Työ 2841AB. PERUSMITTAUKSIA YLEISMITTARILLA JA OSKILLOSKOOPILLA
|
|
- Siiri Katajakoski
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/12 Työ 2841AB. PERUSMITTAUKSIA YLEISMITTARILLA JA OSKILLOSKOOPILLA 1. TYÖN TAVOITE Tutustutaan tärkeimpiin sähköisiin perusmittavälineesiin, yleismittariin ja oskilloskooppiin, suorittamalla laboratoriossa olevilla erityyppisillä yleismittareilla ja oskilloskoopilla jännitteen ja virran mittauksia sekä tasa- että vaihtosähköpiireissä. 2A. TEORIAA YLEISMITTAREISTA Jännitteen mittaus. Mittaus suoritetaan käyttämällä yleismittaria jännitemittarina. Mittari kytketään niiden kahden pisteen välille, joiden välinen jännite halutaan mitata. Volttimittari kytketään siis mitattavan jännitteen rinnalle Kuvan 1 mukaisesti: DVM DVM U V Kuva 1. Tasa- ja vaihtojännitteen mittaus. Huomaa tasajännitettä mitattaessa mittarin napaisuus: Tasajännitelähde + V Kuva 2. Tasajännitteen mittauksen napaisuus. Virran mittaus. Mittaus suoritetaan käyttämällä yleismittaria virta- eli ampeerimittarina. Ampeerimittari kytketään aina sarjaan sen piirin kanssa, jonka läpi kulkevaa virtaa halutaan mitata. Virtapiiri ikäänkuin katkaistaan ja virtamittari asetetaan väliin (Kuva 3). HUOM! Aina kun mitataan virtaa, on varmistuttava parista seikasta: - Mitattavassa piirissä on aina oltava ampeerimittarin lisäksi jotain muuta kuormitusta (vastusta), kts. kuvaa 3. - Toiseksi ampeerimittarin mittausalueen on oltava lähes oikea.
2 TURUN AMMATTIKORKEAKOULU TYÖOHJE 2/12 Ellei etukäteen tiedä edes likimain mitattavan virran suuruutta, on aloitettava käyttämällä suurinta mittausaluetta (esim. 10A) ja pienentämällä sitten tarpeen mukaan. V MITTAREISTA YLEENSÄ Kuva 3. Virtamittaus. Yleismittari on luonteeltaan joko viisarilla varustettu, osoittava analogiamittari tai numeerinen eli digitaalimittari. Analogiamittarissa muodostuu mitattavaan suureeseen verrannollinen osoittimen kiertymiskulma. Analogiamittari antaa mittaustuloksen suoraan desimaalilukuna. Eräät mittarit voidaan liittää suoraan tietokoneeseen ja tulos käsitellään binäärilukuna. Analogiamittarit. Oppilaitoksen analogiamittarit ovat toimintaperiaatteeltaan kiertokäämimittareita. Kiertokäämimittarin olennaiset osat ovat: kestomagneetti, sen aiheuttamassa magneettikentässä liikkumaan pääsevä johdinkäämi eli kiertokäämi ja vastajousi. Kestomagnetti on yleensä sijoitettu käämin ulkopuolelle, mutta myös käämin sisällä olevaa sydänmagneettia voidaan käyttää. Kuva 4. Kiertokäämimittarin periaatekuva. V Käämiin vaikuttavan vääntömomentin suunta on riippuvainen virran suunnasta ja mittari on tämän vuoksi luonteeltaan tasavirtamittari. Työssä käytettävät kiertokäämimittarit soveltuvat silti myös vaihtosähkömittauksiin, sillä niissä on sisäänrakennettu tasasuuntaustoiminta.
3 TURUN AMMATTIKORKEAKOULU TYÖOHJE 3/12 Mittarien rakenteesta johtuen magneettivuon tiheys on käämin koko liikkumaalueella itseisarvoltaan vakio ja kohtisuorassa käämin magneettimomenttia vastaan. Tämän seurauksena vääntömomentti on suoraan verrannollinen virtaan ja osoittimen kiertymiskulma on täten muotoa: Φ = k I, (1) missä I on sähkövirta ja k mittarille ominainen kerroin. Näin mittarin asteikko on tasajakoinen. Yleisohjeita analogiamittareille: varmista mittarin oikea käyttöasento (useimmat vaakasuorassa pöydällä) tarkista, että mittari on nollattu päätä, onko kyseessä tasa- vai vaihtosähkömittaus: merkinnät DC ja tarkoittavat tasasähköä sekä AC ja ~ vaihtosähköä tarkista erityisesti, onko tarkoitus mitata jännitettä vai virtaa sekä arvioi samalla suureen suuruusluokka. Mikäli sitä ei ole mahdollista arvioida, valitse aina riittävän suuri mittausalue (esim. 300V tai 10A). Lukemat tarkoittavat aina suurinta näyttämää varmista, mihin napoihin johtimet kytketään. Tasasähkökytkennöissä kannattaa käyttää erivärisiä johtimia katso lukema oikeasta suunnasta: viisarin ja sen peilikuvan on oltava samassa tasossa, muuten syntyy ns. parallaksivirhettä lue oikealta asteikolta ja havaitse oikea kertaluku Digitaalimittarit. Digitaalisen yleismittarin periaate lyhyesti: Tutkittavalla jännitteellä varataan ja puretaan muokkauksen jälkeen määrätty kondensaattori ja siihen kuluva aika mitataan tarkalla oskillaattoripiirillä. Kulunut aika on verrannollinen tutkittavaan jännitteeseen ja sen arvo ilmoitetaan näytöllä numeroina. C Kuva 5. Digitaalimittarin lohkokaavio. V Vaikka digitaalimittarilla mittaaminen on helpompaa laitteen itse osoittaessa napaisuuden ja joskus valitessa jopa sopivan mittausalueen, kannattaa silti suhtautua tietyllä vakavuudella ja kriittisyydellä sen antamiin tuloksiin.
4 TURUN AMMATTIKORKEAKOULU TYÖOHJE 4/12 2B. TEORIAA OSKILLOSKOOPISTA Oskilloskooppi on laite, joka muuttaa sähköisen signaalin näkyvään muotoon. Useimmiten sillä tarkastellaan toistuvaa ilmiötä kuten värähtelyaaltoa. Oskilloskoopilla voidaan myös tarkkailla staattista tai hitaasti muuttuvaa jännitettä. Oskilloskoopin kuvaruudulta voidaan mitata ainoastaan jännite- tai aikaeroja. Oskilloskoopin rakenne: elektronisuihku y-levyt fluoresoiva varjostin x-levyt Kuva 6. Katodisädeputki. V Tavallisemmin oskilloskoopin valopistettä poikkeutetaan x-suunnassa oskillaattorin antamalla, tietyllä nopeudella tapahtuvalla, lineaarisella jännitemuutoksella. Tällöin y-suunnassa ajan funktiona muuttuva tutkittava jännite piirtyy oskilloskoopin kuva-pinnalle oikeanmuotoisena. Koejärjestely: oskilloskooppi ja sen tärkeimmät säätimet 2T time/div trig Elektronit kiihdytetään suurjännitteellä ja ne poikkeutetaan x- ja y-levyjen sähkökentän avulla. Fluorisoivalla varjostimella syntyy valaistu täplä siihen kohtaan, johon elektronisuihku osuu. X- ja y-levyille johdettu jännite on verrannollinen pisteen sijaintiin varjostimella. Sopivien, sisäänrakennettujen vahvistimien avulla oskilloskooppia voidaan siten käyttää x-yjännitemittauksiin. funktiogeneraattori ch 1/x mode ch 2/y f V Kuva 7. Oskilloskoopin periaatekuva. Ns. pyyhkäisyjännitteenä käytetään lineaarisesti nousevaa ramppijännitettä, joka x- levyille johdettuna poikkeuttaa kuvapisteen kuvaruudun vasemmasta
5 TURUN AMMATTIKORKEAKOULU TYÖOHJE 5/12 reunasta oikeaan sillä nopeudella, joka on valittu pyyhkäisynopeusvalitsimella Time/div. Oikeaan reunaan saavuttuaan piste palaa takaisin vasempaan reunaan, mutta sammutettuna, ts. sen intensiteetti on niin pieni, ettei paluujuovaa näy. Jotta kuva piirtyisi aina samaan kohtaan kuvapinnalla, pyyhkäisyjännite täytyy tahdistaa ulkoisen jännitteen kanssa. Tämä tapahtuu ns. liipaistun pyyhkäisyn avulla. Siinä periaatteena on, että pyyhkäisyjännitteen ramppi alkaa nousta hetkellä, jolloin ulkoinen jännite saavuttaa tietyn arvon (a). Tämä arvo pystytään oskilloskoopissa säätämään sitä varten olevalla potentiometrillä Trigger. Uy liipaisujännite Tutkittava jännite T 0 a a' a" t b b' b" Ux +U 2 0 -U 2 t 0 t 1 t 2 x-levyjen ramppijännite paluupulssi t a b Kuvaruudulla näkyvä kuva V Kuva 8. Liipaistun pyyhkäisyn periaate Kun vielä synkronoidaan pyyhkäisy ulkopuolisen taajuuden kanssa, puhutaan liipaistusta tai synkronoidusta pyyhkäisystä eli tahdistuksesta (=triggering). Tällä saavutetaan sellainen tilanne, että kuva piirtyy aina samaan kohtaan kuvaruudulla, ja voidaan tarkastella hyvinkin suurtaajuisia pulsseja niiden pysyessä täysin paikoillaan kuvassa. Kun tutkittava jännite saavuttaa liipaisujännitteen arvon (a), toiminta alkaa. Aikana t 0 -t 1 kuvapiste siirtyy kuvaruudun vasemmasta reunasta oikeaan ja piirtää pätkän a-b tutkittavasta käyrästä. Kuvan uudelleen piirtämiseksi elektronisuihku palaa takaisin vasempaan reunaan. Tämä tapahtuu aikana t 1 -t 2. Silloin suihkun intensiteetti on niin pieni, ettei paluujälkeä näy kuvaruudussa.
6 TURUN AMMATTIKORKEAKOULU TYÖOHJE 6/12 Kun tutkittava jännite saavuttaa uudelleen liipaisujännitteen arvon (a ), käyrän nousevalla osalla, alkaa kuvan piirtäminen uudestaan samaan kohtaan. Näin toistuvasti menetellen kuvaruudussa nähdään häiriötön, paikallaan pysyvä kuva. Jos halutaan nähdä kuvaruudussa vähän suurempi osa tutkittavaa jännitettä, pyyhkäisynopeutta täytyy muuttaa hitaammaksi. Time/div -kytkimessä olevat aika-arvot kertovat, kauanko kuvapisteen kestää kulkea yhden asteikonosan välinen matka, eli kytkintä on tässä tapauksessa kierrettävä vastapäivään. Kuvan korkeutta eli amplitudia säädetään kiertokytkimellä, jonka tekstinä on Volts/div. Lukemat siinä yhteydessä kertovat, montako ulkoisen jännitteen volttia yksi asteikonosa vastaa pystysuunnassa. Liipaisukohtaa tai -jännitettä säädetään potentiometrillä, jossa teksti Trigger. Kuvan kirkkautta ja tarkkuutta säädetään potentiometreillä Intensity ja Focus. Lisäksi oskilloskoopissa on tavallisesti kytkimet, joilla valitaan moodi eli kumpi kahdesta kanavasta on näkyvissä tai joku niiden kombinaatio. Liipaisu voidaan myös valita oskilloskoopin sisältä tai ulkopuolelta tapahtuvaksi. Siniaallon kuvan piirtyminen: V U - 2 U + 1 U1 + U2 Ux t 0 t 1 t 2 t 3 t 4 t 5 t 6 Pyyhkäisyjännite 0 Uy Tutkittava jännite t t t t t t t t t Kuvaruutu Kuva 9. Siniaallon kuvan syntyminen kuvaruudulle. Oskilloskooppi on laite, jolla on hyvin suuri sisäänmenoimpedanssi ja niinpä sitä ei voi rikkoa sähköisesti (ylisuuria jännitteitä lukuunottamatta). Näinollen
7 TURUN AMMATTIKORKEAKOULU TYÖOHJE 7/12 opiskelijat voivat huoletta kokeilla oskilloskoopin säätimien vaikutusta kuvan muotoon, paikkaan ja liikkeisiin. Elektronien liikkuessa sähkökentässä niihin kohdistuu kuvassa 10 vain y- suuntainen sähköinen voima F=eE, jossa e= elektronin varauksen itseisarvo ja E kentän voimakkuuden suuruus. y poikkeutuslevyt V Kuva 10. Elektroni sähkökentässä. Voima vaikuttaa koko levyjen pituuden ajan ja elektronit kulkevat kentässä parabelirataa. Kentän jälkeen rata jatkuu suorana. Oskilloskoopin kuvaputkessa elektroneja poikkeutetaan sekä x- että y-suunnassa. Siihen, kuinka paljon elektronisuihku poikkeaa alkuperäisestä suunnastaan, vaikuttaa elektronien nopeus ja kentän voimakkuus. Elektronien nopeus taas riippuu kiihdytysjännitteestä ja kentän voimakkuus levyjen sijainnista ja jännitteestä. Oskilloskooppia voidaan käyttää staattisten tai hitaasti muuttuvien tasa- ja vaihtojännitteiden sekä suurtaajuisten vaihtosähköilmiöiden mittaamiseen ja tarkasteluun. 3. TYÖN SUORITUS A. Yleismittareiden tutkiminen: Tutustutaan valvojien antamiin erilaisiin analogisiin ja digitaalisiin mittarein. Kaikilla mittarilla, joiden tyyppi- ym. tiedot on merkittävä muistiin, mitataan kaksi erisuurta tasajännitettä, yksi vaihtojännite ja yksi tasavirran arvo. Tulokset merkitään lopussa olevaan taulukkoon. Valmistajat ilmoittavat mittarien tarkkuudet eri tyyppisissä mittauksissa. Tiedot on taulukoitu, ja taulukko on saatavilla fysiikan laboratoriossa. Siten on mahdollista laskea maksimivirheen suuruuus mittaustilanteissa eri tyyppisillä mittareilla. Erityisesti vertaa eri mittarien antamia tuloksia toisiinsa. Pohdi tulosten luotettavuutta ja eroavaisuuksien syitä. Muuta varsinaista matemaattista virhetarkastelua ei tehdä. B. Tasajännitteen mittaus:
8 TURUN AMMATTIKORKEAKOULU TYÖOHJE 8/12 Mitataan kahden tuntemattoman tasajännitteen suuruus ensin oskilloskoopilla joko x- tai y-suunnassa ja sitten tulos tarkistetaan digitaalimittarilla. Mittaus suoritetaan mahdollisimman tarkasti säätäen oskilloskoopin herkkyys (Volts/div) juuri sopivaksi. Koejärjestely ja työn toteutus: y OSKILLOSKOOPPI time/div trig x-y ch1/x mode ch2/y x tasavirtalähde DC V Kuva 11. Tasajännitteen mittaus oskilloskoopilla Kuvassa 11 olevalla kytkennällä voidaan mitata tuntemattoman tasajännitteen suuruus. Johdetaan jännite joko vaakasuunnassa tapahtuvaa mittausta varten X -sisäänmenoon tai vastaavasti pystysuunnassa Y -sisäänmenoon. Huomaa erityisesti, että on valittu x-y-vahvistinmoodi eikä yleisempi aikapyyhkäisy ja kummassakin kanavassa on sisäänmenokytkin asennossa DC (DC= direct current= tasavirta). Tutkittava jännitealue täytyy skaalata eli saattaa sopivan suuruiseksi, jotta piste poikkeaa riittävästi kuvaruudulla, menemättä kuitenkaan sen ulkopuolelle. Tämä tapahtuu säätämällä vaaka- tai pystypoikkeutusherkkyys sopivaksi kytkimellä Volts/div. Lisäksi origo kannattaa sijoittaa johonkin muualle kuin kuvaruudun keskelle. Näin saavutetaan mittauksessa maksimitarkkuus. Kuvaruudulta voidaan sen jälkeen mitata ruudukon avulla, monenko ruudun verran tuntematon jännite poikkeuttaa kuvapistettä. Kun tämä pituus kerrotaan poikkeutusherkkyydellä Volts/div, jännite saadaan laskettua. Tasajännitteet voivat olla paristoista tai mieluummin verkkokäyttöisistä tasavirtalähteistä valittuja. Sekä oskilloskoopilla että digitaalimittarilla jännitteet pyritään mittaamaan mahdollisimman tarkkaan. Tämä tarkoittaa sitä, että kummassakin on valittava riittävän herkkä mittausalue ( Volts/div ).
9 TURUN AMMATTIKORKEAKOULU TYÖOHJE 9/12 C. Vaihtojännitteen mittaus: Kytkentä: OSKILLOSKOOPPI time/div trig 2u p x-y ch1/x mode ch2/y vaihtovirtalähde AC V Kuva 12. Vaihtojännitteen mittaus oskilloskoopilla Valitse virtalähteeksi funktiogeneraattori, jonka taajuutta voidaan muuttaa ja käytä ensin noin 50 Hz taajuutta (sama kuin verkkojännite Suomessa). Aseta sisäänmenokytkin DC-asentoon. Oskilloskoopin kuvaruudulla nähdään jana, jonka pituus on huippujännite kaksinkertaisena eli 2 u p. Kuvan 2 jännite on siinä tavallaan lyöty vaakasuorassa suunnassa kasaan. Tehollinen jännite saadaan jakamalla huippujännite luvulla 2 eliu = u p / 2. Mitataan määrätyn vaihtojännitteen suuruus sekä oskilloskoopin että digitaalimittarin avulla, kummallakin mahdollisimman tarkkaan ja vertaa tuloksia. Vaihda xy-moodi aikapyyhkäisyksi ja asentoon 5 ms/div. Tarkasta myös kuvasta asettamasi noin 50 Hz taajuus mittaamalla signaalin jakson pituus. Oskilloskoopin voima on signaalin muodon ja esimerkiksi vaihe-eron ilmaisijana eikä niinkään tarkan jännitteen mittaajana, missä taas yleismittari on yleensä parempi. D. Diodien ominaiskäyrien tutkiminen Ominaiskäyrä kuvaa virran muuttumista jännitteen funktiona. Esim. tavallisella vastuksella U = I R eli I =U/R ja siten ominaiskäyrä on suora, jonka kaltevuus (fysikaalinen kulmakerroin) on 1/R. Zener-diodin ominaiskäyrä tutkitaan seuraavalla kytkennällä (kuva 13). Zener-diodilla päästösuuntainen ominaiskäyrä on samanlainen kuin tavallisella diodilla, mutta estosuunnassa tapahtuu hyvin jyrkkä läpilyönti tarkalleen määrätyssä jännitteessä. Sitä kutsutaan zener-jännitteeksi U z.
10 TURUN AMMATTIKORKEAKOULU TYÖOHJE 10/12 Piirrä ominaiskäyräkäyrä mm-paperille oikeassa mittasuhteessa. Käyrän saa oikeaan asentoon kääntämällä y-kanava (oskilloskoopissa teksti pull invert ). Mieti, miksi y-kanava on käännettävä! Mitä jännitettä tutkitaan x-akselilla? Y-akselilla mitataan jännitettä tunnetun vastuksen R yli (Kirjoita R:n arvo havaintoihin). Miksi kytkennässä on vastus R? Mitä suuretta piirroksessasi ominaiskäyrässä y-akselilla pitäisi esitettää? Laske mitä ominaiskäyrässä vastaa oskilloskoopin y-akselin yksi ruutu? OSKILLOSKOOPPI time/div trig U z x-y ch1/x ch2/y mode funktiogeneraattori muuntaja U 1 U 2 toisio ensiö ZD R V Kuva 13. Kytkentä, jota käytetään tutkittaessa zenerdiodin ominaiskäyrää. Huomioi edellä erityisesti origon paikka ja käytä riittävän herkkää vaakapoikkeutusta saadaksesi selville kynnysjännitteen, jossa diodi alkaa johtaa päästösuuntaan. Määritä kyseisen zener-diodin zener-jännite U z. E. Yleismittareiden taajuusvasteen tutkiminen Mittareille selvitetään taajuusvaste vaihtojännitteen mittausalueella vertaamaalla niiden antamia lukemia oskilloskoopilla mitattuihin jännitteisiin laajalla taajuusalueella (esim. 5 Hz Hz). Havainnoista piirretään kullekin mittarille käyrä havaittu jännite taajuuden funktiona puolilogaritmipaperille. Mitä huomaat verratessasi eri tavoin mittaamiasi vaihtojännitteen arvoja ja mistä erot johtuvat? 4. KIRJALLISUUTTA Lisätietoja sähkömittaustekniikasta haluaville suositellaan esim. kirjoja Tapaninen, Sähkömittaustekniikka, WSOY Voipio, Sähkömittaustekniikka, Otakustantamo
11 TURUN AMMATTIKORKEAKOULU TYÖOHJE 11/12 Luokka: MITTAUSPÖYTÄKIRJA Ryhmän jäsenet: Ryhmä: Päiväys: Valvojat: PERUSMITTAUKSIA YLEISMITTARILLA Taulukko 1. Havaintotulokset. Mittari no Mittarin tiedot Tasajännite 1 Tasajännite 2 Tarkkuus DCjänn.alueella Virheen max. arvo (tasaj.1) Vaihtojännite Tarkkuus ACjänn.alueella Virheen max. arvo Tasavirta (Muista kuormitusvastus) Tarkkuus DCvirta-alueella Virheen max. arvo Omat päätelmät: (kääntöpuolelle)
12 TURUN AMMATTIKORKEAKOULU TYÖOHJE 12/12 Luokka: Ryhmä: Päiväys: Ryhmän jäsenet: Valvojat: Tasajännite DCV 1 DCV 2 Poikkeama (div) Herkkyys (Volts/div) Oskilloskoopilla mitattu jännite (V) Digitaalimittarilla mitattu jännite (V) Vaihtojännite Janan pituus (div) ACV T = ms eli f = Hz Lähteestä f = Hz Herkkyys (Volts/div) Huippujännite (V) Tehollinen jännite (V) Digitaalimittarilla mitattu jännite (V) Zener-diodi Miksi y-akseli käännetään? x-akselin jännite? Vastuksen R merkitys? R = Ω y-akselin suure? y-akselin yksikkö oskilloskoopilla? Kynnysjännite U EB = V Zener-jännite U z = V Taajuusvaste Huomiot ja päätelmät:
2. Sähköisiä perusmittauksia. Yleismittari.
TURUN AMMATTKORKEAKOULU TYÖOHJE 1 TEKNKKA FYSKAN LABORATORO 2.0 2. Sähköisiä perusmittauksia. Yleismittari. 1. Työn tavoite Tutustutaan tärkeimpään sähköiseen perusmittavälineeseen, yleismittariin, suorittamalla
Lisätiedot41 4h. SÄHKÖISIÄ PERUSMITTAUKSIA. OSKILLOSKOOPPI.
TN AMMATTIKOKEAKOL TYÖOHJE 1/10 41 4h. SÄHKÖISIÄ PESMITTAKSIA. OSKILLOSKOOPPI. 1. TEOIAA Oskilloskooppi on laite, joka muuttaa sähköisen signaalin näkyvään muotoon. seimmiten sillä tarkastellaan toistuvaa
LisätiedotTyö 41B28. SÄHKÖISIÄ PERUSMITTAUKSIA YLEISMITTARILLA JA OSKILLOSKOOPILLA
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/13 Työ 41B28. SÄHKÖISIÄ PERUSMITTAUKSIA YLEISMITTARILLA JA OSKILLOSKOOPILLA TYÖN TAVOITE Varmistetaan yleismittareiden käytön osaaminen ja tutustutaan oskilloskoopin
Lisätiedot4B. Tasasuuntauksen tutkiminen oskilloskoopilla.
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 4B. Tasasuuntauksen tutkiminen oskilloskoopilla. Teoriaa oskilloskoopista Oskilloskooppi on laite, joka muuttaa sähköisen signaalin näkyvään muotoon. Useimmiten sillä
LisätiedotS1. SÄHKÖISIÄ PERUSMITTAUKSIA Osa A: Yleismittarit.
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/13 S1. SÄHKÖISIÄ PERUSMITTAUKSIA Osa A: Yleismittarit. 1. Työn tavoite 2. Teoriaa Tutustutaan tärkeimpään sähköiseen perusmittavälineeseen, yleismittariin, suorittamalla
LisätiedotPerusmittalaitteiden käyttö mittauksissa
Fysiikan laboratorio Työohje 1 / 5 Perusmittalaitteiden käyttö mittauksissa 1. Työn tavoite Työn tavoitteena on tutustua insinöörien tarvitsemiin perusmittalaitteisiin: mikrometriruuviin, työntömittaan,
LisätiedotOSKILLOSKOOPIN SYVENTÄVÄ KÄYTTÖ
FYSP110/K2 OSKILLOSKOOPIN SYVENTÄVÄ KÄYTTÖ 1 Johdanto Työn tarkoituksena on tutustua oskilloskoopin käyttöön perusteellisemmin ja soveltaa työssä Oskilloskoopin peruskäyttö hankittuja taitoja. Ko. työn
LisätiedotYLEISMITTAREIDEN KÄYTTÄMINEN
FYSP104 / K1 YLEISMITTAREIDEN KÄYTTÄMINEN Työn tavoitteita Oppia yleismittareiden oikea ja rutiininomainen käyttö. Soveltaa Ohmin lakia mittaustilanteissa Sähköisiin ilmiöihin liittyvissä laboratoriotöissä
LisätiedotOperaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta.
TYÖ 11. Operaatiovahvistin Operaatiovahvistin on mikropiiri ( koostuu useista transistoreista, vastuksista ja kondensaattoreista juotettuna pienelle piipalaselle ), jota voidaan käyttää useisiin eri kytkentöihin.
LisätiedotFYS206/5 Vaihtovirtakomponentit
FYS206/5 Vaihtovirtakomponentit Tässä työssä pyritään syventämään vaihtovirtakomponentteihin liittyviä käsitteitä. Tunnetusti esimerkiksi käsitteet impedanssi, reaktanssi ja vaihesiirto ovat aina hyvin
Lisätiedot33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ
TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien
LisätiedotVirrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite
TYÖ 4. Magneettikenttämittauksia Johdanto: Hallin ilmiö Ilmiön havaitseminen Yhdysvaltalainen Edwin H. Hall (1855-1938) tutki mm. aineiden sähköjohtavuutta ja löysi menetelmän, jolla hän pystyi mittaamaan
LisätiedotKuva 1. Vastus (R), kondensaattori (C) ja käämi (L). Sinimuotoinen vaihtojännite
TYÖ 54. VAIHE-EO JA ESONANSSI Tehtävä Välineet Taustatietoja Tehtävänä on mitata ja tutkia jännitteiden vaihe-eroa vaihtovirtapiirissä, jossa on kaksi vastusta, vastus ja käämi sekä vastus ja kondensaattori.
LisätiedotPERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys
PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä
LisätiedotFy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7
Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput
LisätiedotDEE Sähkömoottorikäyttöjen laboratoriotyöt. Tasavirtakäyttö
Tasavirtakäyttö 1 Esiselostus 1.1 Mitä laitteita kuuluu Leonard-käyttöön, mikä on sen toimintaperiaate ja mihin ja miksi niitä käytetään? Luettele myös Leonard-käytön etuja ja haittoja. Kuva 1.1 Leonard-käyttö.
Lisätiedot1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla
Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit
LisätiedotFYSA1110/K1 (FYSP1082/K5) OSKILLOSKOOPIN PERUSKÄYTTÖ
FYSA1110/K1 (FYSP1082/K5) OSKILLOSKOOPIN PERUSKÄYTTÖ 1 Johdanto Työssä tutustutaan oskilloskoopin käytön perusteisiin. Työn tavoitteena on ymmärtää oskilloskoopin toimintaperiaatetta tutustua erilaisten
LisätiedotYLEISMITTAREIDEN KÄYTTÄMINEN
FYSP104 / K1 YLEISMITTAREIDEN KÄYTTÄMINEN Työn tavoitteita oppia tuntemaan analogisen ja digitaalisen yleismittarin tärkeimmät erot ja niiden suorituskyvyn rajat oppia yleismittareiden oikea ja rutiininomainen
LisätiedotFYSA1110/K1 (FYSP1082/K5) OSKILLOSKOOPIN KÄYTTÖ
FYSA1110/K1 (FYSP1082/K5) OSKILLOSKOOPIN KÄYTTÖ 1 Johdanto Työssä tutustutaan oskilloskoopin käyttöön. Työn tavoitteena on Ymmärtää oskilloskoopin toimintaperiaatetta Tutustua erilaisten jännitesignaalien
LisätiedotDIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ
1 IOIN OMINAISKÄYRÄ JA TRANSISTORIN OMINAISKÄYRÄSTÖ MOTIVOINTI Työ opettaa mittaamaan erityyppisten diodien ominaiskäyrät käyttämällä oskilloskooppia XYpiirturina Työssä opetellaan mittaamaan transistorin
LisätiedotRATKAISUT: 22. Vaihtovirtapiiri ja resonanssi
Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa
LisätiedotIMPEDANSSIMITTAUKSIA. 1 Työn tavoitteet
1 IMPEDANSSIMITTAUKSIA 1 Työn tavoitteet Tässä työssä tutustut vaihtojännitteiden ja virtojen sekä vaihtovirtapiirissä olevien komponenttien impedanssien suuruuksien eli vaihtovirtavastusten mittaamiseen.
LisätiedotEVTEK/ Antti Piironen & Pekka Valtonen 1/6 TM01S/ Elektroniikan komponentit ja järjestelmät Laboraatiot, Syksy 2003
EVTEK/ Antti Piironen & Pekka Valtonen 1/6 TM01S/ Elektroniikan komponentit ja järjestelmät Laboraatiot, Syksy 2003 LABORATORIOTÖIDEN OHJEET (Mukaillen työkirjaa "Teknillisten oppilaitosten Elektroniikka";
LisätiedotOSKILLOSKOOPPI JA KOKOAALTOTASASUUNTAUS
1 OSKILLOSKOOPPI JA KOKOAALTOTASASNTAS 1. Työn tavoitteet 1.1 Mittausten tarkoitus Tässä työssä tutustut sähköisten perusmittausten tärkeimpään mittalaitteeseen - oskilloskooppiin. Opit mittaamaan oskilloskoopilla
LisätiedotVASTUKSEN JA DIODIN VIRTA-JÄNNITEOMINAISKÄYRÄT
1 1. Työn tavoitteet 1.1 Mittausten tarkoitus Tässä työssä tutustut sähköisiin perusmittauksiin. Opit mittaamaan digitaalisella yleismittarilla tasajännitettä ja -virtaa sekä vastuksen resistanssin. isäksi
LisätiedotVASTUSMITTAUKSIA. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Sähkö ja magnetismiopin laboratoriotyöt VASTUSMTTAUKSA Työn tavoitteet Tässä työssä tutustut Ohmin lakiin ja joihinkin menetelmiin, joiden avulla vastusten resistansseja
LisätiedotKuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.
TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde
LisätiedotNimi: Muiden ryhmäläisten nimet:
Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,
LisätiedotSÄHKÖSUUREIDEN MITTAAMINEN
FYSP107 / K3 Sähkösuureiden mittaaminen yleismittarilla - 1 - FYSP107 / K3 YLEISMITTARILLA SÄHKÖSUUREIDEN MITTAAMINEN Työn tavoitteita oppia tuntemaan digitaalisen yleismittarin suorituskyvyn rajat oppia
LisätiedotFYSP104 / K2 RESISTANSSIN MITTAAMINEN
FYSP104 / K2 RESISTANSSIN MITTAAMINEN Työn tavoite tutustua erilaisiin menetelmiin, jotka soveltuvat pienten, keskisuurten ja suurten vastusten mittaamiseen Työssä tutustutaan useisiin vastusmittauksen
LisätiedotPynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:
EAOL 1/6 Opintokokonaisuus : Jakso: Harjoitustyö: 3 SÄHKÖ Pvm : Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään kolmivaihejärjestelmän vaihe- ja pääjännitteiden suuruudet
Lisätiedot1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla
PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen
LisätiedotTYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS. Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla.
TYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS Tehtävä Välineet Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla. Kaksoiskanavaoskilloskooppi KENWOOD
LisätiedotMuuntajan toiminnasta löytyy tietoja tämän työohjeen teoriaselostuksen lisäksi esimerkiksi viitteistä [1] - [4].
FYS 102 / K6. MUUNTAJA 1. Johdanto Muuntajassa on kaksi eristetystä sähköjohdosta kierrettyä kelaa yhdistetty rautasydämellä ensiöpiiriksi ja toisiopiiriksi. Muuntajan toiminta perustuu sähkömagneettiseen
LisätiedotOSKILLOSKOOPPIMITTAUKSIA
OSKILLOSKOOPPIMITTAUKSIA 1 OSKILLOSKOOPPI 1.1 Katodisädeputki Katodisädeputkioskilloskooppi on elektroninen mittauslaite, jonka avulla voidaan tutkia ajan suhteen muuttuvia sähköisiä ilmiöitä. Oskilloskoopin
LisätiedotFYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
LisätiedotOikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen.
Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen. 1. Tuletko mittaamaan AC tai DC -virtaa? (DC -pihdit luokitellaan
LisätiedotPynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:
AMTEK 1/7 Opintokokonaisuus : Jakso: Harjoitustyö: 3 SÄHKÖ Pvm : Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään kolmivaihejärjestelmän vaihe- ja pääjännitteiden suuruudet
LisätiedotKondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
LisätiedotSÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:
FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia
LisätiedotVAIHTOVIRTAPIIRI. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta
LisätiedotFysiikan laboratoriotyöt 3 Sähkömotorinen voima
Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Työn suorittaja: Antti Pekkala (1988723) Mittaukset suoritettu 8.10.2014 Selostus palautettu 16.10.2014 Valvonut assistentti Martti Kiviharju 1 Annettu tehtävä
LisätiedotRAIDETESTERIN KÄYTTÖOHJE
RAIDETESTERIN KÄYTTÖOHJE Yleiskuvaus Mittalaite tutkiin virtapiirin johtavuutta ja ilmaisee virtapiirissä olevan puhtaasti resistiivisen vastuksen. Mittalaitteen toiminnallisuus on parhaimmillaan, kun
LisätiedotFYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
LisätiedotPynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:
EAOL 1/5 Opintokokonaisuus : Jakso: Harjoitustyö: Passiiviset komponentit Pvm : vaihtosähköpiirissä Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään vastuksen, kondensaattorin
LisätiedotHarjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi
Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi 3. Selitä: a. Suljettu virtapiiri Suljettu virtapiiri on sähkövirran reitti, jonka muodostavat johdot, paristot ja komponentit. Suljetussa virtapiirissä
LisätiedotTASAVIRTAPIIRI - VASTAUSLOMAKE
TASAVIRTAPIIRI - VASTAUSLOMAKE Ryhmä Tekijä 1 Pari Tekijä 2 Päiväys Assistentti Täytä mittauslomake lyijykynällä. Muista erityisesti virhearviot ja suureiden yksiköt! 4 Esitehtävät 1. Mitä tarkoitetaan
LisätiedotMIKROAALTOMITTAUKSET 1
MIKROAALTOMITTAUKSET 1 1. TYÖN TARKOITUS Tässä harjoituksessa tutkit virran ja jännitteen käyttäytymistä gunn-oskillaattorissa. Piirrät jännitteen ja virran avulla gunn-oskillaattorin toimintakäyrän. 2.
Lisätiedot7. Resistanssi ja Ohmin laki
Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi
Lisätiedot5. Sähkövirta, jännite
Nimi: LK: SÄHKÖOPPI Tarmo Partanen Laboratoriotyöt 1. Työ 1/7, jossa tutkit lamppujen rinnan kytkennän vaikutus sähkövirran suuruuteen piirin eri osissa. Mitataan ensin yhden lampun läpi kulkevan virran
LisätiedotMITTALAITTEIDEN OMINAISUUKSIA ja RAJOITUKSIA
KAJAANIN AMMATTIKORKEAKOL Tekniikan ja liikenteen ala TYÖ 21 ELEKTRONIIKAN LABORAATIOT H.Honkanen MITTALAITTEIDEN OMINAISKSIA ja RAJOITKSIA TYÖN TAVOITE: Tässä laboratoriotyössä tutustumme mittalaitteiden
LisätiedotLABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET
KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala VAHVAVIRTATEKNIIKAN LABORAATIOT H.Honkanen LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET YLEISTÄ YLEISMITTARIN OMINAISUUKSISTA: Tässä laboratoriotyössä
LisätiedotRESISTANSSIMITTAUKSIA
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 ESSTNSSMTTUKS 1 Työn tavoitteet Tässä työssä tutustut sähköisiin perusmittauksiin. Harjoittelet digitaalisen yleismittarin käyttöä
LisätiedotMittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014
Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella
LisätiedotSähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon
30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten
LisätiedotTasavirtakäyttö. 1 Esiselostus. TEL-1400 Sähkömoottorikäyttöjen laboratoriotyöt
Tasavirtakäyttö 1 Esiselostus 1.1 Mitä laitteita kuuluu Leonard-käyttöön, mikä on sen toimintaperiaate ja mihin ja miksi niitä käytetään? Luettele myös Leonard-käytön etuja ja haittoja. Kuva 1.1 Leonard-käyttö.
LisätiedotElektroniikan perusteet, Radioamatööritutkintokoulutus
Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:
LisätiedotVastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi
Sivu 1/10 Fysiikan laboratoriotyöt 1 Työ numero 3 Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Työn suorittaja: Antero Lehto 1724356 Työ tehty: 24.2.2005 Uudet mittaus tulokset: 11.4.2011
LisätiedotOPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia
KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala TYÖ 11 ELEKTRONIIKAN LABORAATIOT H.Honkanen OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia TYÖN TAVOITE Tutustua operaatiovahvistinkytkentään
Lisätiedot1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011
1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan
LisätiedotPinces AC-virtapihdit ampèremetriques pour courant AC
Pinces AC-virtapihdit ampèremetriques pour courant AC MINI-SARJA Pienikokoinen, kompakti sekä erittäin kestävä minipihtisarja on suunniteltu mittaamaan virtoja muutamasta milliampeerista jopa 150 A AC
LisätiedotHALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA
1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla
LisätiedotPinces AC-virtapihti ampèremetriques pour courant AC
Pinces AC-virtapihti ampèremetriques pour courant AC MN-sarja Serie MN-SARJA Nämä ergonomiset mini-pihdit ovat sunniteltu matalien ja keskisuurien virtojen mittaamiseen välillä 0,01 A ja 240 A AC. Leukojen
LisätiedotFY6 - Soveltavat tehtävät
FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.
LisätiedotFysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät
Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä:
LisätiedotCRT NÄYTÖN VAAKAPOIKKEUTUS- ASTEEN PERIAATE
CRT NÄYTÖN VAAKAPOIKKEUTUS- ASTEEN PERIAATE H. Honkanen Kuvaputkinäytön vaakapoikkeutusaste on värähtelypiirin ja tehoasteen sekoitus. Lisäksi tahdistuksessa on käytettävä vaihelukittua silmukkaa ( PLL
LisätiedotLABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN
LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN Päivitetty: 23/01/2009 TP 3-1 3. VAIHELUKITTU VAHVISTIN Työn tavoitteet Työn tavoitteena on oppia vaihelukitun vahvistimen toimintaperiaate ja käyttömahdollisuudet
LisätiedotELEKTRONISET JÄRJESTELMÄT, LABORAATIO 1: Oskilloskoopin käyttö vaihtojännitteiden mittaamisessa ja Theveninin lähteen määritys yleismittarilla
Chydenius Saku 8.9.2003 Ikävalko Asko ELEKTRONISET JÄRJESTELMÄT, LABORAATIO 1: Oskilloskoopin käyttö vaihtojännitteiden mittaamisessa ja Theveninin lähteen määritys yleismittarilla Työn valvoja: Pekka
LisätiedotElektroniikan perusteet, Radioamatööritutkintokoulutus
Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:
LisätiedotKaikki kytkennät tehdään kytkentäalustalle (bimboard) ellei muuta mainita.
FYSE300 Elektroniikka 1 (FYSE301 FYSE302) Elektroniikka 1:n (FYSE300) laboratorioharjoitukset sisältävät kaksi työtä, joista ensimmäinen sisältyy A-osaan (FYSE301) ja toinen B-osaan (FYSE302). Pelkän A-osan
LisätiedotSÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013
SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen
LisätiedotLIITE 1 VIRHEEN ARVIOINNISTA
1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten
LisätiedotTEHTÄVÄT KYTKENTÄKAAVIO
TEHTÄÄT KYTKENTÄKIO 1. a) Mitkä kytkentäkaavion hehkulampuista hehkuvat? b) Kuinka monta eri kulkureittiä sähkövirralla on pariston plusnavalta miinusnavalle? 2. Piirrä sähkölaitteen tai komponentin piirrosmerkki.
LisätiedotLedien kytkeminen halpis virtalähteeseen
Ledien kytkeminen halpis virtalähteeseen Ledien valovoiman kasvu ja samanaikaisen voimakkaan hintojen lasku on innostuttanut monia rakentamaan erilaisia tauluja. Tarkoitan niillä erilaista muoveista tehtyjä
LisätiedotLIITE 1 VIRHEEN ARVIOINNISTA
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi
LisätiedotFYSA220/1 (FYS222/1) HALLIN ILMIÖ
FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys
Lisätiedot2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset.
Fysiikka syksy 2005 1. Nykyinen käsitys Aurinkokunnan rakenteesta syntyi 1600-luvulla pääasiassa tähtitieteellisten havaintojen perusteella. Aineen pienimpien osasten rakennetta sitä vastoin ei pystytä
LisätiedotPotentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0
Potentiaali ja sähkökenttä: pistevaraus kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: tasaisesti varautut levyt Tiedämme edeltä: sähkökenttä E on vakio A B Huomaa yksiköt: Potentiaalin muutos pituusyksikköä
LisätiedotLIITE 1 VIRHEEN ARVIOINNISTA
1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista
LisätiedotFYSP105 / K3 RC-SUODATTIMET
FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä
LisätiedotNIMI: LK: 8b. Sähkön käyttö Tarmo Partanen Ota alakoulun FyssaMoppi. Arvaa, mitä tapahtuu eri töissä etukäteen.
NIMI: LK: 8b. Sähkön käyttö Ota alakoulun FyssaMoppi. Arvaa, mitä tapahtuu eri töissä etukäteen. Sähkön käyttö Ota alakoulun FyssaMoppi 1 ja sieltä Aine ja energia ja Sähkön käyttö ja etsi vastaukset.
LisätiedotKondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
LisätiedotMultivibraattorit. Bistabiili multivibraattori:
Multivibraattorit Elektroniikan piiri jota käytetään erilaisissa kahden tason systeemeissä kuten oskillaattorit, ajastimet tai kiikkut. Multivibraattorissa on vahvistava elementtti ja ristiinkytketyt rvastukset
LisätiedotOPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11.
Oulun seudun ammattikorkeakoulu Tekniikan yksikkö Elektroniikan laboratoriotyö OPERAATIOVAHVISTIN Työryhmä Selostuksen kirjoitti 11.11.008 Kivelä Ari Tauriainen Tommi Tauriainen Tommi 1 TEHTÄVÄ Tutustuimme
Lisätiedotkipinäpurkauksena, josta salama on esimerkki.
Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy
LisätiedotMuuntajat ja sähköturvallisuus
OAMK Tekniikan yksikkö LABORATORIOTYÖ 1 Muuntajat ja sähköturvallisuus 1.1 Teoriaa Muuntaja on vaihtosähkömuunnin, jossa energia siirtyy ensiokaamista toisiokäämiin magneettikentän välityksellä. Tavanomaisen
Lisätiedot4757 4h. MAGNEETTIKENTÄT
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ
LisätiedotAiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio
Sähkömagnetismi 2 Aiheena tänään Virtasilmukka magneettikentässä Sähkömagneettinen induktio Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Käämiin vaikuttava momentti Magneettikentässä olevaan
LisätiedotLaitteita - Yleismittari
Laitteita - Yleismittari Yleistyökalu mittauksissa Yleensä digitaalisia Mittaustoimintoja Jännite (AC ja DC) Virta (AC ja DC) Vastus Diodi Lämpötila Transistori Kapasitanssi Induktanssi Taajuus 1 Yleismittarin
LisätiedotJohdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on
LisätiedotCoulombin laki. Sähkökentän E voimakkuus E = F q
Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =
LisätiedotS-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010
1/7 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö, kevät 2010 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä Viimeksi päivitetty 25.2.2010 / MO 2/7 Johdanto Sähköisiä
LisätiedotSÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015
SÄHKÖTEKNIIKKA NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään
LisätiedotSähköstatiikka ja magnetismi
Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän
LisätiedotLOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi
LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...
LisätiedotElektroniikka. Mitä sähkö on. Käsitteistöä
Elektroniikka Mitä sähkö on Sähkö on elektronien liikettä atomista toiseen. Negatiivisesti varautuneet elektronit siirtyvät atomista toiseen. Tätä kutsutaan sähkövirraksi Sähkövirrasta puhuttaessa on sovittu,
LisätiedotMagnetismi Mitä tiedämme magnetismista?
Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten
LisätiedotTyön tavoitteita. 1 Teoriaa
FYSP103 / K3 BRAGGIN DIFFRAKTIO Työn tavoitteita havainnollistaa röntgendiffraktion periaatetta konkreettisen laitteiston avulla ja kerrata luennoilla läpikäytyä teoriatietoa Röntgendiffraktio on tärkeä
Lisätiedot