osien valmistus. Tampereen teknillinen yliopisto Tuula Höök

Kalle Juntunen LASTUAMISARVOJEN MÄÄRITYS ROBOTILLA TEHTÄVÄLLE PUUN JYRSINNÄLLE

SISÄLTÖ. BRICUT TOOLS OY. Kalvintatyökalut

Ignition to spark erosion KIPINÄTYÖSTÖTARVIKKEET

Asentaminen ohjaamon ulkopuolelle. Yleistä. Reiät ja reikämerkinnät. Reikien poraus

UDDEHOLM VANADIS 10. Työvälineteräksen kriittiset ominaisuudet. Yleistä. Ominaisuudet. Käyttökohteet. Työvälineen suorituskyvyn kannalta

Ultralujien terästen konepajakäytettävyyden tutkiminen

Trimat-kitkamateriaalit

Avarrus. Teoriaa F 4. Valintaprosessi F 9. Valikoiman yleisesittely F 14. Käyttö F 21. Ongelmanratkaisu F 25 F 3

JET-Power, ALU-Power ja D-Power kovametallijyrsimet

Kulutusta kestävät teräkset

JOUSTAVA YKSITTÄISVALMISTUS. Konepajamiehet Kauko Lappalainen

Tutkintokohtainen ammattiosaamisen näyttöjen toteuttamis- ja arviointisuunnitelma

UDDEHOLM VANADIS 30. Käyttökohteet. Ominaisuudet. Yleistä. Kylmätyöstö 1 (5)

Kaikki hinnat ilman Alv. 162

Strenx-teräksen edut: erikoisluja rakenneteräs, josta valmistetaan entistä vahvempia, kevyempiä ja kilpailukykyisempiä tuotteita

B.3 Terästen hitsattavuus

Lastuttavien aineiden jaottelu

Ultralujien terästen särmäys

Työkalujen Laserkorjauspinnoitus

Pyöröviilat ja kärkiupottimet... 2

KESKITY! KÄYTÄ!! VAARA- ALUE ÄLÄ HÄIRITSE SORVAAJAA!! S O R V A U S. Jos ajatuksesi harhailevat, työturvallisuus ja työn laatu kärsivät.

Spoileri, takaluukku

RAEX KAIKKINA AIKOINA KAIKKIIN OLOSUHTEISIIN

Luotettavuutta ja tarkkuutta

UDDEHOLM CALDIE 1 (6) Yleistä. Ominaisuudet. Fysikaaliset ominaisuudet. Käyttökohteet. Puristuslujuus. Lohkeilunkestävyys. Kylmätyöstösovellukset

3.2 Työstöratojen luonti

CoroMill 390 Varsijyrsimet teräkoolla 07 Teräslaatu GC1130

Lapin alueen yritysten uudet teräsmateriaalit Raimo Ruoppa

PURISTIN

ValuAtlas Kestomuottivalujen suunnittelu Seija Meskanen, Tuula Höök

KILPIEN VALMISTUS työkalut muovin ja kevytmetallien koneistukseen

MYYNTIEHDOT MERKKIEN SELITYKSET. HINNAT Kaikki mainitut hinnat ovat ALV 0%

Kannettavat putkentyostokoneet

Ama-Prom Finland Oy ei vastaa mahdollisista virheistä. Oikeudet muutoksiin pidätetään.

Luennon tavoite on antaa vinkkejä opintojakson harjoitustyön osakokoonpanojen ja koneenosien valmistusystävällisestä mallinnuksesta

JYRSINTÄ. Kovametallijyrsimet

463059S TIETOKONEAVUSTEINEN VALMISTUS 4 op / 2,5 ov

Pikaterässahajyrsimet alkaen Ø 15 mm... 4 Pyörösahanterät... 5 Kuumasahanterät...6 Vannesahan terät...7 BRICUT TOOLS OY

Kierresorvaus. Teoriaa C 4. Valintaprosessi C 9. Valikoiman yleisesittely C 13. Käyttö C 19. Ongelmanratkaisu C 25 C 3

KALVINTA, HIENOPORAUS JA SILOVALSSAUS

WSX445 KEVYTTÄ KONEISTUSTA UUDEN SUKUPOLVEN TASOJYRSIMELLÄ KAKSIPUOLEISILLA KÄÄNTÖTERILLÄ

3. VÄLJENTIMET, KALVAIMET

Johdanto Tuotteesta Kurssit

KONEISTUSSUOSITUKSIA STRENX -TERÄKSELLE

Ohutlevymateriaalien korroosio merivesiolosuhteissa

Kuva 2. Lankasahauksen periaate.

Lujat teräkset seminaari Lujien terästen hitsauksen tutkimus Steelpoliksessa

8% Co-pulveripikateräs (ASP50) Tank-Power pinnoite vaikeasti työstettäviä aineita varten.

FERRIITTISET RUOSTUMATTOMAT TERÄKSET.

KILT Oy Kauhakorvenkatu 52, Tampere puh fax

NC-koneet ja niiden ohjelmointi

ULTRAÄÄNIMUOKAUSLAITTEEN TESTAUS. Mikko Hokkanen Tampereen teknillinen yliopisto

Teoriatausta. Työvaiheet. CAD työkalut harjoituksessa. CAE DS Muotinsuunnitteluharjoitukset

LaserWorkShop 2006 OULUN ETELÄISEN INSTITUUTTI

What s New in SURFCAM V5 Sisällys

KOVAMETALLITUOTTEET VOIMAKASTA KULUMISTA VASTAAN

ABLOY EXEC AVAINJYRSINKONE 6232 KÄYTTÖOHJE

WSX445. Uuden sukupolven tasojyrsimellä kaksipuoleisilla kääntöterillä

SSAB FrameCalc ja SSAB High Strength Structural Hollow Sections Handbook, tutkimustuloksista käytännön sovelluksiin

LASER APPLICATION LAL LABORATORY

Äänellä vauhtia robottiin

MAPAL TRITAN KOVAMETALLIPORAT TUOTEKUVAUS

Turun Aikuiskoulutuskeskus

SSAB:n ultralujien terästen käyttö ja konepajaprosessit

( ) B-B 142 `0,3 28-0,2. 36 Ra1.6. 2x45. 1x45. 2x45. Keskiöporaus sallitaan. 0,5x0,5. Ra3.2. Ra1.6. Koneistusnäyttö Aihio: D50x145 S355

Tehokkaammin lujilla teräksillä

30 Opetussuunnitelma OSAAMISEN ARVIOINTI ARVIOINNIN KOHTEET JA AMMATTITAITOVAATIMUKSET OSAAMISEN HANKKIMINEN. suorittaja osaa: työskentely

Jyrsinterät pikateräksestä LEIKKUISET JYRSINTERÄT MONILEIKKUISET JYRSINTERÄT ROUHINTA JYRSINTERÄT PALLOPÄISET JYRSINTERÄT

Transkriptio:

LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT School of Energy Systems LUT Kone BK10A0402 Kandidaatintyö LUJIEN JA ULTRALUJIEN TERÄSTEN OPTIMAALISET TYÖSTÖPARAMETRIT KONEPAJAVALMISTUKSESSA OPTIMAL PARAMETERS FOR HIGH STRENGTH AND ULTRA HIGH STRENGTH STEELS IN WORKSHOP MANUFACTURING Lappeenrannassa 26.4.2018 Tuomas Alho Tarkastaja Ohjaaja TkT Timo Björk TkT Timo Björk

TIIVISTELMÄ Lappeenrannan teknillinen yliopisto LUT Energiajärjestelmät LUT Kone Tuomas Alho Lujien ja ultralujien terästen optimaaliset työstöparametrit konepajavalmistuksessa Kandidaatintyö 2018 29 sivua, 2 kuvaa, 19 taulukkoa ja 2 liitettä Tarkastaja: TkT Timo Björk Ohjaaja: TkT Timo Björk Hakusanat: Lastuamisarvot, Lastuamisnopeus, Syöttönopeus Tämän kandidaatintutkielman tavoitteena oli kerätä eri tietolähteistä lujille ja ultralujille teräksille lastuamisarvoja konepajavalmistusta varten. Arvoja kerättiin porausta, sorvaus ja jyrsintää varten. Näiden lastuamisarvojen kerääminen yhteen tiiviiseen kokonaisuuteen on tärkeää parhaan mahdollisen lopputuloksen saamiseksi niitä työstettäessä lastuavilla työstömenetelmillä. Optimaaliset lastuamisarvot pidentävät työkalujen käyttöikää, ja näin ollen säästetään työkalujen hankintakuluissa. Työstöparametrit vaihtelevat suuresti käytettävien työkalujen mukaan. Tässä tutkielmassa olevien arvojen tarkoituksena on olla osa isoa kokonaisuutta, jonka tarkoituksena on helpottaa suunnittelijan työtä tulevaisuudessa varsinkin tuotannon automatisoituessa. Tulevaisuudessa on mahdollista, että konepajatuotanto olisi kokonaan automatisoitua, jolloin robotit veisivät työstettäviä kappaleita työstökoneelta seuraavalle. Työstökoneet työstäisivät kappaleita suunnittelijan ohjelmoimalla ja suunnittelemalla tavalla. Tämän tutkielman sisältämät työstöarvot voivat siis toimia tulevaisuudessa suunnittelijan yhtenä työkaluna tuotannon suunnittelussa.

3 SISÄLLYSLUETTELO TIIVISTELMÄ SYMBOLILUETTELO 1. JOHDANTO... 5 1.1 Työn tarkoitus ja tavoite... 5 1.2 Rajaukset ja tutkimusmenetelmät... 5 2. PORAUS... 7 2.1 Porauksessa yleisimmin käytettävät terät... 7 2.2 Porausparametrejä... 8 3. SORVAUS... 13 3.1 Sorvauksessa käytettävät terät... 13 3.2 Sorvaukessa käytettäviä työstöarvoja lujille ja ultralujille teräksille... 14 4. JYRSINTÄ... 17 4.1 Otsajyrsintä ja kehäjyrsintä... 17 4.2 Otsajyrsintäarvot... 18 4.3 Nurkkajyrsintäarvot... 20 4.4 Jyrsintäarvot uran jyrsimistä varten... 21 5. KONEPAJATEKNIIKAN TULEVAISUUS... 23 5.1 Materiaalin valinta... 24 5.2 Suunnittelu... 24 5.3 Valmistelu... 25 5.4 Tuotanto ja valmis tuote... 26 LÄHTEET... 29 LIITTEET

4 SYMBOLILUETTELO fn fz n Vc CPS FPS HC Terän syöttönopeus [mm / kierros] Terän syöttönopeus [mm / terä] Pyörimisnopeus [rpm] Lastuamisnopeus [m / min] Cutting procedure specification Forming procedure specification Pinnoitettu kovametalli HF Kovametalli jonka raekoko < 1µm HSS High Speed Steel HW Kovametalli jonka raekoko 1µm WPS Welding procedure specification

5 1. JOHDANTO Nykyisessä yhteiskunnassa terästen käyttö on hyvin yleistä, sillä niitä löytyy esimerkiksi jokaisesta rakennuksesta. Teräksien ominaisuuksia kehitetään koko ajan, jotta rakenteista saataisiin entistäkin kestävämpiä ja kevyempiä. Lujat ja ultralujat teräkset ovatkin erinomaisia materiaaleja, koska niitä käytettäessä rakenteista saadaan yhtä lujia sekä lujempia kuin ennen, mutta pienemmällä materiaalimäärällä. Lujien ja ultralujien teräksien yleistyessä onkin tutkittava niiden työstöä, jotta saadaan paras mahdollinen lopputulos itse materiaaliin ja mahdollisimman pitkä käyttöikä niitä työstäville työkaluille. 1.1 Työn tarkoitus ja tavoite Tämän työn tarkoituksena on koota yhteen lujien ja ultralujien rakenneterästen optimaalisia työstöparametrejä eri tietolähteistä. Tutkittavat työstömenetelmät ovat poraus, sorvaus ja jyrsintä. Työn tavoitteita ovat: Koota selkeä kokonaisuus, jossa on esitetty tutkittaville teräksille optimaalisia työstöparametrejä porausta, jyrsintää ja sorvausta varten Luoda hahmotella konepajatekniikan tulevaisuudesta maailman digitalisoituessa Eri tietolähteissä ilmoitetut työstöarvot on taulukoitu niiden lukemisen helpottamiseksi. Tämän kandidaatintutkielman tarkoituksena on myös toimia omalta osaltaan suunnittelijan avustavana työkaluna tulevaisuudessa, mikäli konepajatekniikka kehittyy tässä tutkielmassa esitettävän hahmotelman suuntaan. 1.2 Rajaukset ja tutkimusmenetelmät Tutkielmassa tutkitaan lujia ja ultralujia teräksiä varten annettuja parametrejä. Teräksien myötölujuudet tässä tutkimuksessa ovat 600 MPa:sta 1300 MPa:iin asti. Tässä kandidaatintyössä olevassa kirjallisuusosiossa esitetään eri teräsvalmistajien antamia työstöarvoja lujille ja ultralujille teräksille. Tietolähteitä ovat myös mahdolliset aikaisemmat tutkimukset ja koneistusta käsittelevät käsikirjat.

6 Konepajatekniikan tulevaisuutta hahmottelevassa osiossa käsitellään automatisoituneen tuotantolinjan toimintaa ja kappaleiden valmistusta. Kappaleen valmistuksessa on käytetty laserleikkausta, porausta, muovausta, hitsausta sekä jyrsintää. Näistä työstömenetelmistä tarkemmin perehdytään poraukseen ja jyrsintään.

7 2. PORAUS Poraus on lastuava työstömenetelmä, jossa työstettävään kappaleeseen tehdään reikiä. Poratessa terällä on kaksi parametriä, jotka vaikuttavat saatuun lopputulokseen. Lastuaminen tapahtuu, kun terä ja työstettävä kappale pyörivät toistensa suhteen ja samaan aikaan terää syötetään kappaleeseen lineaarisella liikkeellä. (Maaranen, 2004, s.43) Tämän tutkielman kirjallisuusosiossa porausta käsittelevät arvot on ilmoitettu lastuamisnopeutena ja terän synii öttönopeutena. Lastuamisnopeus voidaan kuitenkin muuttaa terän pyörimisnopeudeksi kaavan 1 avulla. Kaava 1 (Oberg et al. 2012, s. 1015) n = 1000 Vc π D 2.1 Porauksessa yleisimmin käytettävät terät Konepajatuotannossa on suuri merkitys sillä, millaisella terällä kappaletta työstetään. Työstöarvot määräytyvät käytettävän terämateriaalin mukaan. Pikateräksestä tehdyistä työkaluista yleisimpiä ovat sellaiset, joissa vaaditaan suurta murtolujuutta, kuten kierretapit, kierukkaporat ja varsijyrsimet. Pikateräkset voidaan luokitella kahteen pääluokkaan, pulverimetallurgisiin ja sulametallurgisiin pikateräksiin. Pulverimetallurgiset terät valmistetaan jauheesta, joka kuumennetaan 1150 C:n lämpötilaan ja puristetaan muotoonsa. Etuna pulverimetallurgisissa terissä on, että niihin saadaan suurempi määrä seosaineita kuin sulametallurgisiin teräksiin sekä valmistettavan työkalun materiaali on tasalaatuisempaa kuin sulametallurgisilla materiaaleilla. Sulametallurgiset pikateräkset valmistetaan perinteisemmin valamalla ja muovaamalla. (Sariola, 2007, s. 5.)

8 Tärkeimpiä seosaineita pikateräksissä ovat hiili (0,8 % 1,3 %), kromi (noin 4 %), molybdeeni (1 % 10 %), volframi (1 % 18 %), koboltti (0,5 % 10 %). Seosaineena voi olla myös vanadiinia joka nostaa pikaterästen kulutuksen kestoa ja kuumakovuutta. Eniten esiintyvä merkintätapa pikateräksille on HSS. (Sariola, 2007, s. 5-6) Pikateräksiä huomattavasti kovempia teriä ovat kovametalliterät. Suuremman kovuuden omaavat kovametallit antavat mahdollisuuden suurempaan lastuamisnopeuteen ja näin ollen tekevät työstämisestä taloudellisesti kannattavampaa. Kovametalleista tehdään useasti erilisiä kääntöpalateriä, joita voidaan kääntää edellisen särmän mennessä huonoon kuntoon. Tällaisia kääntöpalateriä käytetään paljon myös sorvauksessa ja jyrsinnässä. Teriä voidaan kiinnittää työkalun runkoon myös juottamalla tai voidaan valmistaa jopa kokonaan kovametallisia kierukkaporia. (Sariola, 2007, s. 6-7.) Kovametallit valmistetaan pulverista joka sisältää kaikki tarvittavat ainesosat. Raaka-aineina kovametalleissa ovat volframikarbidi ja koboltti. Pulveri puristetaan muottiin, jonka jälkeen se lämmitetään lähelle sidosaineensa, koboltin, sulamislämpötilaa. Tällöin koboltti muodostaa pitkiä karbidiketjuja sen liuetessa karbidien raerajoille. Pinnoitetuista kovametalleista käytetään merkintää HC. Pinnoittamattomilla kovametalleilla on kaksi eri merkintää HW ja HF. Niitä käytetään seuraavasti: Raekoko 1µm käytetään HW Raekoko < 1µm käytetään HF. Edellä mainitut merkinnät kovametalleille on määritelty ISO 513- standardissa. (Sariola, 2007, s. 6-7) 2.2 Porausparametrejä Taulukossa 1 on SSAB:n suosituksia pikaterästerille heidän omille suurlujuusrakenneteräksilleen. Terän halkaisijat ovat 5 mm:stä aina 30 mm asti. Lastuamisnopeus vaihtelee 5 m/min ja 18 m/min välillä ja terän syöttönopeus vaihtelee 0,06 mm/kierros ja 0,36 mm/kierros välillä. Taulukossa 1 on myös ilmoitettu terän

9 pyörimisnopeus, joka vaihtelee 190 rpm ja 1150 rpm välillä. Vasemmanpuolimmaisessa sarakkeessa on ilmoitettu riveittäin terän halkaisija. Seuraavissa sarakkeissa on ylimmäisenä teräs ja sen alapuolella sille ilmoitetut työstöarvot. Taulukko 1. SSAB:n suosituksia Strenxin porausta varten. (SSAB, 2017, s. 7) HSS terät Strenx 700 Strenx 900 Strenx 960 Strenx 1100 Strenx 1300 Vc [m/min] 18 15 15 7 5 Terän halkaisija fn [mm/kierros] / n [rpm] [mm] 5 0,06/1150 0,06/950 0,06/950 0,05/445 0,04/280 10 0,12/570 0,11/475 0,11/475 0,10/220 0,08/140 15 0,17/380 0,16/320 0,16/320 0,15/150 0,12/95 20 0,24/290 0,23/240 0,23/240 0.20/110 0,16/70 25 0,3/230 0,29/190 0,29/190 0,25(90 0,2/55 30 0,36/190 0,35/160 0,35/160 0,3/75 0,24/45 Taulukossa 2 on esitetty SSAB:n suosituksia kiinteille kovametalliterille heidän omille suurlujuusrakenneteräksilleen. Arvot ovat suosituksia vakaisiin konepajaolosuhteisiin terille, joissa lastuamisneste tulee terän sisältä (SSAB, 2017, s. 8). Kovametalliterillä lastuamisnopeuden arvot ovat huomattavasti suuremmat kuin pikaterästerillä. Lastuamisnopeus vaihtelee 35 m/min ja 100 m/min välillä. Syöttönopeudet ovat kuitenkin lähes samat kuin pikaterästerillä. Kunkin teräksen alapuolella on ilmoitettu lastuamisnopeus ja sen alapuolella syöttönopeus terän halkaisijan mukaan.

10 Taulukko 2. SSAB:n suosituksia kiinteille kovametalliterille Strenxin porausta varten. (SSAB, 2017, s.8) Kiinteät kovametalliterät Strenx 700 Strenx 900/960 Strenx 1100 Strenx 1300 Vc [mm/min] 70-100 60-90 40-60 35-50 fn [mm/kierros] min-max min-max min-max min-max 3,0-5,0 0,03-0,06 0,03-0,06 0,03-0,05 0,03-0,05 Halkaisija 5,01-10,0 0,06-0,12 0,06-0,12 0,05-0,11 0,05-0,10 (mm) 10,01-15,0 0,12-0,18 0,12-0,18 0,11-0,16 0,10-0,15 15,01-20,0 0,18-0,25 0,18-0,24 0,16-0,22 0,15-0,19 Taulukossa 3 on esitetty SSAB:n suosituksia kääntöpalaterillä poraamista varten. Terien halkaisija on 12,0 mm:stä 63, 5mm:in asti. Lastuamisnopeudet vaihtelevat 40 m/min ja 150 m/min välillä. Terän syöttönopeus vaihtelee 0,04 mm/kierros ja 0,16 mm/kierros välillä. Taulukon 2 tavoin jokaisen teräksen alapuolella on ilmoitettu lastuamisnopeus ja syöttönopeus terän halkaisijan mukaan. Taulukko 3. SSAB:n suosituksia kääntöpalaterille Strenxin porausta varten. (SSAB, 2017, s. 8) Strenx 700 Strenx900/960 Strenx 1100 Strenx 1300 Vc [m/min] 100-150 80-140 50-90 40-70 fn[mm/kierros] min-max min-max min-max min-max 12,0-20,0 0,04-0,10 0,04-0,10 0,04-0,10 0,04-0,08 Halkaisija(mm) 20,01-30,0 0,06-0,12 0,06-0,12 0,06-0,12 0,04-0,10 30,01-44,0 0,06-0,14 0,06-0,14 0,06-0,14 0,06-0,12 44,01-63,5 0,08-0,16 0,08-0,16 0,08-0,16 0,08-0,14 Machinerys s handbook ilmoittaa AMS 6421, 6422, 6424, 6427, 6428, 6430, 6432, 6433, 6434, 6436, 6422 standardoiduille ultralujille teräksille porausarvot teräksen kovuuden

11 mukaan. Näiden teräksien kovuus vaihtelee 220 400 välillä Brinellin asteikolla mitattuna. Ilmoitetut arvot ovat kääntöpalaterille ja pinnoitetuille kovametalliterille. (Oberg et al, 2012, s.1062) Arvot on esitetty taulukossa 4. AMS-standardoitujen terästen koostumus on esitetty liitteessä 2. Taulukko 4. Mukaillen (Oberg et al. 2012, s. 1062). Yksiköt muunnettu metrisiksi ja porausta koskemattomat osat jätetty pois. Kovuus (Brinell) f n [mm/kierros] V c [m/min] 220-350 0,20 99 350-400 0,20 82 Taulukossa 5 on esitetty SSAB:n suosittelemat lastuamisarvot porausta varten terille, joissa on vaihdettava kovametallipää. Terän halkaisija on 7,5 mm:stä 33,0 mm asti. Lastuamisnopeudet ovat luonnollisestikin samat kuin kovametallista tehdyillä kääntöpalaterillä, koska molempien terien lastuava osa on samaa materiaalia. Syöttönopeuksissa on pieniä eroja. Taulukossa 5 on ilmoitettu myös kunkin teräksen kohdalla lastuamisnopeus ja sen alapuolella syöttönopeus käytettävän terän mukaan. Taulukko 5. SSAB:n suosituksia Strenxin poraukseen vaihdettavalla kovametallipäällä. (SSAB, 2017, s. 8) Strenx 700 Strenx 900/960 Strenx 1100 Strenx 1300 Vc [m/min] 70-100 60-90 40-60 35-50 fn [mm/kierros] min-max min-max min-max min-max 7,5-12,0 0,08-0,13 0,08-0,13 0,07-0,11 0,06-0,10 Halkaisija 12,01-20,0 0,13-0,22 0,13-0,22 0,11-0,15 0,10-0,14 (mm) 20,01-25,0 0,22-0,28 0,22-0,27 0,15-0,20 0,14-0,18 25,01-33,0 0,28-0,37 0,27-0,36 0,20-0,28 0,18-0,24

12 Dillimax on Dillingerin valmistama suurlujuuksinen rakenneteräs ja sitä on saatavilla 500 Mpa:n lujuudesta aina 1100 MPa:iin asti (Dillinger, 2007, s.4). Liitteessä 1 on esitetty Dillingerin ilmoittamia arvoja Dillimaxin porausta varten.

13 3. SORVAUS Yleisesti sorvaamalla valmistetut kappaleet ovat pyörähdyskappaleita eli niiden poikkileikkaus on ympyrän muotoinen. Työstettävä kappale kiinnitetään sorvin istukkaan, joka pyörii. Teräkelkassa oleva terä lastuaa kappaletta säädetyin parametrein. Tietokoneohjelmoidut NC-sorvit ovat syrjäyttäneet perinteisen manuaalisesti ohjattavan sorvin suuria tuotantomääriä tehdessä. Numeerisesti ohjattavat sorvit nopeuttavat sarjatuotantoa huomattavasti, sillä yhteen sorviin voidaan ohjelmoida useita työstövaiheita ja kiinnittää useita työkaluja. Kone vaihtaa itse työkalut ja työstää kappaleen ohjelmoinnin mukaisesti. (Maaranen, 2004, s. 96.) Kuten porauksessa ja jyrsinnässä, voidaan sorvauksessakin lastuamisnopeus muuttaa pyörimisnopeudeksi kaavan 1 avulla, jossa halkaisijana käytetään työstettävän kappaleen halkaisijaa (Oberg et al. 2012, s. 1015). 3.1 Sorvauksessa käytettävät terät Sorvaamalla voidaan valmistaa erilaisia muotoja pyörivään kappaleeseen. Näiden muotojen saamiseksi tarvitaan erilaisia teriä. Sorvaamalla voidaan työstää kappaletta myös sisäpuolelta. Samaan käyttötarkoitukseen on kuitenkin olemassa teriä, joiden ominaisuudet ovat erilaiset. Taulukossa 6 on esitetty terien luokitus, joiden mukaan oikea kovametalliterä valitaan. Toiset terät kestävät enemmän kulutusta kuin toiset, mutta toiset terät ovat kovempia kuin toiset.

14 Taulukko 6. Mukaillen (Oberg et al. 2012. s.791) Symbooli ja väri P sininen M keltainen K punainen Luokka P01 P10 P20 P30 P40 P50 M10 M20 M30 M40 K01 K10 K20 K30 K40 Terän lujuus kasvaa Kulutuksen kesto kasvaa Nopeus kasvaa Terän kovuus kasvaa Syöttö kasvaa 3.2 Sorvaukessa käytettäviä työstöarvoja lujille ja ultralujille teräksille Porauspatametrien tavoin SSAB on ilmoittanut suositusparametrinsa myös sorvausta varten omille suurlujuusteräksilleen. Taulukossa 7 on esitetty suositeltavat arvot sorvausta varten. Taulukon vasemmanpuoleisimmassa sarakkeessa on ilmoitettu teräs kukin omalla rivillään, ylimmällä rivillä on ilmoitettu teräluokka, ja sen alapuolella kolme syöttönopeutta. Kunkin teräksen kohdalla on näitä kolmea syöttönopeutta vastaavat kolme lastuamisnopeutta.

15 Taulukko 7. Suositeltavat arvot Strenxin sorvaamiseen (SSAB, 2017, s.17) Teräluokka P25 / C6 P35 / C6-C7 K20 / C2 fn (mm/kierros) 0,1-0,4-0,8 0,1-0,4-0,8 0,1-0,3 Vc [m/min] Strenx 700 285-195 - 145 230-150 100 - Sternx 900/960 130-90 - 70 105-65 45 - Strenx 1100 130-90 - 70 105-65 45 - Strenx 1300 - - 100-80 Machinery s handbook:n ilmoittamat sorvausarvot soveltuvat liitteessä 2 esitetyille AMS standardin mukaisille teräksille. Arvot on ilmoitettu 220 400 Brinellin kovuisille teräksille. Nämä arvot vaihtelevat käytettävien terien mukaan. Pikaterästerillä sorvattaessa syöttönopeutena on käytetty 0,30 mm/kierros (Oberg et al. 2012, s. 1029). AMS -standardin mukaisten terästen lastuamisarvot on esitetty taulukoissa 8, 9 ja 10. Taulukko 8. Mukaillen (Oberg et al, 2012, s.1029). HSS- terä V c [m/min] / Päällystämätön V c[m/min] / Terät f n[mm/kierros] kovametalli f n[mm/kierros] Kovuus (Brinell) Kova terä luja terä 220-300 20 / 0,30 300-350 15 / 0,30 67 / 0,43 30 / 0,9 350-400 10 / 0,30 50 / 0,43 17 / 0,9 Taulukko 9. Mukaillen (Oberg et al. 2012, s. 1029). Terät Päällystetty kovametalli V c [m/min]/ f n[mm/kierros] Kovuus (Brinell) Kova terä Luja terä 300-350 108 / 0,5 182 / 0,7 350-400 99/ 0,43 53 / 0,7

16 Taulukko 10. Mukaillen (Oberg et al. 2012, s. 1029). Terät Keraaminen terä Cermetti Kovuus (Brinell) V c [m/min]/ f n[mm/kierros] V c [m/min]/ f n[mm/kierros] 300-350 210 / 0,25 174 / 0,18 350-400 210 / 0,20 136 / 0,18

17 4. JYRSINTÄ Jyrsimällä voidaan valmistaa muun muassa hammaspyöriä, uria, reikiä tai tasoja työstettävään kappaleeseen. Työstettävä kappale kiinnitetään jyrsinkoneen pöytään. Lastuaminen suoritetaan esimerkiksi jyrsinkoneen pöydän tekemällä syöttöliikkeellä ja jyrsinterän pyörivällä liikkeellä. Jyrsintää voidaan tehdä otsa- sekä kehäjyrsintänä. Tässä tutkielmassa ilmoitetut arvot ovat kuitenkin vain otsajyrsinnälle. (Maaranen, 2004, s. 173.) 4.1 Otsajyrsintä ja kehäjyrsintä Otsajyrsinnällä jyrsitään tyypillisesti tasopintoja. Teräpäässä käytetään kovametallista tehtyjä kääntöpalateriä, mutta otsajyrsintää voidaan tehdä myös lieriöotsajyrsimellä. Lieriöpinnan terät tekevät pääasiallisen lastuamisen, kun taas otsapinnan terien tehtävänä on jyrsittävän tasopinnan tasaaminen. Jyrsittävä kappale ja jyrsinpää ovat kohtisuorassa toisiaan vasten otsajyrsinnässä. (Maaranen, 2004, s. 198-199). Otsajyrsintää voidaan tehdä kahdella tavalla. Vastajyrsinnässä terän syöttö ja pyörimisliike ovat vastakkaissuuntaiset ja myötäjyrsinnässä syöttö ja pyörimisliike ovat samansuuntaiset. Terän asettaminen jyrsittävään kappaleeseen nähden määrää, että tapahtuuko enemmän myötä- vai vastajyrsintää. Jyrsittäessä koko terän leveydeltä myötä- ja vastajyrsintäosuudet ovat saman kokoiset. Terä pyritään kuitenkin sijoittamaan siten, että suurempi osuus jyrsinnästä tapahtuisi vastajyrsintänä. Tällöin lastuaminen ei tapahdu koko terän leveydeltä. (Maaranen, 2004, s. 181, 198-199) Kehäjyrsinnässä lastuavan terän akseli ja lastuttava pinnan normaali ovat kohtisuorassa. Lastuaminen tapahtuu lieriömäisen terän kehällä olevien terien avulla. Kehäjyrsintää voidaan suorittaa otsajyrsinnän tavoin myötä- sekä vastajyrsintänä. Myötäjyrsinnässä terän osuessa työstettävään kappaleeseen ovat syöttö sekä terän pyörimissuunta samaan suuntaan. Ohuita kappaleita jyrsitään useasti myötäjyrsintänä. (Maaranen, 2004, s. 198.) Kehäjyrsintää tehtäessä vastajyrsintänä syötön liike on vastakkainen terän pyörimissuuntaan nähden. Terä painuu syötön ansiosta kappaleeseen ja lastun irtoaminen alkaa. Maaranen

18 sanoo kirjassaan seuraavasti: Kehäjyrsintä suoritetaan yleensä vastajyrsintänä. (Maaranen, 2004, s.198) 4.2 Otsajyrsintäarvot SSAB on ilmoittanut suosituksensa Strenx terästensä jyrsintää varten. Keskivertoja koneistusolosuhteita, 45 teräkulmaa ja P30 teräluokan kääntöpalateriä varten SSAB on suositellut taulukon 11 mukaisia työstöarvoja. Vakaissa koneistusolosuhteissa voidaan teräluokka vaihtaa P10- luokkaan ja SSAB:n mukaan nostaa lastuamisnopeutta 80-100%. (SSAB, 2017, s. 14.) P10 teräluokkaa varten nostetut lastuamisarvot on esitetty taulukoissa 12 ja 13. Taulukko 11. SSAB:n ilmoittamat jyrsintä arvot otsajyrsintää varten. (SSAB, 2017, s. 14.) Strenx 700 Strenx 900 / 960 Strenx 1100 Strenx 1300 Vc[m/min] 200-250 180-220 110-150 100-140 fz [mm/terä] min - max min - max min - max min - max Teräluokka P30 0,15-0,35 0,15-0,35 0,15-0,35 0,15-0,35 Taulukko 12. SSAB:n ilmoittamia otsajyrsintäarvoja nostettu 80 prosenttia ja teräluokka vaihdettu P10:en. Strenx 700 Strenx 900 / 960 Strenx 1100 Strenx 1300 Vc [m/min] 360-450 324-396 198-270 180-252 fz [mm/terä] min - max min - max min - max min - max Teräluokka P10 0,15-0,35 0,15-0,35 0,15-0,35 0,15-0,35

19 Taulukko 13. SSAB:n ilmoittamia otsajyrsintäarvoja nostettu 100 prosenttia ja teräluokka vaihdettu P10:en. Strenx 700 Strenx 900 / 960 Strenx 1100 Strenx 1300 Vc [m/min] 400-500 360-440 220-300 200-280 fz [mm/terä] min - max min - max min - max min - max Teräluokka P10 0,15-0,35 0,15-0,35 0,15-0,35 0,15-0,35 Ultralujia AMS- teräksiä varten Machinery s handbook on ilmoittanut taulukon 14 mukaiset parametrit. Arvot perustuvat 10 hampaisella ja 20 mm halkaisijaltaan olevalla otsajyrsimellä tehtyihin tutkimuksiin. (Oberg et al. 2012, s. 1047) Taulukko 14. AMS-standardoitujen ultralujien terästen työstöarvot kovuuden perusteella. Mukaillen (Oberg et al, 2012, s. 1047) Pinnoitettu kovametalliterä Kovuus (Brinell) V c [m/min] / f z [mm/terä] 350 400 40 / 1,0 Myös pyöreitä teräpaloja varten on SSAB ilmoittanut suosituksensa. Näitä pyöreitä teräpaloja tulisi käyttää varsinkin silloin, kun työstettävässä kappaleessa on esimerkiksi reikiä tai onkaloita ja koneistusolosuhteet ovat keskiverrot. Pyöreät teräpalat sopivat tällaiseen työstöön, koska niissä on vahva leikkaava reuna. Taulukossa 15 on ilmoitettu lastuamisarvot näitä pyöreitä P30 luokan teräpaloja varten. (SSAB, 2017, s. 14)

20 Taulukko 15. SSAB:n ilmoittamat lastuamisarvot pyöreitä teräpaloja varten. (SSAB, 2017, s. 14) Strenx 700 Strenx 900 / 960 Strenx 1100 Strenx 1300 Vc [m/min] 200 250 180-220 110 150 100-140 fz [mm/terä] min - max min - max min max min - max 0,10-0,25 0,10-0,25 0,10-0,25 0,10-0,25 4.3 Nurkkajyrsintäarvot Taulukossa 16 on SSAB:n ilmoittamat lastuamisarvot nurkkajyrsintää varten. Käytetty teräluokka on P30. Ylhäällä vaakasarakkeissa sijaitsevat teräkset ja niiden alla niitä vastaavat lastuamisarvot. Taulukko 16. Lastuamisarvot Strenxin nurkkajyrsintää varten terille, jotka ovat 90 asteen kulmassa. (SSAB, 2017, s. 14.) Strenx 700 Strenx 900/960 Strenx 1100 Strenx 1300 Vc [m/min] 200-250 180-220 110-150 90-130 fz [mm/terä] min-max min-max min-max min-max Teräluokka (P30) 0,12-0,25 0,12-0,25 0,12-0,25 0,12-0,25 Kovametallisella varsijyrsimellä tehtävää nurkkajyrsintää varten SSAB on ilmoittanut taulukon 17 mukaiset suositukset Strenxin työstöön. Taulukossa ylhäällä ovat teräkset ja niiden alla lastuamisnopeudet. Kolmella alimmaisella rivillä on kullekin teräkselle ilmoitettu syöttönopeus terän halkaisijan mukaan.

21 Taulukko 17. Lastuamisarvot Strenxille varsijyrsimellä tehtävää nurkkajyrsintää varten. (SSAB, 2017, s. 16) Strenx 700 Strenx 900/960 Strenx 1100 Strenx 1300 V c [m/min] 210-240 180-210 160-190 120-150 f z [mm/terä] min - max min - max min - max min - max 3,0-6,0 0,02-0,05 0,02-0,04 0,02-0,04 0,015-0,03 Halkaisija (mm) 8,0-12,0 0,07-0,10 0,06-0,09 0,06-0,09 0,05-0,07 14,0-20,0 0,10-0,14 0,10-0,13 0,10-0,12 0,08-0,10 4.4 Jyrsintäarvot uran jyrsimistä varten Varsijyrsimellä voidaan jyrsiä myös uria kappaleeseen. Tällaista työstä varten SSAB on ilmoittanut taulukon 18 mukaiset arvot. Lastuamisnopeudet ovat selkeästi pienemmät kuin varsijyrsimellä tehtävässä nurkkajyrsinnässä. Varsijyrsimellä jyrsittäessä uraa tulisi lastuamissyvyyden olla maksimissaan 0,5 kertainen jyrsimen halkaisijaan nähden (SSAB, 2017, s. 15.) Taulukko 18. Lastuamisarvot uran jyrsimistä varten Strenx teräksille. (SSAB, 2017, s. 15.) Strenx 700 Strenx 900/960 Strenx 1100 Strenx 1300 V c [m/min] 95-120 85-110 70-95 45-70 fz [mm/terä] min - max min - max min - max min - max 0,01-0,01-3,0-6,0 0,035 0,01-0,03 0,01-0,03 0,025 Halkaisija (mm) 8,0-12,0 0,04-0,07 0,04-0,07 0,03-0,06 0,03-0,05 0,07-14,0-20,0 0,10 0,07-0,10 0,06-0,08 0,05-0,07

22 Taulukossa 19 on ultralujien AMS teräksien jyrsintäarvot uran sorvaamista varten. Kyseiset arvot ovat tarkoitettu 3-hampaiselle varsijyrsimelle (Oberg et al, 2012, s.1047). Taulukossa vasemmassa laidassa on ilmoitettu teräksen kovuus, ja oikeassa laidassa lastuamisnopeus sekä syöttönopeus. Taulukko 19. AMS-teräksien jyrsintäarvot uran jyrsimistä varten. Mukaillen (Oberg et al. 2012, s. 1047.) Terät Päällystämätön kovametalli Päällystetty kovametalli Kovuus (Brinell) V c [m/min] / f n[mm/kierros] V c [m/min] / f n[mm/kierros] 220 350 50 / 0,20 91 / 0,20 350 400 46 / 0,20

23 5. KONEPAJATEKNIIKAN TULEVAISUUS Tekniikan kehittyessä konepajatyöstön kehittymismahdollisuudet ovat hyvin suuret. Uudella tekniikalla olisi mahdollista vähentää ihmisen tekemää työtä ja näin ollen automatisoida tuotantoa. Automaation avulla olisi mahdollista kasvattaa tuotantomääriä ja näin ollen tehostaa tuotantoa muun muassa siten, että osia ei tarvitsisi kuljettaa osia paikasta toiseen, vaan kaikki työstövaiheet tapahtuisivat nopeasti yhdellä tuotantolinjalla. Robotit siirtelisivät työstettävää kappaletta työstövaiheesta seuraavaan suunnittelijan suunnitelman mukaisesti. Kuva 1. Digitalisoitunutta tuotantoa varten tehty luonnos. Kuvan 1 mukaisen kappaleen valmistus voisi olla tulevaisuudessa täysin automatisoitu prosessi, jossa suunnittelijan työn perusteella koneet tekevät kappaleen valmiiksi. Valmistusprosessi voitaisiin jakaa neljään osaan, jotka ovat:

24 1. Materiaalin valinta 2. Suunnittelu 3. Valmistelu 4. Tuotanto 5.1 Materiaalin valinta Työn aloitusvaiheessa suunnittelija valitsee materiaalin, josta valmistettava tuote valmistetaan. Tämä tuote voi koostua monesta eri materiaalista. Valitaan tässä tapauksessa esimerkiksi Strenx 960 kuvan 1 mukaisen kappaleen valmistukseen. Tulevaisuudessa suunnittelijalla voisi olla linkki, jonka takana olisi esimerkiksi eri teräsvalmistajien internetsivuja, esimerkiksi SSAB, Dillinger, Ovako ja Thyssenkrupp. Teräsvalmistajien kotisivuilta löytyvät eri teräksien mekaaniset- ja kemialliset ominaisuudet, joiden mukaan suunnittelija voisi valita oikean materiaalin. Toisena vaihtoehtona olisi, että eri teräsvalmistajien tarjoamat teräkset olisi koottu yhteen tietokantaan. Tästä tietokannasta olisi helppo etsiä eri teräksiä hakutoiminnon avulla, johon voisi syöttää esimerkiksi teräksen nimen tai myötölujuuden. Teräksiä voisi myös selata listattuna valitun ominaisuuden perusteella. 5.2 Suunnittelu Valmistettavan tuotteen suunnittelu alkaa luonnosten tekemisellä. Luonnosten jälkeen tuotteesta luodaan 3D-malli, johon paikoitettaan reikien paikat, viisteet, leikattavat kohdat, silloitusten paikat, hitsien alku ja loppupaikat sekä hitsausjärjestys. Viimeiseksi paikoitettaisiin jyrsittävä pinta. Tehty 3D-malli ladataan työstökoneita ohjaavaan ohjelmistoon.

25 5.3 Valmistelu Työstön valmistelu aloitetaan asettamalla työstövaiheet järjestykseen, jossa ne suoritetaan. Tässä esimerkissä työstövaiheet olisivat seuraavassa järjestyksessä: 1. Laserleikkaus, leikataan materiaalivaraston levystä tarvittava määrä materiaalia ja leikataan levyt oikeaan muotoon, reikien leikkaus 2. QR- koodin siirto materiaalivaraston levystä työstettäviin levyihin 3. Poraus ja kierteitys 4. Muovaus 5. Hitsaus 6. Jyrsintä Asettamalla työstövaiheet järjestykseen kappaleita siirtelevät robotit tietäisivät, että mihin tuote on seuraavaksi menossa ja mistä se on tulossa. Vaiheiden järjestelyn jälkeen ohjelmisto pyytää kunkin työstövaiheen tarkkoja tietoja. Kunkin vaiheen työstöarvot voisivat löytö joko tietokannasta, josta myös materiaali on valittu tai linkistä, joka vie suunnittelijan teräksen valmistajan internetsivuille. Valmistajan kotisivuilta suunnittelija voisi katsoa oikeat arvot työstettävälle kappaleelle ja syöttää ne ohjelmistoon. Toisena vaihtoehtona olisi valita arvot tietokannasta, mikäli tietokanta olisi olemassa. Mikäli materiaali olisi valittu tietokannasta, voisi leikkausta, porausta, muovausta ja jyrsintää varten ohjelmisto itse ehdottaa käytettäviä arvoja tietokannan perusteella. Tällöin tarvitsisi vain paikoittaa tehtävät toimenpiteet. Laserleikkausta varten ohjelmisto pyytää leikkauksessa käytettävää energiaa ja leikkausnopeutta (CPS). Leikattavat reunat ja reiät onkin jo paikoitettu aikaisemmin. Porausta ja kierteitystä varten ohjelmistoon on syötettävä joko lastuamisnopeus tai pyörimisnopeus, sekä syöttönopeus. Ohjelmisto pystyisi laskemaan lastuamisnopeuden ja terän halkaisijan avulla terän pyörimisnopeuden. Arvoja syötettäessä olisi mahdollista määrittää monessako osassa, millä terillä ja arvoilla porataan. Esimerkki tällaisesta on esimerkiksi reikä, johon on tehtävä upote ruuvin kantaa varten, jotta kanta ei jäisi pinnan yläpuolelle. Tässä esimerkissä materiaalina käytetään Strenx 960, ja porattavien reikien halkaisijana 12 mm. Poraus suoritetaan terällä, jossa on kääntöpalaterät, joten

26 lastuamisnopeudeksi valittaisiin 140 m/min ja syöttönopeudeksi 0,10 mm/kierros taulukon 3 perusteella. Muovausta varten ohjelmistoon tulisi syöttää muun muassa taivutussäteen ja levyn paksuuden arvot sekä haluttu kulma tehtävälle taivutukselle (FPS). Takaisinjousto-ilmiön ohjelma ottaisi huomioon simuloimalla tehtävän taivutuksen ja ottamalla huomioon käytettävän materiaalin tiedot. Hitsausta varten suunnittelijan tulisi syöttää ohjelmaan käytettävä virta, jännite, hitsausnopeus sekä hitsin a-mitta (WPS). Viimeisinä työstöarvoina ohjelmaan syötettäisiin lastuamisarvot jyrsintää varten. Tässä esimerkissä lastuamisnopeus olisi 440 m/m ja syöttönopeus 0,35 mm/teräpala taulukon 11 perusteella. Valmisteluvaiheen lopuksi koko tuotantoprosessi simuloitaisiin ja varmistettaisiin kaikkien prosessien toimivuus. 5.4 Tuotanto ja valmis tuote Tuotanto alkaa robottien noutaessa materiaalit levytyökeskukselle. Levytyökeskus leikkaa laserilla oikean kokoiset ja muotoiset palat tuotetta varten. Tässä tuotteessa aluslevyssä olevat reiät valmistetaan myös laserilla leikkaamalla. Tämän jälkeen laseri siirtää QR-koodit alkuperäisistä materiaalivaraston levyistä työstettäviin levyihin. Tässä tapauksessa tuote koostuu kahdesta levystä, joten tarvitaan myös kaksi robottia liikuttamaan kappaleita. Laserleikkauksen jälkeen robotti liikuttaa toisen levyn poralle, jossa tehdään reiät ja kierteet.

27 Kuva 2. Laserleikattu aluslevy. Robotin tuodessa toista levyä poralle, toinen robotti siirtää aluslevyn jo valmiiksi hitsausasemalle. Levyn saapuessa poralle, voisi levyn paikoitus tapahtua esimerkiksi konenäön avulla, jotta reiät porattaisiin varmasti oikeisiin kohtiin. Ensin porataan reiät ohjelmaan syötetyin parametrein, jonka jälkeen pora vaihtaa itse työkalua kierteittävään terään. Kierteittämisen jälkeen robotti liikuttaa levyn muovattavaksi. Levyn saapuessa muovausasemalle robotti asettaa levyn prässiin. Levy voitaisiin saada asetettua juuri oikeaan kohtaan esimerkiksi sensoreiden avulla. Robotti osaa asettaa levyn prässiin oikein päin levyssä olevan QR koodin avulla. Prässissä olevien sensoreiden avulla robotti saisi reaaliaikaista tietoa levyn sijainnista, jolloin prässättävä nurkka osuisi juuri oikeaan kohtaan. Levyn ollessa halutussa kohdassa ja oikeassa asennossa, levyyn tehdään taivutus prässäämällä levy taivutustyökalua vasten. Prässäyksen jälkeen robotti tarttuisi kappaleeseen ja veisi sen hitsausasemalle, jossa aluslevy on jo valmiina. Hitsausasemalla robotit asettaisivat levyt oikein päin ja oikeaan kohtaan toisiinsa nähden. Robotit pitäisivät kiinni levyistä jolloin hitsausrobotti suorittaa silloituksen. Tässä tapauksessa silloitus suoritettaisiin samaan aikaan molemmista päistä. Seuraavaksi levyt

28 hitsataan toisiinsa suunnittelijan asettaman järjestyksen perusteella. Hitsausarvot on määritetty jo valmisteluvaiheessa. Viimeisenä työstövaiheena on jyrsintä. Robotti tuo kappaleen jyrsimelle, jossa sensoreiden avulla saataisiin selville pinnan muoto, ja että onko kappale vinossa. Kappaleesta jyrsittäisiin mahdollisimman vähän, mikäli haluttuna lopputuotteena olisi tasainen ja vaakasuora pinta. Suunnittelijan tekemien suunnitelmien mukaan olisi mahdollista myös jyrsiä uria tai syvennyksiä paksumpiin levyihin. Jyrsinnän jälkeen kappale on valmis, jolloin se siirretään pois työstökoneilta valmiiden tuotteiden joukkoon.

29 LÄHTEET Dillinger HÜTTE GTS. 2007. Dillimax technical information [verkkodokumentti]. Dillingen: huhtikuu 2007 [viitattu 2.4.2018]. 52 s. Saatavissa PDF-tiedostona: https://www.dillinger.de/d/en/products/proprietary-steels/dillimax/index.shtml Maaranen, K. 2004. Koneistustekniikat. 5. painos. Porvoo: WS Boowel. 325 s. Oberg, E. & Jones, F. D. & Horton, H. L. & Ryffel, H. H. 2012. Machinery s Handbook. 29. edition. New York: Industrial Press. 2788 s. Ross, R.B. 1980. Metallic materials specification handbook. 3.edition. London: Spon. 793 s. Sariola, H. 2007. Teräaineet: kuluminen, valinta ja kulumisen hallinta sekä taloudellinen käyttö. Helsinki: Saritec tmi. 60 s. SSAB. 2017. Machining recommendations for Strenx.[verkkodokumentti]. Tukholma: 2017 [viitattu 12.3.2018]. 28 s. Saatavissa PDF-tiedostona: https://www.ssab.fi/ladattavattiedostot?dcfilter=strenx&dcsearch=

30 LIITTEET DILLIMAX Työkalu Lastuamisnopeus [m/min] Syöttö [mm/kierros] Ø 5-15 Ø 20-30 Ø 30-40 Co seosteinen 690 pikaterästerä 0,05-0,15 0,05-0,15 0,15-0,25 0,20-0,25 Kääntöpalaterä t 80-100 - 0,10-0,12 0,12 Kiinteä 0,05-0,20-890 kovametalliterä 35-50 0,15 0,15-0,25 0,25 Co seosteinen 0,05 - pikaterästerä 8-12 0,16 0,20-0,25 - Kääntöpalaterä t 70-90 - 0,10-0,12 0,12 965 1100 Kiinteä kovametalliterä 35-50 ilman sisäistä lastuamisnestettä 0,10-0,20 0,15-0,25-40 - 70 sisäisellä lastuamisnesteellä Co seosteinen pikaterästerä 8-10 0,05-0,16 0,16-0,25 - Kääntöpalaterä t 60-80 - 0,10-0,12 0,12 35-50 ilman Kiinteä kovametalliterä sisäistä lastuamisnestettä 0,10-0,20 0,18-0,25-40 - 70 sisäisellä lastuamisnesteellä Co seosteinen 0,05 - pikaterästerä 6-10 0,16 0,18-0,25 - Kääntöpalaterä t 50-70 - 0,10 0,10

31 Liite 1: Porausparametrit Dillimax 690, 890, 965 ja 1100 poraamista varten. (Dillinger, 2007, s. 3.) AMS koodi C-% Cr-% Ni-% Mo-% V-% 6421 0,37 0,8 0,8 0,2 6422 0,4 0,8 0,8 0,2 6427 0,3 0,8 1,8 0,4 0,07 6428 0,35 0,8 1,8 0,35 0,2 6430 0,35 0,8 1,8 0,35 0,2 6433 0,35 0,8 1,8 0,35 0,2 6434 0,35 0,8 1,8 0,35 0,2 6436 0,22 1,25 0,5 0,8 6442 0,4 0,8 0,8 Liite 2: AMS koodit ja niitä vastaavien terästen koostumus (Ross, 1980, s. 425, 462).