Hiukkasfysiikan uudet teoriat. Katri Huitu Fysiikan laitos, AFO Fysiikan tutkimuslaitos
|
|
- Antero Lehtinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Hiukkasfysiikan uudet teoriat Katri Huitu Fysiikan laitos, AFO Fysiikan tutkimuslaitos
2 Sisällys: Miksi tarvitaan uutta teoriaa? Supersymmetria Ylimääräiset ulottuvuudet Muita mahdollisuuksia
3 Hiukkasfysiikan standardimalli on erinomainen teoria! Higgsiä lukuunottamatta kaikki sen hiukkaset tunnetaan. Standardimallissa on noin 0 parametria, jotka täytyy kokeellisesti määrittää ennen muiden tulosten ennustusta. Yli 30 vuoden aikana sen ennustuksia on testattu monen desimaalin tarkkuudella! 3
4 Standardimallin hiukkaset + Higgsin bosoni 4
5 Standardimalli kuvaa tarkasti vahvoja, sähkömagneettisia ja heikkoja vuorovaikutuksia. Standardimalli EI kerro mitään painovoimasta. Täytyy olla syvällisempi teoria, joka kertoo, miten painovoima vaikuttaa hiukkasiin. Standardimallilla on rajattu voimassaoloalue. CERN 5
6 Newtonin painovoimateoria Maxwellin elektrodynamiikka Einsteinin teoria QM YM teoriat supergravitaatio QED Kaluza-Klein teoriat sähköheikko SU() x U(1) QCD SU(3) laajennettu supergravitaatio GUT supersäikeet Miten sisällyttää painovoima? 6
7 years 1 Å 10 ev 100 s 1 fm 1 MeV s m 100 GeV 10-3 s 10-3 m GeV s m GeV Magnetismi, sähkö, heikko vv, QCD, painovoima QED, heikko vv, QCD, painovoima Sähköheikko malli, QCD, painovoima SUSY?, GUT?, painovoima SUGRA?, GUT?, säikeet? 7
8 Standardimallin ongelmia 8
9 Neutriinon massa Standardimallin hiukkasista vain neutriino jää standardimallissa massattomaksi. Physics World, 00 Kokeellisesti tiedetään, että neutriinolla on pieni massa. Standardimallia syvällisempi teoria on olemassa. 9
10 CP-rikon alkuperä? CP-rikko tarvitaan selittämään maailmankaikkeuden aine ilman CP-rikkoa kaikki hiukkaset ja niiden vastahiukkaset olisivat varhaisessa maailmankaikkeudessa muuttuneet säteilyksi. Standardimallin rikko näyttää olevan liian pieni selittääkseen kaiken materian. CP-symmetrian rikko nähdään laboratoriokokeissa standardimallin ennustuksen mukaisena. aine antiaine säteily 10
11 Maailmankaikkeuden pimeä aine supersymmetrinen hiukkanen? Suurin osa maailmankaikkeudessa olevasta aineesta on pimeää: se ei säteile. Galaksien osaset lentäisivät erilleen, ellei materiaalia ole tarpeeksi! L. Bergström, Rep.Prog.Phys
12 Suora kokeellinen todiste pimeän aineen olemassaolosta gravitaatiolinssi-ilmiötä tutkimalla D. Clowe et al, ApJ Letters, astro-ph/ Kuvassa kaksi galaksijoukkoa törmäsivät 100 miljoonaa vuotta sitten. Vaaleanpunainen tavallinen aine hidastuu törmätessä, mutta heikosti vuorovaikuttava pimeä aine menee suoraan läpi. 1
13 Higgsin hiukkasen massa divergoi neliöllisesti sen olettaisi olevan samaa suuruusluokkaa kuin suurin teoriassa esiintyvä massaskaala, esim Planckin skaala. 4 4 ) ( ) ( ) ( 1 ) ( F F F F F S m p k m k m p k m k k d i i p i h h... ) ln 6 ( 8 F F S F h m m m m 13 Jotain uutta 1 TeV:n energiaskaalassa!
14 Kokeellisesti tiedetään, että vuorovaikutusten voimakkuudet lähenevät toisiaan suurilla energioilla. standardimalli supersymmetria Amaldi, de Boer, Furstenau, Phys. Lett. B 60 (1991)
15 Supersymmetria Golfand, Likhtman, JETP Lett Volkov, Akulov, Phys.Lett. B, 1973 Wess, Zumino, Nucl. Phys. B, Phys. Lett. B,
16 Supersymmetria Liittää hiukkaset, joilla on kokonaislukuspin, hiukkaseen, jonka spin on puoliluku, relativistisessa kvanttikenttäteoriassa. Jokaisella standardimallin hiukkasella on supersymmetrinen kumppani Supersymmetriassa massakorjaus on verrannollinen supersymmetrian rikon määrään M. h scalar h h fermion h fermion m h 8 M... 1 scalar fermion 16
17 Muita motivaatioita: Supersymmetrian generaattorit, translaatiot ja Lorentzin muunnokset muodostavat yhteisen symmetrian. Konsistenssin vuoksi voi olettaa, että myös supersymmetria riippuu paikasta. Paikasta riippuva SUSY=painovoimateoria (supergravitaatio). Tärkeä osa supersäieteorioita. Mittakytkennät yhdistyvät. Monta mahdollista pimeän aineen hiukkasta. Higgsin mekanismi on luonnollinen (radiatiivinen sähköheikkosymmetrian rikkoutuminen) ja top-kvarkin ennustetaan olevan painava. 17
18 Supersymmetriamuunnoksessa Q bosoni fermioni ; Q fermioni bosoni, Qon supersymmetriamuunnoksen generaattori Supersymmetriageneraattorit ovat fermionisia operaattoreita: i, j ij Q Q P x x i i,, Koordinaateissa mukana uusia, jotka ovat Grassmannin lukuja, jotka antikommutoivat: Supertranslaatio on:, x x, 0 i j j i i i i 18
19 Minimaalisen supersymmetriamallin hiukkaset (MSSM) Aine standardimallissa: SM hiukkanen spin SUSY partneri spin leptonit: e,,, el L L e,, R R R kvarkit: u c t,,, d s b L L L u, d, c, s, t, b R R R R R R ½ ½ sleptonit: 0 e,,, el L L er, R, R skvarkit: u c t,,, d s b L L L u, d, c, s, t, b R R R R R R 0 19
20 Vuorovaikutuksia välittävät hiukkaset Supersymmetriset partnerit Sähköheikot vv (spin 1):, W, Z Vahvat vv (spin 1): g Higgsit (spin 0): hh,, AH, neutraliinot (spin ½):,,, ( sekoituksia seuraavista :, z, h, h ) chargiinot (spin ½):, 1 ( sekoituksia seuraavista : w, h i ) gluinot (spin ½): g 0
21 Superkoordinaattien avulla standardimallin hiukkanen ja sitä vastaava superpartneri voidaan kirjoittaa superkenttiin: yhteen superkenttään kuuluu e L, el ja vastaavasti ww, supermultipletti Kytkennät supermultipletille ovat toisiinsa verrannollisia. Kaikki yllä ovat verrannollisia u-kvarkin Yukawa-kytkentään. Jos supersymmetria olisi täsmälleen voimassa, hiukkasilla supermultipletissa olisi sama massa. Näin ei ole, joten supersymmetria on rikkoutunut. 1
22 Supersymmetrian rikko parametrisoidaan symmetrian rikkovilla massatermeillä ja skalaarihiukkasten vuorovaikutuksilla. Skvarkeille, sleptoneille ja Higgseille: 0, 1 1, m m H m H Gauginoille: M1/ Higgseille: bhh 1 Trilineaariset kytkennät: Aijk i j k Nämä ovat sellaisia, että Higgsin massaan ei tule neliöllisiä divergenssejä. (Massatermit voivat periaatteessa sekoittaa eri makuja keskenään yksi supersymmetriamallien haasteista on selittää, miksi tällainen sekoitus on hyvin pieni.) Supersymmetrian rikon voivat välittää esim. gravitaatiovuorovaikutukset tai mittavuorovaikutukset. Eksplisiittisessä symmetriarikkomallissa uusien parametrien lukumäärä on melko pieni, noin 5. Täysin yleisessä rikossa on 105 parametria.
23 R-pariteetti: +1 SM hiukkasille -1 supersymmetrisille partnereille Tärkeitä seuraamuksia: 1 Kevyin supersymmetrinen hiukkanen ei hajoa hyvä pimeän aineen kandidaatti (esim. kevyin neutraliino tai sneutriino). Supersymmetrisen hiukkasen hajoamisessa on aina pariton määrä supersymmetrisiä hiukkasia standardimallin hiukkasten lisäksi. 3
24 LHC:llä törmäytetään vahvasti vuorovaikuttavia hiukkasia. Kokeissa tuotetaan myös helpoiten vahvasti vuorovaikuttavia hiukkasia (skvarkkeja ja gluiinoja), mikäli se on kinemaattisesti mahdollista. Kaikki supersymmetriset partnerit hajoavat lopulta aina kevyimpiin supersymmetrisiin hiukkasiin ja stadardimallin hiukkasiin (kaskadi). Supersymmetrisissä tapauksissa tyypillisesti paljon hiukkasia ja runsaasti puuttuvaa energiaa (energiaa karkaa kevyimmän supersymmetrisen partnerin mukana näkymättä ilmaisimessa). 4
25 pp gg, qq, g qq, q q, H, H bb 1 b b 0 1 H q q q q H 0 1 b b pp bbbb ET X Puuttuvaa energiaa 5
26 Vaikka vaikutusalat ovat pienempiä, leptoneita sisältävät reaktiot voivat olla helpompia löytää ja tulkita. pp q' q W, q' ', ' 1 1 q q' 0 1 q q ' q' 1 0 Tyypillinen 3:n leptonin signaali ja paljon puuttuvaa energiaa. ' ' W 1 0 Z
27 7
28 LEP: e + e -, E cm <10 GeV (-000); pp, E cm = TeV Tevatron: LHC: pp, E cm =7 TeV (010-); 14 TeV (01?-); ILC: e + e -, E cm =0.5-1 TeV (?) (????-) no REWSB 8
29 Radiatiivinen sähköheikkosymmetrian rikkoutuminen (REWSB) Higgsin massaparametri ajautuu radiatiivikorjausten vuoksi sellaiseksi, että symmetria rikkoutuu. Tarpeeksi suuret korjaukset johtuvat Higgsin voimakkaasta kytkeytymisestä top-kvarkkiin, eli topin suuresta massasta: REWSB ennusti top-kvarkin massan ennen topin havaitsemista! 9
30 Ylimääräiset ulottuvuudet 30
31 Ylimääräiset ulottuvuudet Ylimääräiset ulottuvuudet ovat luontevia, jos säieteoria on painovoimateoria 3+1 ulottuvuudessa uusia hiukkasia. Meidän maailmankaikkeutemme voisi olla siivu useampiulotteisessa avaruusajassa. 31
32 Motivaatio ylimääräisille ulottuvuuksille: Säieteoria on johtava kandidaatti kaikkien vuorovaikutusten yhdistymiselle. Ylimääräiset ulottuvuudet voisivat ratkaista ongelmia kuten: - hierarkiaongelma (energiaskaala matala), - makujen ongelma (etäisyys braanista määrää massan), - neutriinon massa (oikeakätinen neutriino bulkissa), - sähköheikkosymmetrian rikkoutuminen (rikko reunaehdoista), - supersymmetrian rikkoutuminen, - pimeän aineen ehdokkaita, - jne 3
33 3+1 ulottuvuuttamme on sijoitettuna D=3+ulottuvuuteen (bulk). Standardimallin vuorovaikutukset ovat SM braanilla ja gravitaatiovuorovaikutus koko bulkissa. Kompaktifioidaan liialliset ulottuvuudet: Säde, R c Kompaktifikaation takia -ulottuvuudessa kineettinen energia on kvantittunut; näyttää siltä, että 4-ulottuvuudessa on Kaluza- Klein tornillinen hiukkasia, nn mn, n n1, n,..., n Rc n kuvaavat KK-eksitaatiota (spin ja muut kvanttiluvut identtisiä). Massat kääntäen verrannollisia ylimääräisen ulottuvuuden kokoon. 33
34 Kaksi erityyppistä mallia: Suuret ylimääräiset ulottuvuudet (ADD) Arkani-Hamed, Dimopoulos, Dvali, PLB 49 (1998) 63 ; Antoniadis, Arkani-Hamed, Dimopoulos, Dvali, PLB 436 (1998) 57. Warpatut ulottuvuudet (RS) Randall, Sundrum, PRL 83 (1999) 3370;
35 Suuret ylimääräiset ulottuvuudet Ainoa tärkeä massaskaala on M D ~ 1 TeV. D=4+, ulottuvuutta on kompaktifioitu torukselle T, jonka säde on R. M D =1 TeV R R -1 M Planck = M D + V, V = (R) : Kokemamme painovoima on heikko, koska se jakautuu suureen tilaan. Hierarkiaongelma korvautuu toisella: M D - << V km ev 0.1 mm 10-3 ev mm 100 ev mm 100 MeV 35
36 M D =1 TeV R R -1 Ei ole mahdollinen Supernovahavainnot (jäähtyminen); Kosmiset gamma-säteet; Neutronitähdistä liikaa lämpöä; Varhaisessa maailmankaikkeudessa liikaa KK-tiloja km ev 0.1 mm 10-3 ev mm 100 ev mm 100 MeV Todennäköisesti > 3 36
37 q, g q, g G n l l LHC:llä pystytään tutkimaan reaktioita noin M D = 7.5 TeV saakka (oletus tässä =). M D =.5 TeV 4 TeV SM Ylimääräisiä ulottuvuuksia etsittäessä voidaan pyrkiä löytämään KK-eksitaatioita. 37
38 Voi myös olla, että mittabosonit asuvat bulkissa ja fermionit vain braanilla. Tätä on käytetty motivoimaan supersymmetrian rikkoa, missä symmetriaa rikkovat termit Planck-braanilla mittavuorovaikutusten kautta rikkovat supersymmetrian myös TeVbraanilla. Tässä mallissa fermionit eivät ole suoraan tekemisissä supersymmetriaa rikkovien kenttien kanssa ja fermionien makujen vaihdokset ovat siksi hyvin pieniä (ja hyvin kokeellisissa rajoissa). 38
39 Universaalit ylimääräiset ulottuvuudet: myös fermionit bulkissa KK-pariteetti (-1) n säilyy (seuraus 5-d momentin säilymisestä) Kevyin KK-hiukkasista (LKP) ei hajoa Pimeän aineen kandidaatti (Kutsutaan joskus bosoniseksi supersymmetriaksi ja voi olla vaikea erottaa supersymmetrisestä mallista.) 39
40 Fermionien massahierarkia voidaan selittää ylimääräisten ulottuvuuksien avulla, kun kaikki fermionit asuvat bulkissa ja fermionien paikat ylimääräisessä ulottuvuudessa ratkaisevat kytkennän suuruuden Higgsin kenttään. Yukawa-kytkentä (ja hiukkasen massa) seuraa Higgsin kentän ja vasen- ja oikeakätisten fermionien aaltofunktioiden peittävyydestä. 40
41 Warpatut ylimääräiset ulottuvuudet y=0, Planck-braani y=r c, TeV braani Yksi kompaktifioitu ylimääräinen ulottuvuus. Näkyvä braani ja Planck-braani kiinteissä kohdissa. Avaruusaika on kaareutunut niin, että painovoima näkyvällä braanilla on heikko: Parametrit näkyvällä braanilla skaalautuvat tekijällä e -krc, samalla malliin ilmaantuu fysikaalinen hiukkanen, radion, m O(1 TeV) 41
42 Muita mahdollisuuksia standardimallia syvällisemmäksi teoriaksi? Ehkä skalaareja ei ole alkeishiukkasina tähän mennessä yhtään ei tunneta (Higgs olisi ensimmäinen). Voisi olla, että Higgsiltä näyttävä hiukkanen olisi yhdistelmä aiemmin tuntemattomia fermioneja: tekniväri - perinteisesti ollut vaikea löytää kokeiden kanssa ristiriidatonta mallia, mutta viime vuosina on paljon uutta tutkimusta aiheesta tehty. Voi myös olla, että Higgs ei ole standardimallin mukainen heikosti vuorovaikuttava hiukkanen, vaan uuden fysiikan skaala on matala 4
43 Standardimallin ulkopuolinen fysiikka voi olla sellaista, että se täysin häviää näkyvistä, jos sen energiaskaala on suuri (decoupling) tai että vaikutuksia jää (nondecoupling). m Z Tyypillisesti vaikutukset, M missä M on uuden fysiikan skaala. (esimerkiksi supersymmetria) Ilmiöitä, jotka eivät häviä, vaikka uuden fysiikan skaala. (esimerkiksi tekniväri) 43
Hiukkasfysiikka. Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto
Hiukkasfysiikka Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto Nobelin palkinto hiukkasfysiikkaan 2013! Robert Brout (k. 2011), Francois Englert, Peter
Higgsin fysiikkaa. Katri Huitu Fysiikan laitos, AFO Fysiikan tutkimuslaitos
Higgsin fysiikkaa Katri Huitu Fysiikan laitos, AFO Fysiikan tutkimuslaitos Sisällys: Higgsin teoriaa Tarkkuusmittauksia Standardimallin Higgs Supersymmetriset Higgsit Vahvasti vuorovaikuttava Higgsin sektori
SUPER- SYMMETRIA. Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa
SUPER- SYMMETRIA Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa Teemu Löyttinen & Joni Väisänen Ristiinan lukio 2008 1. Sisällysluettelo 2. Aineen rakenteen standardimalli
Arttu Haapiainen ja Timo Kamppinen. Standardimalli & Supersymmetria
Standardimalli & Supersymmetria Standardimalli Hiukkasfysiikan Standardimalli on teoria, joka kuvaa hiukkaset ja voimat, jotka vaikuttavat luonnossa. Ympärillämme näkyvä maailma koostuu ylös- ja alas-kvarkeista
Fysiikkaa runoilijoille Osa 7: kohti kaiken teoriaa
Fysiikkaa runoilijoille Osa 7: kohti kaiken teoriaa Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Modernin fysiikan sukupuu Klassinen mekaniikka
perushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi
8. Hiukkasfysiikka Hiukkasfysiikka kuvaa luonnon toimintaa sen perimmäisellä tasolla. Hiukkasfysiikan avulla selvitetään maailmankaikkeuden syntyä ja kehitystä. Tutkimuskohteena ovat atomin ydintä pienemmät
Hiukkasfysiikkaa teoreetikon näkökulmasta
Hiukkasfysiikkaa teoreetikon näkökulmasta @ CERN Risto Paatelainen CERN Theory Department KUINKA PÄÄDYIN CERN:IIN Opinnot: 2006-2011 FM, Teoreettinen hiukkasfysiikka, Jyväskylän yliopisto 2011-2014 PhD,
Teoreetikon kuva. maailmankaikkeudesta
Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten
Teoreettinen hiukkasfysiikka ja kosmologia Oulun yliopistossa. Kari Rummukainen
Teoreettinen hiukkasfysiikka ja kosmologia Oulun yliopistossa Kari Rummukainen Mitä hiukkasfysiikka tutkii? Mitä Oulussa tutkitaan? Opiskelu ja sijoittuminen työelämässä Teoreettinen fysiikka: työkaluja
Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura
Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat
CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén
CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén CERN = maailman suurin hiukkastutkimuslaboratorio Sveitsin ja Ranskan rajalla,
Suomalainen tutkimus LHC:llä. Paula Eerola Fysiikan laitos ja Fysiikan tutkimuslaitos
Suomalainen tutkimus LHC:llä Paula Eerola Fysiikan laitos ja Fysiikan tutkimuslaitos 2.12.2009 Mitä hiukkasfysiikka tutkii? Hiukkasfysiikka tutkii aineen pienimpiä rakennusosia ja niiden välisiä vuorovaikutuksia.
Alkeishiukkaset. Standarimalliin pohjautuen:
Alkeishiukkaset Alkeishiukkaset Standarimalliin pohjautuen: Alkeishiukkasiin lasketaan perushiukkaset (fermionit) ja alkeishiukkasbosonit. Ne ovat nykyisen tiedon mukaan jakamattomia hiukkasia. Lisäksi
(Hiukkas)fysiikan standardimalli
Alkeishiukkasista maailmankaikkeuteen: (Hiukkas)fysiikan standardimalli Helsingin Yliopisto Kaikki koostuu alkeishiukkasista: Aine koostuu protoneista, neutroneista ja elektroneista Protonit ja neutronit
Mahtuuko kaikkeus liitutaululle?
Mahtuuko kaikkeus liitutaululle? Teoreettinen näkökulma hiukkasfysiikkaan Jaana Heikkilä, CERN, 304-1-007 7.2.2017 Ylioppilas, 2010, Madetojan musiikkilukio, Oulu LuK (Fysiikka, teor. fysiikka), 2013,
Vuorovaikutuksien mittamallit
Vuorovaikutuksien mittamallit Hiukkasten vuorovaikutuksien teoreettinen mallintaminen perustuu ns. mittakenttäteorioihin. Kenttä viittaa siihen, että hiukkanen kuvataan paikasta ja ajasta riippuvalla funktiolla
LHC -riskianalyysi. Emmi Ruokokoski
LHC -riskianalyysi Emmi Ruokokoski 30.3.2009 Johdanto Mikä LHC on? Perustietoa ja taustaa Mahdolliset riskit: mikroskooppiset mustat aukot outokaiset magneettiset monopolit tyhjiökuplat Emmi Ruokokoski
Havainto uudesta 125 GeV painavasta hiukkasesta
Havainto uudesta 125 GeV painavasta hiukkasesta CMS-koe CERN 4. heinäkuuta 2012 Yhteenveto CERNin Large Hadron Collider (LHC) -törmäyttimen Compact Muon Solenoid (CMS) -kokeen tutkijat ovat tänään julkistaneet
Tampere 14.12.2013. Higgsin bosoni. Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto
Tampere 14.12.2013 Higgsin bosoni Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto Perustutkimuksen tavoitteena on löytää vastauksia! yksinkertaisiin peruskysymyksiin. Esimerkiksi: Mitä on massa?
Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014
Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014 CERN ja LHC LHC-kiihdytin ja sen koeasemat sijaitsevat 27km pitkässä tunnelissa noin 100 m maan alla Ranskan ja Sveitsin raja-alueella.
Fysiikan Nobel 2008: Uusia tosiasioita aineen perimmäisistä rakenneosasista
Fysiikan Nobel 2008: Uusia tosiasioita aineen perimmäisistä rakenneosasista K. Kajantie keijo.kajantie@helsinki.fi Tampere, 14.12.2008 Fysiikan (teoreettisen) professori, Helsingin yliopisto, 1970-2008
Higgsin bosonin etsintä CMS-kokeessa LHC:n vuosien 2010 ja 2011 datasta CERN, 13 joulukuuta 2011
Higgsin bosonin etsintä CMS-kokeessa LHC:n vuosien 2010 ja 2011 datasta CERN, 13 joulukuuta 2011 Higgsin bosoni on ainoa hiukkasfysiikan standardimallin (SM) ennustama hiukkanen, jota ei ole vielä löydetty
Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1
Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =
Neutriino-oskillaatiot
Neutriino-oskillaatiot Seminaariesitys Joonas Ilmavirta Jyväskylän yliopisto 29.11.2011 Joonas Ilmavirta (JYU) Neutriino-oskillaatiot 29.11.2011 1 / 16 Jotain vikaa β-hajoamisessa Ytimen β-hajoamisessa
Hiukkasten lumo: uuden fysiikan alku. Oili Kemppainen
Hiukkasten lumo: uuden fysiikan alku Oili Kemppainen 29.09.2009 Hiukkasfysiikka tutkii luonnon perusrakenteita Käsitykset aineen rakenteesta ja luonnonlaeista muuttuneet radikaalisti Viimeisin murros 1960-
Perusvuorovaikutukset. Tapio Hansson
Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria
Kvarkeista kvanttipainovoimaan ja takaisin
1/31 Kvarkeista kvanttipainovoimaan ja takaisin Niko Jokela Hiukkasfysiikan kesäkoulu Helsinki 18. toukokuuta 2017 2/31 Säieteorian perusidea Hieman historiaa 1 Säieteorian perusidea Hieman historiaa 2
Fysiikkaa runoilijoille Osa 5: kvanttikenttäteoria
Fysiikkaa runoilijoille Osa 5: kvanttikenttäteoria Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Modernin fysiikan sukupuu Klassinen mekaniikka
Kvan%fysiikan historiaa
Kvan%fysiikan historiaa (hiukkasfysiikkaan painottunut katsaus!) 1900: Planckin säteilylaki 1905: Einsteinin selitys valosähköilmiölle 1913: Bohrin atomimalli 1924: de Broglien aaltohiukkasdualismi 1925:
Hiukkasfysiikka, kosmologia, ja kaikki se?
Hiukkasfysiikka, kosmologia, ja kaikki se? Kari Rummukainen Fysiikan laitos & Fysiikan tutkimuslaitos (HIP) Helsingin Yliopisto Kari Rummukainen Hiukkasfysiikka + kosmologia Varhainen maailmankaikkeus
CERN-matka
CERN-matka 2016-2017 UUTTA FYSIIKKAA Janne Tapiovaara Rauman Lyseon lukio http://imglulz.com/wp-content/uploads/2015/02/keep-calm-and-let-it-go.jpg FYSIIKKA ON KOKEELLINEN LUONNONTIEDE, JOKA PYRKII SELITTÄMÄÄN
Paula Eerola 17.1.2012
Suomalainen tutkimus LHC:llä Paula Eerola Fysiikan laitos ja Fysiikan tutkimuslaitostki it 17.1.2012 Mikä on LHC? LHC Large Hadron Collider Suuri Hiukkastörmäytin on CERN:ssä sijaitseva it kiihdytin, toiminnassa
Perusvuorovaikutukset. Tapio Hansson
Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria
Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1
Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten
KVANTTIKOSMOLOGIAA VIRKAANASTUJAISESITELMÄ, PROFESSORI KIMMO KAINULAINEN. Arvoisa Dekaani, hyvä yleisö,
VIRKAANASTUJAISESITELMÄ, 12.12.2012 PROFESSORI KIMMO KAINULAINEN KVANTTIKOSMOLOGIAA Arvoisa Dekaani, hyvä yleisö, Kosmologia on tiede joka tutkii maailmankaikkeutta kokonaisuutena ja sen kehityshistoriaa.
Robert Brout. Higgsin bosoni. S. Lehti Fysiikan tutkimuslaitos Helsinki. Francois Englert. sami.lehti@cern.ch. Peter Higgs
Robert Brout Higgsin bosoni Francois Englert S. Lehti Fysiikan tutkimuslaitos Helsinki sami.lehti@cern.ch Peter Higgs G.Landsberg in EPS-HEP 2013 2 Muutamia peruskäsitteitä 3 Leptonit: alkeishiukkasia,
STANDARDIMALLI. Perus- Sähkö- Elektronin Myonin Taun hiukka- varaus perhe perhe perhe set
STANDARDIMALLI Fysiikan standardimalli on hiukkasmaailman malli, joka liittää yhteen alkeishiukkaset ja niiden vuorovaikutukset gravitaatiota lukuun ottamatta. Standardimallin mukaan kaikki aine koostuu
PIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos
PIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos 1917: Einstein sovelsi yleistä suhteellisuusteoriaa koko maailmankaikkeuteen Linnunradan eli maailmankaikkeuden
Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN
Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva
Hiukkasfysiikkaa. Tapio Hansson
Hiukkasfysiikkaa Tapio Hansson Aineen Rakenne Thomson onnistui irrottamaan elektronin atomista. Rutherfordin kokeessa löytyi atomin ydin. Niels Bohrin pohdintojen tuloksena elektronit laitettiin kiertämään
QCD vahvojen vuorovaikutusten monimutkainen teoria
QCD vahvojen vuorovaikutusten monimutkainen teoria Aleksi Vuorinen Helsingin yliopisto Hiukkasfysiikan kesäkoulu Helsingin yliopisto, 18.5.2017 Päälähde: P. Hoyer, Introduction to QCD, http://www.helsinki.fi/~hoyer/talks/mugla_hoyer.pdf
Uusimmat tulokset ATLAS-kokeen Higgs hiukkasen etsinnästä
Uusimmat tulokset ATLAS-kokeen Higgs hiukkasen etsinnästä 4. kesäkuuta 2012 ATLAS koe esitteli uusimmat tuloksensa Higgs-hiukkasen etsinnästä. Tulokset esiteltiin CERNissä pidetyssä seminaarissa joka välitettiin
Alkeishiukkaset. perushiukkaset. hadronit eli kvarkeista muodostuneet sidotut tilat
Alkeishiukkaset perushiukkaset kvarkit (antikvarkit) leptonit (antileptonit) hadronit eli kvarkeista muodostuneet sidotut tilat baryonit mesonit mittabosonit eli vuorovaikutuksien välittäjähiukkaset Higgsin
Pimeän energian metsästys satelliittihavainnoin
Pimeän energian metsästys satelliittihavainnoin Avaruusrekka, Kumpulan pysäkki 04.10.2012 Peter Johansson Matemaattis-luonnontieteellinen tiedekunta / Peter Johansson/ Avaruusrekka 04.10.2012 13/08/14
Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos
Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita
Kesätöihin CERNiin? Santeri Laurila & Laura Martikainen Fysiikan tutkimuslaitos (HIP) Santeri Laurila & Laura Martikainen / HIP
Kesätöihin CERNiin? Santeri Laurila & Laura Martikainen Fysiikan tutkimuslaitos (HIP) 1 CERN LHC CMS HIP! LHC on maailman suurin hiukkaskiihdytin CERNissä Sveitsin ja Ranskan rajalla! Suomen CERN-yhteistyötä
Neutriinokuljetus koherentissa kvasihiukkasapproksimaatiossa
Neutriinokuljetus koherentissa kvasihiukkasapproksimaatiossa Graduseminaari Joonas Ilmavirta Jyväskylän yliopisto 15.6.2012 Joonas Ilmavirta (JYU) Neutriinot ja cqpa 15.6.2012 1 / 14 Osa 1: Neutriinot
Maailmankaikkeuden syntynäkemys (nykykäsitys 2016)
Maailmankaikkeuden syntynäkemys (nykykäsitys 2016) Kvanttimeri - Kvanttimaailma väreilee (= kvanttifluktuaatiot eli kvanttiheilahtelut) sattumalta suuri energia (tyhjiöenergia)
Higgsin hiukkasta tutkimassa LHC:llä
Higgsin hiukkasta tutkimassa LHC:llä 1. Johdanto Lyhenne LHC tarkoittaa CERNin Suurta Hadronitörmäytintä, Large Hadron Collider. CERN on yhteiseurooppalainen Euroopan hiukkasfysiikan laboratorio, jonka
Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson
Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa Tapio Hansson Laskentoa SI-järjestelmä soveltuu hieman huonosti kvantti- ja hiukaksfysiikkaan. Sen perusyksiköiden mittakaava
Hyvä käyttäjä! Ystävällisin terveisin. Toimitus
Hyvä käyttäjä! Tämä pdf-tiedosto on ladattu Tieteen Kuvalehden verkkosivuilta (www.tieteenkuvalehti.com). Tiedosto on tarkoitettu henkilökohtaiseen käyttöön, eikä sitä saa luovuttaa kolmannelle osapuolelle.
Mustien aukkojen astrofysiikka
Mustien aukkojen astrofysiikka Peter Johansson Fysiikan laitos, Helsingin yliopisto Kumpula nyt Helsinki 19.2.2016 1. Tähtienmassaiset mustat aukot: Kuinka isoja?: noin 3-100 kertaa Auringon massa, tapahtumahorisontin
Kosmologian yleiskatsaus. Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja Fysiikan tutkimuslaitos
Kosmologian yleiskatsaus Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja Fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Päämääriä Kosmologia tutkii maailmankaikkeutta kokonaisuutena. Kehitys,
Hiukkasfysiikkaa ja kosmologiaa teoreetikon näkökulmasta
teoreetikon näkökulmasta Aleksi Vuorinen Bielefeldin yliopisto CERN, 3.6.2013 Sisältö Johdanto Motivaatiota Luonnon skaalat ja effektiiviset teoriat Alkeishiukkaset ja vuorovaikutukset Standardimallin
Fysiikka 8. Aine ja säteily
Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian
Flrysikko Higgs iuhli. löytymistä 4. z.totz
H elsin 6tN S.rrwonÄ1..7.A0,S Vahva todiste himoitusta Higgsistä Higgsin hiukkasta on kaivattu tukemaan fysiikan perusteoriaa. Mutta vielä pitäisi varrnistaa pari asiaa. Nyt on löytynyt sen näköinen hiukkanen'
766334A Ydin- ja hiukkasfysiikka
1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta
M-teoria: mitä? missä? milloin? Osmo Pekonen
M-teoria: mitä? missä? milloin? Osmo Pekonen Kohta päättyvän vuosisadan suuriin avoimiin tieteellisiin kysymyksiin kuuluu fysiikan kahden perusteorian suhteellisuusteorian ja kvanttimekaniikan yhteensovittaminen.
Fysiikan maailmankuva 2015
Fysiikan maailmankuva 2015 Luento 9/Juha Vaara juha.vaara@iki.fi (Merkittävä osa esitettävästä materiaalista on peräisin FT Teemu S. Pennaselta) Symmetria Aineen rakenne SISÄLTÖ Kuuluisia fyysikoita (ajan
FYSH300 Hiukkasfysiikka valikoe, 4 tehtavaa, 3h. Palauta kysymyspaperit ja taulukot vastauspaperisi mukana!
FYSH300 Hiukkasfysiikka 20.5.201. 2. valikoe, 4 tehtavaa, 3h. Palauta kysymyspaperit ja taulukot vastauspaperisi mukana! 1. a) Tarkastellaan alla olevaa ylempaa kuvaa, jossa on kuvattuna mittaustulos sironnan
Theory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä)
Q3-1 Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Lue erillisessä kuoressa olevat yleisohjeet ennen tämän tehtävän aloittamista. Tässä tehtävässä tarkastellaan maailman suurimman hiukkasfysiikan
Aineen rakenteesta. Tapio Hansson
Aineen rakenteesta Tapio Hansson Ykköskurssista jo muistamme... Atomin käsite on peräisin antiikin Kreikasta. Demokritos päätteli alunperin, että jatkuva aine ei voi koostua äärettömän pienistä alkeisosasista
Perusvuorovaikutukset
Perusvuorovaikutukset Mikko Mustonen Mika Kainulainen CERN tutkielma Nurmeksen lukio Syksy 2009 Sisältö 1 Johdanto... 3 2 Perusvuorovaikutusten historia... 3 3 Teoria... 6 3.1 Gravitaatio... 6 3.2 Sähkömagneettinen
Pintaraapaisu säieteoriaan - Alkeishiukkaset säikeiden värähtelytiloina ja kompaktien ulottuvuuksien olemassaolo
Pintaraapaisu säieteoriaan - Alkeishiukkaset säikeiden värähtelytiloina ja kompaktien ulottuvuuksien olemassaolo Tuure Orell LuK-tutkielma Koulutusohjelma: Fysiikka 7. huhtikuuta 07 Sisältö Johdanto Merkinnät
Mikä on CERN? Conseil Européen pour la Recherche Nucléaire
Mikä on CERN? Conseil Européen pour la Recherche Nucléaire CERN on maailman suurin hiukkasfysiikan tutkimuslaitos Ranskan ja Sveitsin rajalla lähellä Geneveä Peruste;u 1954 Suomi lii;yi 1991 21 jäsenmaata
Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto
Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn
Hiukkaskiihdyttimet. Tapio Hansson
Hiukkaskiihdyttimet Tapio Hansson Miksi kiihdyttää hiukkasia? Hiukkaskiihdyttimien kehittäminen on ollut ehkä tärkein yksittäinen kehityssuunta alkeishiukkasfysiikassa. Hyöty, joka saadaan hiukkasten kiihdyttämisestä
Harvinainen standardimallin ennustama B- mesonin hajoaminen havaittu CMS- kokeessa
Harvinainen standardimallin ennustama B- mesonin hajoaminen havaittu CMS- kokeessa CMS- koe raportoi uusissa tuloksissaan Bs- mesonin (B- sub- s) hajoamisesta kahteen myoniin, jolle Standardimalli (SM)
FYS-1270 Laaja fysiikka IV: Aineen rakenne
i FYS-1270 Laaja fysiikka IV: Aineen rakenne Laajuus: 7 ECTS Luennot: 56 h Tapio Rantala, prof., SG219 Ti 13 15 SJ204/TB219 8 10 SG312 FirstName.LastName@tut.fi http://www.tut.fi/~trantala/opetus Harjoitukset:
Fysiikan nykytila ja saavutukset
Fysiikan nykytila ja saavutukset Jako osa-alueisiin Nykyfysiikan jako pääaloihin voidaan tehdä sen perusteella mitä fysiikassa tällä hetkellä tutkitaan aktiivisesti (eli tutkimuskohteen mukaan). Näitä
Maailmankaikkeuden synty ja aineen perusrakenne
Maailmankaikkeuden synty ja aineen perusrakenne Johdatus maailmankaikkeuden syntyteoriaan, aineen rakenteen tutkimisen historiaan ja standardimalliin Johdatus tutkimuksiin Euroopan hiukkasfysiikan tutkimuskeskuksessa
Jukka Tulkki 8. Laskuharjoitus (ratkaisut) Palautus torstaihin 3.4 klo 12:00 mennessä. x 2
S 437 Fysiikka III Kevät 8 Jukka Tulkki 8 askuharjoitus (ratkaisut) Palautus torstaihin 34 klo : mennessä Assistentit: Jaakko Timonen Ville Pale Pyry Kivisaari auri Salmia (jaakkotimonen@tkkfi) (villepale@tkkfi)
Kandidaatintutkielma. CP-rikko neutraalien kaonien hajoamisreaktioissa
Kandidaatintutkielma CP-rikko neutraalien kaonien hajoamisreaktioissa Timo Kärkkäinen 20. kesäkuuta 2010 1 Sisältö 1 Peruskäsitteitä 4 1.1 Symmetriat.............................. 4 1.2 60 Co-beetahajoaminen........................
Uudet kokeet testaavat maailmankaikkeuden kohtalon: Muuttuuko kaikki aine lopulta säteilyksi?
Uudet kokeet testaavat maailmankaikkeuden kohtalon: Muuttuuko kaikki aine lopulta säteilyksi? Ainetta ja sen perusosasia, protoneja, pidetään ikuisesti pysyvinä. Eräät hiukkasfysiikan teoriat ennustavat
766334A Ydin- ja hiukkasfysiikka
1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen
Teoreettisen fysiikan tulevaisuuden näkymiä
Teoreettisen fysiikan tulevaisuuden näkymiä Tämä on teoreettisen fysiikan professori Erkki Thunebergin virkaanastujaisesitelmä, jonka hän piti Oulun yliopistossa 8.11.2001. Esitys on omistettu professori
Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1
Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,
LIITE 11A: VALOSÄHKÖINEN ILMIÖ
LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,
Erityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
8. Hiukkasfysiikka ja kosmologia
8. Hiukkasfysiikka ja kosmologia Aineen alkeellisin rakenne Miten hiukkasia tutkitaan? Hiukkaset ja vuorovaikutukset Kvarkit Symmetriat ja vuorovaikutuksien yhtenäistäminen Maailmankaikkeuden rakenne Varhainen
766334A Ydin- ja hiukkasfysiikka
766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 5 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 04 Hiukkasfysiikka Hiukkaskiihdyttimet Ydin- ja hiukkasfysiikan varhaisvaiheessa
FYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
Pimeä energia. Hannu Kurki- Suonio Kosmologian kesäkoulu 2015 Solvalla
Pimeä energia Hannu Kurki- Suonio Kosmologian kesäkoulu 2015 Solvalla 27.5.2015 Friedmann- Robertson- Walker - malli homogeeninen ja isotrooppinen approksimaa>o maailmankaikkeudelle Havaintoihin sopii
ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA
ja KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka WYP2005 ja KVANTTITEORIA 24.1.2006 WYP 2005
Galaksit ja kosmologia 53926, 5 op, syksy 2015 D114 Physicum
Galaksit ja kosmologia 53926, 5 op, syksy 2015 D114 Physicum Luento 12: Varhainen maailmankaikkeus 24/11/2015 www.helsinki.fi/yliopisto 24/11/15 1 Tällä luennolla käsitellään 1. Varhaisen maailmankaikkeuden
Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2
766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.
7A.2 Ylihienosilppouma
7A.2 Ylihienosilppouma Vetyatomin perustilan kentän fotoni on λ 0 = 91,12670537 nm, jonka taajuus on f o = 3,289841949. 10 15 1/s. Tämä spektriviiva on kaksoisviiva, joiden ero on taajuuksina mitattuna
Voiman momentti M. Liikemäärä, momentti, painopiste. Momentin määritelmä. Laajennettu tasapainon käsite. Osa 4
Osa 4 Liikemäärä, momentti, painopiste Voiman momentti M Voiman vääntövaikutusta mittaava suure on momentti. Esim. automerkkien esitteissä on mainittu moottorin momentti ("vääntö"). Moottorin antama voima
Ydinfysiikkaa. Tapio Hansson
3.36pt Ydinfysiikkaa Tapio Hansson Ydin Ydin on atomin mittakaavassa äärimmäisen pieni. Sen koko on muutaman femtometrin luokkaa (10 15 m), kun taas koko atomin halkaisija on ångströmin luokkaa (10 10
Atomimallit. Tapio Hansson
Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista
S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä
S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä (ks. esim. http://www.kotiposti.net/ajnieminen/sutek.pdf). 1. a) Suppeamman suhteellisuusteorian perusolettamukset (Einsteinin suppeampi suhteellisuusteoria
Neutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto
Neutriinofysiikka Tvärminne 27.5.2010 Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinon keksiminen Ongelma 1900-luvun alusta: beetahajoamisessa syntyvän neutriinon energiaspektri on jatkuva.
KVANTTITELEPORTAATIO. Janne Tapiovaara. Rauman Lyseon lukio
KVANTTITELEPORTAATIO Janne Tapiovaara Rauman Lyseon lukio BEAM ME UP SCOTTY! Teleportaatio eli kaukosiirto on scifi-kirjailijoiden luoma. Star Trekin luoja Gene Roddenberry: on huomattavasti halvempaa
Sisältö. Artikkelit. Viitteet. Artikkelilisenssit
Sisältö Artikkelit Kvanttikenttäteoria 1 Vuorovaikutus 1 Sähkömagneettinen vuorovaikutus 2 Kenttä (fysiikka) 4 Kvanttisähködynamiikka 12 Sähkövaraus 13 Hiukkasfysiikan standardimalli 18 Mittabosoni 21
LHC kokeet v J.Tuominiemi /
J.Tuominiemi / 28.12.2011 LHC kokeet v. 2011 CERNin LHC törmäytin oli talviseisokissa 6.12.2010 lähtien aina helmikuuhun 2011. Laitteistoa huollettiin ja tehtiin parannustöitä. Samoin LHC koeasemia huollettiin
Triggeri. Tuula Mäki
Triggeri CERN Fysiikan kesäkoulu Tvärminne 24.05. 28.05.200 Sisältö Mikä on triggeri ja miksi se on tärkeä? CMS kokeen triggeri ensimmäinen ja toinen taso Harvennus (pre scaling) ja triggerin tehokkuus
Lataa Maailmanlopun hiukkanen - Sean Carroll. Lataa
Lataa Maailmanlopun hiukkanen - Sean Carroll Lataa Kirjailija: Sean Carroll ISBN: 9789525985276 Sivumäärä: 351 Formaatti: PDF Tiedoston koko: 25.68 Mb Viime vuosikymmenten merkittävin löytö fysiikassa
Korrelaatiofunktio ja pionin hajoamisen kinematiikkaa
Korrelaatiofunktio ja pionin hajoamisen kinematiikkaa Timo J. Kärkkäinen timo.j.karkkainen@helsinki.fi Teoreettisen fysiikan syventävien opintojen seminaari, Helsingin yliopiston fysiikan laitos 11. lokakuuta
1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =
S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio