FI9900142 ~Ttf>~-99-Z/ Työraportti 99-21 Käytetyn ydinpolttoaineen loppusijoituskapseleiden palautettavuus Timo Saanio Saanio & Riekkola Oy Heikki Raiko VTT Energia 30-4 2 Maaliskuu 1 999 Posivan työraporteissa käsitellään käynnissä olevaa tai keskeneräistä työtä. Esitetyt tulokset ovat alustavia. Raportissa esitetyt johtopäätökset ja näkökannat ovat kirjoittajien omia, eivätkä välttämättä vastaa Posiva Oy:n kantaa.
KÄYTETYN YDINPOLTTOAINEEN LOPPUSIJOITUSKAPSELEIDEN PALAUTETTAVUUS TIIVISTELMÄ Osana käytetyn polttoaineen loppusijoitustilojen suunnittelua on loppusijoitukseen liittyvää päätöksentekoa varten tutkittu, miten sijoitusreikiin asennettujen kapseleiden palauttaminen tarvittaessa maanpinnalle olisi teknisesti mahdollista toteuttaa. Kapselien palauttamismahdollisuudet on tutkittu loppusi]oitusprosessin eri tilanteissa ja vaiheissa. Kapselien mahdollinen palauttaminen loppusijoitustiloista maanpinnalle ei ole ollut vaatimuksena tilojen suunnittelussa. Loppusijoitustilojen suunnitelma sisältää kuitenkin piirteitä, jotka saattavat helpottaa myöhempää kapselien palauttamista. Käytetty polttoaine kapseloidaan massiivisiin kupari-rautakapseleihin, jotka ovat mekaanisesti lujia ja hyvin pitkäikäisiä. Loppusijoitustilat rakennetaan kallioon louhittuina tiloina, jotka ovat kokemusten perusteella hyvin pitkäikäisiä ja tilojen myöhempi aukikaivaminen on teknisesti mahdollista. Mikäli kapseli päätetään palauttaa maan pinnalle ennen sijoitusreiän sulkemista, kuljetetaan kapseli kuljetusajoneuvolla kapselikuilun hissille ja nostetaan suoraan kapselointilaitokseen. Kapselin palauttamisen työvaiheet ovat samat kuin kapselin asennuksessa, mutta tehdään käänteisessä järjestyksessä. Kapselointilaitoksen kuumakammiossa polttoaineniput voidaan asentaa uuteen kapseliin tai polttoaineen siirtosäiliöön. Kun osa sijoitustunneleista on suljettu, koostuu kapselien palauttaminen sijoitustunnelin aukaisusta, sijoitusreiän aukaisusta ja kapselin poistosta. Sijoitustunnelin suulla oleva betonisulkurakenne puretaan, jonka jälkeen tunnelin tyhjennys etenee vaiheittain siten, että tunnelin täyttömateriaalia poistetaan kerrallaan vain yhden sijoitusreiän matkalta. Tämän jälkeen reikä avataan ja kapseli poistetaan. Sijoitusreikien bentoniitin poistossa voidaan käyttää esimerkiksi suolavedellä liuottamiseen perustuvaa tekniikkaa. Loppusijoitustilojen sulkemisen jälkeisenäkin aikana kapselit voidaan haluttaessa palauttaa maan pinnalle. Maan päälle rakennetaan tällöin laitos, jossa kapseleita voidaan käsitellä. Loppusijoitustilat avataan, jonka jälkeen niihin rakennetaan tarpeelliset rakenteet ja asennetaan järjestelmät. Kun em. tilat on valmiiksi rakennettu, noudatetaan sijoitustunnelien aukaisussa ja kapselien poistossa samoja tekniikoita kuin käytettäisiin, mikäli kapselit palautettaisiin tilojen käyttövaiheessa. Kun kapselit on nostettu maanpinnalle, voidaan ne laittaa kuljetussäiliön sisään ja kuljettaa haluttuun paikkaan jatkotoimenpiteitä varten. Vaihtoehtoisesti voidaan kapselit avata ja siirtää polttoaineniput yksitellen kuljetussäiliöihin. Avainsanat: Käytetty polttoaine, palautettavuus, loppusijoitus, loppusijoitustilat
RETRIEVABILITY OF SPENT NUCLEAR FUEL CANISTERS ABSTRACT As a part of the designing process of the Finnish spent nuclear fuel repository, a preliminary study has been carried out to investigate how the canisters could technically be retrieved to the ground surface. Possibility of retrieving a canister has been investigated in different phases of the disposal project. Retrievability has not been a design goal for the spent fuel repository. However, design of the repository includes some features that may ease the retrieval of canisters in the future. Spent fuel elements are packaged in massive copper-iron canisters, which are mechanically strong and long-lived. The repository consists of excavated tunnels in hard rock, which are supposed to be very long-lived making the removal of the tunnel backfilling technically possible also in the future. As long as the bentonite buffer has not been installed the canister can be returned to the ground surface using the same equipment as was used when the canister was brought down to the repository and lowered into the hole. In the encapsulation station the spent fuel elements can be packaged in the other canister or in the transport cask. After a deposition tunnel has been backfilled and closed, the retrieval consists of tearing down the concrete structure at the entry of the deposition tunnel, removal of the tunnel backfilling, removal of the bentonite from the disposal hole and lifting up of the canister. Various methods, e.g., flushing the bentonite with saline solutions, can be used to detach the canister from a hole with fully saturated bentonite. Recovery will be technically possible also after closing of the disposal facility. Backfilling of the shafts and tunnels will be removed and additional new structures and systems will have to be built in the repository. After that canisters can be transported to the ground surface as described above. In addition, handling of the canisters at the ground surface will require additional facilities. Canisters can be packaged in the transport cask for transportation. Keywords: Spent nuclear fuel, retrievability, final disposal, repository
SISÄLLYSLUETTELO ESIPUHE 3 1 JOHDANTO 5 2 KÄYTETYN POLTTOAINEEN LOPPUSIJOITUSTEKNIIKKA 7 3 PALAUTTAMINEN ENNEN SIJOITUSREIÄN SULKEMISTA 11 4 PALAUTTAMINEN SIJOITUSTUNNELIN SULKEMISEN JÄLKEEN 15 4.1 Loppusijoitustilan lämpötilat loppusijoituksen jälkeen 15 4.2 Sijoitustunneiin aukaisu 17 4.3 Sijoitusreiän aukaisu 26 4.4 Kapselin poisto 30 5 PALAUTTAMINEN KAIKKIEN TILOJEN SULKEMISEN JÄLKEEN 33 6 YHTEENVETO 38 LÄHDELUETTELO 40 LIITE 1: KÄYTETYN POLTTOAINEEN KAPSELOINTI JA LOPPUSIJOITUS..41 M, ' [l \ j \ " JT^ j.»
ESIPUHE Teollisuuden Voima Oy (TVO) ja Fortum Oyj (aikaisemmin IVO) varautuvat käytetyn korkea-aktiivisen ydinpolttoaineen loppusijoittamiseen syvälle Suomen kallioperään. Loppusijoituspaikka on tarkoitus valita vuoden 2000 loppuun mennessä neljän sijoituspaikkavaihtoehdon joukosta. Käytetyn polttoaineen loppusijoituksesta ja sitä varten tehtävästä tutkimus- ja kehitystyöstä huolehtii voimayhtiöiden yhdessä perustama ja omistama yhtiö, Posiva Oy. Tässä raportissa käsitelty kapseleiden palauttaminen liittyy loppusijoitustilojen suunnittelu- ja kehitystyöhön. Raportti on laadittu VTT Energian ja Saanio & Riekkola Oy:n yhteistyönä. Heikki Raiko on kirjoittanut luvun 4.1 ja Timo Saanio pääosin muut luvut. Raportin kuvituksesta ovat vastanneet Timo Kirkkomäki ja Ari Gardemeister.
1 JOHDANTO Käytetyn polttoaineen loppusijoituksen lähtökohtana on, että kapseleiden sijoituksen jälkeen tilat suljetaan lopullisesti. Loppusijoitukseen liittyvää päätöksentekoa varten on kuitenkin nähty tarpeelliseksi tutkia, miten kapseleiden palauttaminen tarvittaessa maanpinnalle olisi teknisesti mahdollista toteuttaa. Kapseli saatettaisiin haluta palauttaa esimerkiksi, mikäli kapseleiden sisältämä materiaali tai energia haluttaisiin hyödyntää. Toisena syynä kapseleiden palauttamiseen voisi olla päätös järjestää koko käytetyn polttoaineen loppusijoitus jollakin toisella menetelmällä. Lähtökohtana on siis ollut tutkia, miten loppusijoitetut kapselit voidaan palauttaa maanpinnalle. Tässä raportissa käsitellään sekä kapseleiden palauttamista maanpinnalle että polttoaineen poistoa kapselista. Kapselien palauttamismahdollisuudet tutkitaan loppusijoitusprosessin kaikissa mahdollisissa tilanteissa ja vaiheissa. Ensimmäinen mahdollisuus palauttamiseen on, kun ensimmäistä kapselia ollaan vasta kuljettamassa kohti sijoitusreikää. Viimeinen tarkasteltava tilanne on, kun tilat on poistettu käytöstä ja kaikki tunnelit sekä kuilut täytetty täyttömateriaalilla. Palauttamistekniikka on tässä raportissa kuvattu kolmessa eri tilanteessa. Kaikki muut tilanteet kapseleiden ja loppusijoitustilojen elinkaaressa ovat johdettavissa em. tilanteista ja palauttamistekniikka vastaa jotakin esitetyistä tekniikoista. Tässä raportissa käsiteltävät tilanteet ovat: - Palauttaminen ennen sijoitusreiän sulkemista. Kapselia ollaan kuljettamassa sijoitusreikään ja se on kapselihississä tai alatasolla kapselinkuljetusajoneuvossa. Kapseli saattaa olla jo laskettu sijoitusreikään ja tartuntalaitteen ote kapselista on irrotettu, kun esim. huomataan, ettei reikä ole kelvollinen tai reiässä oleva bentoniitti ei ole täysin oikein asennettu. Lähtökohtana tässä tapauksessa on, ettei reiän bentoniitti ole vielä ehtinyt paisua ja tarttua kapseliin. - Palauttaminen sijoitustunnelin sulkemisen jälkeen. Tilojen käyttövaiheessa sijoitustunneleita täytetään tunnelien perältä alkaen sitä mukaa kuin kapseleita asennetaan sijoitusreikiin. Kun sijoitustunneliin on asennettu kaikki siihen tulevat kapselit ja tunneli täytetty, rakennetaan tunnelin suulle sulkurakenne teräsbetonista. Ensimmäisen tunnelin sulkemisen jälkeen jatkuu tilojen käyttövaihe vielä pitkään - vähintään noin 20 vuotta. Tämä käyttövaiheen tilanne on valittu yhdeksi tarkasteltavaksi tilanteeksi. Tilat ovat siis käytössä ja keskustunneli on auki. Tunneli, jossa palautettavat kapselit sijaitsevat, on täytettyjä tunnelin suulla on sulkurakenne. - Palauttaminen kaikkien tilojen sulkemisen jälkeen. Kun kaikki kapselit on sijoitettu, niin tunnelit ja kuilut täytetään ja tilat suljetaan. Kuilujen yläpäihin rakennetaan teräsbetoniset sulkurakenteet. Edellä käsitellyt tilanteet voivat ajallisesti tapahtua kuvan 1-1 mukaisesti tilojen käyttövaiheessa, sulkemisvaiheessa tai sulkemisen jälkeisenä aikana.
KÄYTTÖVAIHE SULKEM1S- VAIHE SULKEMISEN JÄLKEINEN AIKA PALAUTTAMINEN ENNEN SiJOlTUSREIAN SULKEMISTA PALAUTTAMINEN SIJOITUSTUNNEL1N SULKEMISEN JÄLKEEN PALAUTTAMINEN KAIKKIEN TILOJEN SULKEMISEN JÄLKEEN Kuva 1-1. Kapseleiden palauttaminen loppusijoituksen eri vaiheissa.
2 KÄYTETYN POLTTOAINEEN LOPPUSIJOITUSTEKNIIKKA Käytetty polttoaine kapseloidaan maanpinnalla olevassa kapselointilaitoksessa massiivisiin kupari-rautakapseleihin. Kapselirakenne muodostuu raudasta valetusta sisäkapselista ja sitä ympäröivästä 50 mm paksuisesta kuparivaipasta. Mahdolliseen kapselien palauttamiseen sen rakenne soveltuu erittäin hyvin; kapseli on mekaanisesti luja ja hyvin pitkäikäinen, sen korroosion kesto on vähintään noin 100 000 vuotta, lisäksi sisäkapselin kansi on kiinnitetty pulteilla, mikä helpottaa kapselin avaamista. Kapselirakenne on esitetty kuvassa 2-1. Kapselit siirretään hissillä kapselointilaitoksesta syvällä kallioperässä sijaitseviin loppusijoitustiloihin (liite 1). Käytetyn polttoaineen loppusijoitustilat rakennetaan 400-700 metrin syvyydelle kallioperään. Tilojen lopullinen sijoitussyvyys ja pohjaratkaisun muoto määräytyvät sijoituspaikan kallioperän ominaisuuksien perusteella. Ml OLKILUODON POLTTOAINE LOVIISAN POLTTOAINE Kuva 2-1. Polttoainekapselin rakenne.
Tässä raportissa käsitelty loppusijoitustila perustuu kapasiteetiltaan tapaukseen, jossa nykyisten ydinvoimalaitosten käyttöaika on oletettu 40 vuodeksi. Loppusijoitustilat on mitoitettu noin 1400 kapselille, mikä vastaa kapseloituna polttoaineen kokonaismäärää 2600 tu. Loppusijoitustilojen perusratkaisussa johtaa maanpinnalta alas loppusijoitustiloihin kolme pystykuilua: työ-, henkilö- ja kapselikuilu. Kuilujen lisäksi voidaan käyttää myös ajotunnelia. Henkilö- ja kapselikuilut liittyvät maan päällä kapselointilaitokseen. Varsinaiset loppusijoitustilat koostuvat 25 m välein sijaitsevista yhdensuuntaisista sijoitustunneleista, joita yhdistää toisiinsa keskustunneli. Polttoainekapselit sijoitetaan sijoitustunnelien lattiaan tehtäviin pystysuoriin reikiin. Reikien keskipisteiden välinen etäisyys on 8,0 m, mikäli tilat rakennetaan Kivettyyn tai Romuvaaraan. Lämpötilalaskelmien perusteella voidaan Olkiluodossa ja Hästholmemssa käyttää pienempää 7,5 m reikäväliä. Kapselin ja kallion välinen tila täytetään luonnosta saatavalla paisuvalla bentoniittisavella. Kuvassa 2-2 on esitetty poikkileikkaus täytetystä loppusijoitustunnelista sijoitusreiän kohdalta TVO:n ja IVOn polttoaineelle. TVO IVO 3500 Sijoitustunnelit täytetään perustapauksessa joko murskeen ja bentoniitin seoksella tai murskeella ja bentoniittilohkoilla. Sijoitusreiät täytetään kokoonpuristetulla bentoniitilla. Murskebentoniittitäyttö Puristetut bentoniitih lohkot ja bentoniittijauhe Kapseli! 1752 1752 Kuva 2-2. Täytetty sijoitustunneli ja -reikä TVO:nja IVOn polttoaineelle.
Kun kaikki kapselit on sijoitettu sijoitusreikiin, täytetään loppusijoitustasolla olevat tilat ja pystykuilut murskeella ja bentomitilla. Kuilujen yläosat suljetaan lopuksi betonirakentein.
11 3 PALAUTTAMINEN ENNEN SUOITUSREIÄN SULKEMSSTA Tässä luvussa käsitellään tilannetta, jossa kapseli päätetään palauttaa maanpinnalle kun kapselia ollaan laskemassa reikään tai kapseli on jo laskettu ja tartuntalaitteen ote on irrotettu. Lähtökohtana on, ettei reiän bentoniitti ole vielä ehtinyt tarttua kapseliin. Kapselien kuljetus- ja asennusajoneuvo on esitetty kuvassa 3-1. Kun päätös kapselin palauttamisesta on tehty, toteutetaan kapselin asennuksen työvaiheet (liite 1) käänteisessä järjestyksessä (kuva 3-2). Vaikka tartuntalaitteen ote kapselista olisi irrotettuja kapseli olisi vinossa, saadaan tartuntalaite uudelleen kiinnitetyksi sijoitusreiässä olevaan kapseliin. Tällöin käytetään hyväksi siirtoajoneuvon paikantamisjärjestelmää (ajoneuvon nostopisteen x-y-säätö) ja TV-kameran avulla toteutettua ohjausta. Jos kapselin päälle on pudonnut bentoniittia tai muuta ainetta, on kapselin kansi kiinnitysurineen puhdistettava ennen uudelleen tarttumista ja nostoa. Kapseli nostetaan säteilysuojan sisään ja säteilysuoja nostetaan ajoneuvoon. Tämän jälkeen kapselinkuljetusajoneuvo siirtää kapselin keskustunnelia pitkin takaisin kapselihissille. Kapseli nostetaan hissillä maanpinnalle suoraan kapselointilaitokseen. Kapselin palauttamisen työvaiheet on esitetty taulukossa 3-1. Kuva 3-1. Kapselien kuljetus-ja asennusajoneuvo.
12 E A L B { \\ \Rn K / \oxqaomokq D \,w xo< G Kuva 3-2. Kapselin nosto sijoitiisreiästä kapselinkuljetusajoneuvoon. Kapselointilaitoksessa kapseli voidaan puhdistaa mahdollisesta bentoniitista ja siirtää kapseleiden puskurivarastoon tai polttoaineen kapselointiosaan, jossa niput voidaan poistaa kapselista. Kapselin mahdollista tarkastusta varten on siirtokäytävässä ainetta rikkomattomat tarkastuslaitteet hitsin tai kapselivaipan volymetriseen tarkastukseen. Mikäli niput poistetaan kapselista, koneistetaan kuparikansi auki siirtokäytävässä ole-
13 valla jyrsinlaitteella. Seuraavaksi kapseli siirretään kiskoja pitkin kulkevalla siirtovaunulla kuumakammion kohdalle ja kapseli telakoidaan kuumakammioon. Kapselin sisäkansi poistetaan kuumakammiossa. Sisäkannen irrotus on yksinkertaista, koska kansi on kiinnitetty pulteilla. Polttoaineniput voidaan nostaa pois kapselista ja sijoittaa joko autoklaaviin tai polttoaineen siirtosäiliöön. Kun kapseli on tyhjä, poistetaan se telakointiasemasta. Kuumakammioon voidaan telakoida uusi kapseli ja polttoaineniput voidaan nostaa autoklaavista kapseliin. Mikäli päätös kapselin palauttamisesta johtui kapselista tai sijoitusreiän bentoniitista voidaan sijoitusreikä ottaa uudelleen käyttöön korjaavien toimenpiteiden jälkeen. Mikäli palauttaminen johtui sijoitusreiästä, harkitaan reiän mahdollinen käyttö tapauskohtaisesti. Jos reikää ei käytetä kapselin sijoitukseen, täytetään se murskeen ja bentoniitin sekoituksella. Mikäli kapseli päätetään palauttaa maanpinnalle ennen sijoitusreiän sulkemista, kestää työ muutamia tunteja ja siitä aiheutuvat kustannukset ovat vähäiset. Taulukko 3-1. Kapselin palauttamisen työvaiheet, kun palauttaminen tehdään ennen sijoitusreiän sulkemista. TYÖVAIHE Tartuntalaitteen kiinnitys kapseliin Kapselin nosto kuljetusajoneuvoon Kapselin ajo kuljetusajoneuvolla kapselikuilulle Kapselin lasku siirtovaunuun Siirtovaunun ajo kapselihissiin Kapselihissin nousu kapselointilaitokseen Kapselin tarkastus ja mahdollinen puhdistus Kapselin siirto puskurivarastoon tai polttoaineen kapselointiosaan i 1.V "ll I
15 4 PALAUTTAMINEN SIJOITUSTUNNELIN SULKEMISEN JÄLKEEN 4.1 Loppusijoitustilan lämpötilat loppusijoituksen jälkeen Loppusijoitetrujen kapselien takaisinottotarkasteluja varten on suoritettu lämpötilalaskelmia, joiden avulla saadaan käsitys, mikä on loppusijoitustilan tunnelien kallioympäristön, loppusijoitusreikien ja itse kapselien lämpötila ajan funktiona. Laskelmat on tehty sijoituspaikkakohtaisilla tyypillisillä lämpöteknisillä arvoilla (taulukko 4-1) ja perustapauksen polttoainetyypeillä ja määrillä. Laskentatapauksina analysoitiin lämpötiloja perusratkaisun mukaisessa suorakaiteen muotoisessa (noin 600 m x 500 m) loppusijoitustilassa. Taulukossa 4-2 on esitetty oletuksina käytetyt numeeriset lähtötiedot. Laskentatapauksessa oletettiin BWR-tyyppiset kapselit ja kapselien sijoitusetäisyytenä 7,5 m. Kallion lämmönjohtavuutena pidettiin 3,0 W/m/K. REPTEM-ohjelmalla laskettiin lämmönlähteiden kallioperään aiheuttamia lämpötilakentän muutoksia ajan funktiona. Noin 500 m syvyydellä Ioppusijoituspaikkakuntaehdokkaiden peruskalliossa vallitseva lämpötila on mittauksien mukaan +7 - +12 C. Kuvassa 4-1 olevan tulosteen yksinkertaistamiseksi ja havainnollistamiseksi on oletettu, että loppusijoitustilan alkuperäinen vallitseva lämpötila on ollut +10 C. Kuvassa 4-1 on tulostettu tyypillinen kalliotunnelien, loppusijoitusreiän ja kapselin lämpötila 2000 vuoden kuluessa loppusijoituksesta. Tuloksista voidaan todeta, että kapselien maksimipintalämpötila, noin +90 C, saavutetaan parinkymmenen vuoden kuluttua ja itse loppusijoitustilan kallio- ja täyteaineiden maksimilämpötila, noin +65 C, saavutetaan vajaassa vuosisadassa. Näiden maksimiarvojen jälkeen lämpötilat alkavat aleta siten, että 500 vuoden kuluttua ollaan noin +50 C:ssa ja 2000 vuoden kuluttua noin +30 C:ssa. Mikäli kapselin ja loppusijoitusreiän välissä oleva bentoniittikerros on vettynyt täydellisesti, alenee kapselin lämpötila puolta lähemmäksi loppusijoitusreiän lämpötilaa, katso kuvaa 4-1. Mikäli tunnelit joudutaan kaivamaan auki polttoainekapselien poistamiseksi loppusijoitustilasta, saadaan työskentelytilan atmosfääri työskentelyyn sopivaksi tavanomaisen ilmastoinnin avulla. Kaivoksien kokemusten perusteella kallion korkea lämpötila hidastaa työvaiheita ja nostaa työn kustannuksia.
16 Taulukko 4-1. Loppusijoitusympäristön fysikaalisia arvoja. Kallion lämmönjohtavuus (Olkiluoto & Hästholmen) Kallion lämmönjohtavuus (Kivetty & Romuvaara) Bentoniitin lämmönjohtavuus (kuivana) Kallion lämpökapasiteetti Kallion tiheys 3,0 W/m/K 2,7 W/m/K 0,75 W/m/K 750 J/kg/K 2700 kg/m 3 Kapselin ulkohalkaisija [mm] Kapselin korkeus [mm] Bentoniittikerroksen paksuus kapselin ympärillä [mm] Latauksen keskimääräinen nippupalama [MWd/kgU] Todellinen jäähtymisaika [a] Keskimääräinen jälkijäährymisaika (painotettu) [a] Loppusij oitusjakson pituus [a] Keskimääräinen lämpöteho kapseloitaessa [W/tU] Uraania yhteensä [tu] Uraanimäärä 12 nipun kapselissa [tu] Kapselien lukumäärä yhteensä [kpl] Sijoitustunnelien etäisyys toisistaan [m] Tunnelien pituus keskustunnelista lukien enintään [m] TVO:n polttoaine 1052 4800 350 33,5 20-43 29,3 23 807 1845 2,11 872 25 300 Taulukko 4-2. Lähtötietoja laskelmassa käytetyistä polttoaineista, loppusijoituskapseleistaja niiden sijoittelusta loppusijoitustilassa perustapauksen (P) mukaisessa loppusijoitussuunnitelmassa. IVOn polttoaine 1052 3600 350 35,9 20-43 22,3 23 915 757 1,44 526 25 300
17 LS-HLAN LÄMPÖTILOJA 100 90 80 70 60 S 50-1 40 30 20 10 - ~*"~ 1 1 ^"""^r ~z^ ^! 1 2 5 10 20 50 100 200 500 1000 2000 AIKA (a) i ~ ^ ^ -, 1 ; 1 Kuva 4-1. Loppusijoitustilan tunnelien, sijoitusreikienja kapselien lämpötiloja loppusijoituksen jälkeen. i KAPSELI REIKÄ L 1 TUNNELI L I 4.2 Sijoitustunnelin aukaisu Sijoitustunneleita täytetään ja suljetaan loppusijoituksen edetessä jo tilojen käyttövaiheessa. Täyttömateriaalina käytetään mursketta ja bentoniittia (luku 2). Sijoitustunnelin suulle rakennetaan sulkurakenne teräsbetonista (Haaramo 1999). Sulkurakenne estää täyttömateriaalia paisumasta keskustunneliin. Rakenteen sijainti ja päämitat on esitetty kuvassa 4-2. Massiivinen betonirakenne raudoitetaan lähinnä rakenteen seinä-, katto- ja lattiapintojen läheltä. Sulkurakenteen raudoitus on esitetty kuvassa 4-3. Rakenteen yläosa betonoidaan injektointiputken avulla ja rakenteen liitos kallioon tiivistetään injektoinnilla. Betonin sitoutumisen aiheuttama lämpötilan nousu hallitaan rakenteeseen asennettavan jäähdytysvesiputkiston avulla. Oletetaan käyttövaiheessa tapahtuva tilanne, jossa jo suljetusta tunnelista halutaan poistaa kaikki tunneliin sijoitetut kapselit. Sijoitustunneleita lukuunottamatta kaikki muut tilat ovat auki, sijoitustunnelin suulla on betonisulkurakenne (kuva 4-4). Teknisesti kapselin palauttaminen maanpinnalle koostuu sijoitustunnelin aukaisusta, sijoitusreiän aukaisusta ja kapselin poistosta. Tunnelin tyhjennys etenee vaiheittain siten, että tunnelin täyttömateriaalia poistetaan kerrallaan vain yhden sijoitusreiän matkalta. Tämän jälkeen reikä avataan, kapseli poistetaan ja reikä täytetään täyttömateriaalilla. Seuraavaksi jatketaan täyttömateriaalin poistolla yhden sijoitusreiän matkalla jne.
18 KESKUSTUNNELI Kuva 4-2. Sijoitustunnelin suulla oleva teräsbetoninen sulkurakenne (Haaramo 1999).
19 A-A RAUDOITUS Kuva 4-3. Sulkurakenteen raudoitus (Haaramo 1999).
20 SULKURAKENNE Kuva 4-4. Keskustunnelinja sijoitustimnelin risteysalue. Sijoitustunnelin suulla on betonisulkurakenne. Lähtötilanteessa sijoitustunnelin suulla oleva teräsbetoninen sulkurakenne on poistettava. Ennen sulkurakenteen poistoa on rakenteen läpi syytä porata muutamia reikiä, joilla voidaan tarkkailla täyttömateriaalin painetta ja osittain myös pienentää painetta päästämällä vettä pois täyttömateriaalista. Reikien läpi voidaan myös suorittaa aktiivisuusmittauksia. Mikäli on tarpeellista, voidaan painetta purkaa myös suurentamalla reikiä ja syöttämällä reikien kautta huuhteluvettä seinän taakse ja huuhtelemalla täyttömateriaalia pois sulkurakenteen takaa. Sulkurakenne voidaan purkaa monella vaihtoehtoisella menetelmällä. Eräs käyttökelpoinen työtekniikka on kairata rakenteen läpi ensin useita mahdollisimman isoja kairanreikiä. Seuraavaksi avarretaan ja yhdistetään reikiä hydraulivasaralla piikkaamalla (kuva 4-5) ja mahdollisesti timanttisahalla sahaamalla. Rakenteessa olevat teräkset katkaistaan, syntyvä jäte lastataan louheenkuljetusajoneuvoon, kuljetetaan keskustunnelia pitkin työkuilulle ja nostetaan hissillä maanpinnalle tai kuljetetaan johonkin täytettävään tunneliin (kuva 4-6). Sulkurakenteen kohdalta paljastuvan kalliopinnan lujitustarve tarkastetaan ja tehdään tarvittavat lujitustoimenpiteet.
21 Kuva 4-5. Hydraulivasara. Täyttömateriaalia I f Betonitulppa Piikkauskone Lastauskone Kuorma-auto Kuva 4-6. Betonisulkurohenteen poisto. Mahdollisia työtekniikoita ovat mm. rakenteen räjäyttäminen pienin räjähdysainepanoksin tai etanadynamiitin avulla, rakenteen paloittelu sahaamalla tai rakenteen irrotus irtikairaamalla. Räjäyttäminen tulisi tehdä useassa osassa räjäytysten aiheuttamien tärinöiden rajoittamiseksi ja tulisi lähinnä kyseeseen, mikäli ensimmäinen sijoitusreikä on kallioperäolosuhteista johtuen tarpeeksi kaukana sulkurakenteesta. Mikäli sulkurakenne irrotetaan sahaamalla tai irtikairaamalla, tulee se paloitella pienemmiksi paloiksi kuljetuksen helpottamiseksi. Kuvissa 4-7 ja 4-8 on esitelty vaijerisahaustekniikkaa, jota käytetään aukkojen tekemiseen betonirakenteisiin.
22 Start of the sequence Diamond Wire Drive Pulley A Guide C J, Pulley End of the sequence 4-7. Betonirakenteen vaijerisahaustekniikka. Kuva 4-8. Lähikuva timanttivaijerisahasta. Sulkurakenteen poiston jälkeen poistetaan sijoitustunnelista täyttömateriaalia niin pitkälle, että ensimmäisellä sijoitusreiällä voidaan työskennellä. Murske-bentoniitin ominaisuudet riippuvat sen vedellä kyllästymisasteesta sekä kehittyneestä paisuntapaineesta. Ominaisuuksiin vaikuttaa se, kuinka paljon tunneliin on vuotanut vettä ja kuinka kauan tunneli on ollut suljettuna. Ominaisuudet saattavat vaihdella myös yhdessä sijoitustunnelissa. Sijoitustunnelin täyttömateriaalin poistossa käytetään perinteisiä kaivinkoneita, lastauskoneita (kuva 4-9) sekä tarpeen mukaan ns. rouhijoita. Irrotettava täyttömateriaali lastataan louheenkuljetuskalustoon kuljetettavaksi tilanteesta riippuen joko muiden tunnelei-
23 den täyttömateriaaliksi tai työkuilun kautta maanpinnalle (kuva 4-10). Tunnelin aukaisun edetessä tarkastetaan paljastuvan kalliopinnan lujitustarve ja tehdään tarvittavat lujitustoimenpiteet. Kalliopinnan tarkastuksen yhteydessä irrotetaan katosta ja seinistä mahdollisesti irtoamassa olevat lohkareet. Lujitustoimenpiteinä voidaan käyttää pultitusta, ruiskubetonointia ja injektointia. Tunnelin aukaisun yhteydessä tehtävät lujitustyöt vastaavat normaalissa kalliorakennuskohteessa käytettäviä työtekniikoita (kuvat 4-11,4-12 ja 4-13). Kuva 4-9. Tunnelien täyttömateriaalin poistossa käytettävä lastauskone. Kuva 4-10. Sijoitustunnelin täyttömateriaalin irrotus ja lastaus.
24 TAYTTOMATERIAALIN LASTAUS <*\ TUNNELIN HOLVIN PULTITUS RUISKUBETONOINTI Kuva 4-11. Tunnelin aukaisun yhteydessä voidaan käyttää normaaleja kallion lujitustoimenpiteitä. 2650 Kuva 4-12. Tunnelin pultitusjumbo.
25 Kuva 4-13. Tunnelin ruiskubetonilaite. Loppusijoituskapseli on suunniteltu kestämään loppusijoituksessa hyvin pitkään siten, että siitä ei pääse leviämään radioaktiivisia aineita ympäröivään kallioon tai tunneleihin. Sijoitustunnelin aukaisun aikana tarkkaillaan kuitenkin jatkuvasti sijoitustunnelin ilman ja täyttömateriaalin aktiivisuutta. Ilman aktiivisuuden ylittäessä sallitun rajan kytketään sijoitustunnelin ilmanvaihto valvotun alueen ilmanvaihtoon. Mikäli täyttömateriaalin aktiivisuus ylittää sallitun rajan, sitä ei nosteta maanpinnalle. Täyttömateriaalilla täytetään muita sijoitustunneleita tai sitä siirretään kapselointilaitoksen käyttö- ja käytöstäpoistojätehalliin. Materiaalin lastaus ja kuljetus voidaan tarvittaessa tehdä säteilysuojatusta tilasta. Tunnelien ja täyttömateriaalin lämpötila nousee sijoitusreikien ja tunneleiden ollessa suljettuna kapselien lämmöntuotosta johtuen. Korkeimmillaan tunnelin lämpötila on noin 65 C vajaan vuosisadan kuluttua tunnelin sulkemisesta (luku 4.1). Mikäli tilojen käyttövaihe kestää noin 20 vuotta, nousee kallioperän lämpötila korkeimmillaan noin 55 C:een. Täyttömateriaalin käsittelyssä käytettävät koneet rakennetaan kestämään kuuman materiaalin käsittely. Kuuman materiaalin käsittely ei aiheuta ongelmia, sillä esimerkiksi asfalttitöissä käsitellään huomattavasti kuumempaa massaa. Tunnelin ilman lämpötila saadaan viilennetyksi työskentelyyn sopivaksi ilmanvaihdon ja jäähdytyksen avulla. Esim. Saksassa on kokemuksia työskentelystä kaivoksista, joissa kallion lämpötila on yli 50 C (International Mining 1986). Samoilla jäähdytysmenetelmillä saadaan ilma viilennetyksi työskentelyyn sopivaksi, kun kallion lämpötila on yli 60 C. On arvioitu, että nykyisellä kaivostekniikalla voidaan työskennellä ilman lämpötilan ollessa alle 70 C ja kallion lämpötilan ollessa alle 100 C.
26 Loppusijoitusrei'issa kapselin ympärillä oleva bentoniitti on vettyessään turvonnut ja paineistanut. Kun tunnelissa oleva täyteaine kaivetaan pois, poistuu reiän suulta myös tunnelitäytteen muodostama mekaaninen tuenta ja bentoniitissa oleva sisäinen paine purkautuu sen paisuttaessa bentoniittia vapaassa reiässä ylöspäin avattuun tunneliin. Tunnelin tyhjennyksen edetessä sijoitusreikien yli asennetaan niiden päälle ajosillat. Ajosilloissa on aukko sijoitusreiän kohdalla. Silloissa on myös sijoitusreiälle kaulusrakenne, joka voidaan painaa tiiviisti lattiaan. Kaulusrakenteella estetään lattiasepelin valuminen myöhemmin sijoitusreikään. Täyttömateriaalin poiston jälkeen sorastetaan sijoitustunnelin lattia siihen asti kuin täyttömateriaalia on poistettu. Täyttömateriaalin ja lattiasoran väliin voidaan rakentaa kynnys, jottei täyttömateriaalin bentoniitti valu lattiasoran sekaan. Seuraavaksi asennetaan tarvittavat ilmanvaihto-, sähkö- ja valaistusjärjestelmät. Koska sijoitustunnelin käyttö tulee olemaan lyhytaikaista, järjestelmät vastaavat lähinnä työmaalle asennettavia työnaikaisia järjestelmiä. Keskustunnelin raitisilmakanavasta vedetään kanava sijoitustunnelin avatun osuuden perälle. Kanava voi olla ns. rättikanava ja se ripustetaan kallioankkureilla tunnelin seinään tai kattoon. Sijoitustunneliin vedetään keskustunnelista sähkölinja ja tunneliin asennetaan valaisimet. Sijoitustunnelin vuotovedet valuvat lattiasoraa pitkin keskustunnelin viemäröintijärjestelmään, koska tunneli on kallistettu keskustunneliin päin. Rikkonaisuusvyöhykkeistä mahdollisesti tulevat suuremmat vuotovesimäärät voidaan paikantaa tunnustelurei'ista ja injektoida jo sijoitustunnelin aukaisuvaiheessa. Mikäli sijoitustunneliin kuitenkin vuotaa suurempia vesimääriä, asennetaan tunneliin viemäriputki, jolla vedet johdetaan keskustunnelin viemäröintijärjestelmään. 4.3 Sijoitusreiän aukaisu Sijoitusreiässä olevat bentoniittilohkot ovat asennuksen jälkeen imeneet itseensä pohjavettä, muodostaneet kerroksen, jonka vedenjohtavuus on hyvin pieni ja kehittäneet paisuntapainetta. Paineen suuruus riippuu siitä, kuinka paljon bentoniitti on ehtinyt saturoitua, eli kuinka kauan se on ollut reiässä ja kuinka paljon siihen on imeytynyt vettä. Saatavilla olevan veden määrä voi vaihdella paljonkin reikäkohtaisesti. Ennen kapselin nostamista on sen päällä oleva bentoniitti poistettava ja sivuilla oleva bentoniitti poistettava tai löyhdytettävä, jottei kapseli vaurioidu noston yhteydessä. Reiän yläosan bentoniittia voidaan poistaa normaaleilla kaivutekniikoilla. Pintaosaa alempana reiässä bentoniitin löyhdyttäminen voidaan tehdä esimerkiksi suolavedellä pehmentämällä. Tekniikan periaate on esitetty kuvassa 4-14. Liuotinaineena käytetään suolavettä, jonka suolapitoisuus on 5-10 paino-%. Suolavettä ruiskutetaan suuttimien kautta muutaman barin paineella bentoniittilohkojen pinnalle. Kemiallisesta ja matalan hydrodynaamisen paineen yhteisvaikutuksesta puristettu bentoniitti muuttuu pumpattavaksi lietteeksi, joka pumpataan pois reiästä. Sijoitusreiästä poistetaan bentoniittia kerros kerrokselta ylhäältä alaspäin edeten. Sijoitusreikä on koko ajan täynnä vesi-suolaliuosta, joka samalla suojaa myös tunnelissa olevia ihmisiä kapselista tulevalta suoralta säteilyltä.