ENERGIATEHOKKAAN RAKENNUKSEN JA VAIPPARAKENTEIDEN LÄMPÖ- JA KOSTEUSTEKNINEN TOIMINTA
|
|
- Riitta Järvenpää
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 ENERGIATEHOKKAAN RAKENNUKSEN JA VAIPPARAKENTEIDEN LÄMPÖ- JA KOSTEUSTEKNINEN TOIMINTA Prof. Juha Vinha TTY, Rakennustekniikan laitos
2 LÄMMÖNERISTYKSEN LISÄYKSEN VAIKUTUKSET Olosuhteiden muutokset Lämmöneristyksen lisääminen heikentää monien vaipparakenteiden kosteusteknistä toimintaa: Ulko-osat viilenevät, jolloin kosteuden kondensoituminen ja homeen kasvulle suotuisat olosuhteet lisääntyvät rakenteissa. Rakenteiden vikasietoisuus heikkenee samasta syystä. Yhä pienemmät kosteusvuodot ulkoa tai sisältä voivat saada aikaan kosteusvaurion. Lämmöneristekerroksen vesihöyrynvastuksen kasvaessa eristeen sisäpuolisten kivirakenteiden kuivuminen hidastuu. Rakennusosien kosteusteknisen toiminnan kannalta ei ole löydettävissä kriittisiä U-arvotasoja. Lämmöneristyksen kasvaessa tilanne muuttuu vain pikku hiljaa huonommaksi. Rakenteiden toimintaa voidaan parantaa merkittävästi rakenteiden ja toteutustapojen muutoksilla. Korjausrakentamisen puolella rakenteiden lisäeristäminen voi edellyttää rakenteellisten muutosten lisäksi myös teknisten laitteiden käyttöä (lämmitin, kuivain, ohjattu koneellinen ilmanvaihto). Eristepaksuuksien lisääminen aiheuttaa myös rakennuksen jäähdytystarpeen lisääntymisen, jolloin eristämisen hyöty energiankulutuksen kannalta vähenee merkittävästi. Juha Vinha 2
3 LÄMMÖNERISTYKSEN LISÄYKSEN VAIKUTUKSET Rakenteiden ja toteutustapojen muutokset Lämmöneristepaksuuksien lisääminen muuttaa vaipparakenteita monessa tapauksessa niin paljon (dimensiot, kylmäsillat, muodonmuutokset), että rakenteiden toteutustavat ja tuotantotekniikat muuttuvat. uudet runkotyypit ja liitokset sekä tehokkaammat lämmöneristeet kokemusperäinen tieto uusista rakenteista puuttuu suunnittelu- ja asennusvirheet kasvavat Nopeassa tahdissa tehdyt suuret muutokset vaativat paljon koulutusta ja aktiivisuutta asioiden sisäistämiseen. Rakenteiden rakennusfysikaalisen toiminnan kokonaisvaltainen suunnittelu ja toteutus edellyttävät kokemusta ja laajaa asiantuntemusta. rakennusala ei pysty reagoimaan nopeasti uusiin määräyksiin ja ohjeisiin koulutus ei tavoita kaikkia Tiukka rakentamisaikataulu lisää omalta osaltaan rakenteiden kosteusriskejä. puutteellinen suunnittelu liian lyhyet kuivumisajat Juha Vinha 3
4 ILMASTONMUUTOKSEN VAIKUTUKSET Lämpötilan ja sademäärän muutos Suomessa tulevina vuosikymmeninä Lämpötila Sademäärä Kuvat: Ilmatieteen laitos Lämpötila nousee, viistosaderasitus julkisivupinnoille kasvaa ja pilvisyys lisääntyy. Suurimmat muutokset olosuhteissa tapahtuvat loppusyksystä ja talvella. Homeen kasvulle otolliset olosuhteet lisääntyvät varsinkin rakenteiden ulko-osissa. Kosteuden siirtyminen ulkoa sisälle päin lisääntyy varsinkin julkisivuissa, joihin imeytyy sadevettä. Homehtumis- ja kondenssiriski lisääntyy näissä rakenteissa myös rakenteiden sisäpinnan lähellä. Rakenteiden kuivuminen hidastuu syksyllä ja talvella. Riski vanhojen betonijulkisivujen pakkasrapautumiselle lisääntyy. Juha Vinha 4
5 RAKENNUSAIKAINEN KOSTEUDEN HALLINTA Kaikessa rakentamisessa rakennusaikaisen kosteudenhallinnan merkitys korostuu! Juha Vinha 5
6 FRAME-PROJEKTI FRAME on laaja-alainen kansallinen tutkimus, jonka taustana oli TTY:n ympäristöministeriölle v tekemä selvitys lämmöneristyksen lisäyksen ja ilmastonmuutoksen vaikutuksista rakenteiden kosteustekniseen toimintaan. Tutkimus keskittyi pääasiassa uudisrakentamiseen käsittäen eri tyyppiset rakennukset pientaloista julkisiin rakennuksiin. Tutkimuksen tuloksia voidaan hyödyntää kuitenkin myös korjausrakentamisen puolella. Tutkimukseen valittiin tavanomaisia tai riskialttiiksi tiedettyjä vaipparakenteita. Keskeinen osa tutkimusta olivat eri ohjelmilla tehtävät laskennalliset tarkastelut. Tätä varten laskentaohjelmien luotettavuutta arvioitiin vertaamalla niitä myös erilaisiin laboratorio- ja kenttäkoetuloksiin. Laskennallisia tarkasteluja varten määritettiin lisäksi kriittiset sisä- ja ulkoilman olosuhteet sekä nykyisessä että tulevaisuuden ilmastossa vuosina 2050 ja Tutkimuksen tulosten perusteella laadittiin tyypillisimmille matalaenergia- ja passiivitalojen rakenteille ja liitoksille suunnittelu- ja toteutusohjeet. Tutkimusaika oli n. 3 vuotta: Juha Vinha 6
7 VAIPPARAKENTEIDEN TARKASTELUT FRAME-PROJEKTISSA Rakennusosa Tutkimusmetodi Laskenta Laboratorio Kenttä 1. Betonirakenteiset ulkoseinät X 2. Rankarakenteiset ulkoseinät X 3. Massiivirakenteet X 4. Rakenteiden sisäinen konvektio X X 5. Tuuletetut yläpohjat X X 6. Ryömintätilaiset alapohjat X X 7. Ikkunat X Juha Vinha 7
8 TTY:N RAKENTEIDEN KOSTEUSTEKNISEN TOIMINNAN ANALYSOINTIMENETELMÄ Tarkasteluperiaatteiden kehitystyö TTY Rakennusfysikaaliset testivuodet TTY ja IL Sisäilman mitoitusolosuhteet TTY ja TKK Laskennallisen homeriskimallin kehitystyö VTT TTY ja VTT Laskentaohjelmien toiminnan verifiointi TTY Suomessa käytettävien rakennusmateriaalien ominaisuudet TTY Juha Vinha 8
9 BETONIJULKISIVUJEN TOIMINTA Pakkasrapautumisvaurioita saattaa alkaa esiintyä vanhassa rakennuskannassa myös sisämaassa ilmastonmuutoksen myötä. Pakkasenkestävyyden suhteen nykyinen vaatimustaso on riittävä myös tulevaisuudessa. Betonin lisähuokoistuksen on onnistuttava aina! Raudoitteiden sijainti normien ja toleranssien mukaisiksi, eli riittävästi välikkeitä! Ruostumattomien terästen käyttö julkisivuissa on suositeltavaa (erityisesti pieliteräkset). Peitepaksuusvaatimustaso on riittävä. Liitosten ja detaljien toimivuuteen tulee kiinnittää erityistä huomiota. Näiden toiminnalla ratkaistaan koko rakenteen toimivuus! Juha Vinha 9
10 RAKENNUSAIKAISEN KOSTEUDEN KUIVUMINEN KIVIRAKENTEISTA SOLUMUOVIERISTEITÄ KÄYTETTÄESSÄ Esimerkki rakennusaikaisen kosteuden kuivumisesta betonielementin sisäkuoresta 1 vuosi Solumuovieristeitä käytettäessä sisäkuoren kuivumisaika pinnoituskosteuteen (tiiviitä pinnoitteita käytettäessä) voi pidentyä seuraavasti verrattuna mineraalivillaeristeeseen: 2 4 kk, kuivumistaso 90 % RH ja 6 12 kk, kuivumistaso 80 % RH Solumuovieristeen paksuuden kasvattaminen lisää myös kuivumisaikaa. Polyuretaanieristettä käytettäessä kuivumisaika on pisin. Alumiinipinnoite lisää kuivumisaikaa, koska pinnoite estää kosteuden kuivumisen ulospäin kokonaan. Juha Vinha 10
11 PUURUNKOINEN ULKOSEINÄ Höyrynsulku on suositeltavaa asettaa enintään n. 50 mm syvyydelle seinän sisäpinnasta, jotta sitä ei tarvitse rikkoa sähköasennuksien takia. Vähintään 75 % lämmöneristeestä tulee olla kuitenkin höyrynsulun ulkopuolella. Lämmöneriste tulisi asentaa höyrynsulun sisäpuolelle vasta sitten, kun rakennusaikainen kosteus sisältä on kuivunut. Vaihtoehtoisesti voidaan käyttää pystykoolausta pystyrungon kohdalla. Höyrynsulkukalvon tilalla voidaan käyttää esim. solumuovilevyä. Pehmeät lämmöneristeet on asennettava erityisen huolellisesti, jotta kulmiin ja liitoksiin ei synny ilman virtausreittejä. Puurungon ulkopuolelle tulee laittaa hyvin lämpöä eristävä tuulensuoja. Jäykistävää tuulensuojalevyä käytettäessä laitetaan erillinen lämpöä eristävä tuulensuoja sen ulkopuolelle. Tuulensuojan on oltava hyvin vesihöyryä läpäisevä. Ulkoverhouksen takana on oltava aina tuuletusväli. Juha Vinha 11
12 PUU- JA TERÄSRANKASEINÄT Juha Vinha 12
13 TIILIVERHOTTU PUURANKASEINÄ Tiiliverhotussa puurankaseinässä homehtumisriski rakenteen ulkoosissa on erityisen suuri, koska tiiliverhoukseen kerääntynyt kosteus siirtyy sisäänpäin diffuusiolla. Tuulensuojan tulee olla hyvin lämpöä eristävä ja homehtumista kestävä. Vaihtoehtoisesti puurungon ulkopinnassa voidaan käyttää esim. teräsprofiilista tehtyä ristikoolausta. Vuoden 2050 ilmastossa tuulensuojan lämmönvastuksen tulee olla vähintään 1,6 m 2 K/W (esim. 50 mm mineraalivillalevy) ja vuoden 2100 ilmastossa 2,7 m 2 K/W (esim. 100 mm mineraalivillalevy). Voimakasta homehtumisriskiä esiintyy myös höyrynsulun sisä- ja ulkopuolella pystyrungon kohdalla, jos sisäpuolella käytetään ristikoolausta ja tuulensuojan lämmönvastus ei ole riittävä. Korkeissa rakennuksissa (yli 10 m) tiiliverhouksen taakse tulee laittaa kummaltakin puolelta tuuletettu höyrynsulkukerros (esim. teräsohutlevy). Höyrynsulkuna on suositeltavaa käyttää ns. hygrokalvoa, joka mahdollistaa rakenteen kuivumisen myös sisälle päin. Tiiliverhotun rakenteen päällystäminen vesitiiviillä pinnoitteella ei ole suositeltavaa. Kaikkia rakoja ei kyetä tukkimaan, jolloin vesi valuu tiiliverhouksen vuotokohtiin ja seurauksena voi olla puurungon lahovauriot rakenteen alaosassa tai tiilen pakkasrapautuminen vuotokohdissa. Juha Vinha 13
14 TIILIVERHOTTU PUURANKASEINÄ Enintään 10 m korkea seinä Yli 10 m korkea seinä mm Juha Vinha 14
15 ERISTERAPATTU RANKASEINÄ Eristerapattujen puu- ja teräsrankaseinien kastuminen saumakohtien kosteusvuotojen seurauksena sekä kosteuden hidas kuivuminen aiheuttavat homeen kasvua rakenteen ulko-osissa. EPS-eristeen käyttö rapatussa rankaseinässä pahentaa tilannetta entisestään, koska ulkopinnan vesihöyrynvastus kasvaa ja näin ollen rakenteen kuivuminen heikkenee. Paksurapattu rakenne ei toimi hyvin edes ideaalitilanteessa, koska se kerää sadevettä samalla tavoin kuin tiiliverhottu seinä. Rapattu pintarakenne tulee erottaa sisemmästä seinäosasta kuivumisen mahdollistavalla tuuletusvälillä, esim. levyrappauksella. Puurankarakenteen päälle tehdyissä eristerappausrakenteissa on todettu erittäin paljon kosteusvaurioita Ruotsissa ja Pohjois-Amerikassa. Juha Vinha 15
16 LIITOSTEN VUOTOKOHTIA ERISTERAPPAUSSEINÄSSÄ Ikkuna- ja oviliitokset Kiinnikkeet Kuvat: Ingemar Samuelson SP, Ruotsi
17 ERSITERAPATUN KIVIRAKENTEISEN SEINÄN IKKUNALIITOKSET Juha Vinha 17
18 SISÄPUOLELTA ERISTETTY MASSIIVIRAKENNE Ilmavuodot sisältä eristeen taakse on estettävä!? Rakenteessa on oltava aina myös riittävä höyrynsulku eristeen lämpimällä puolella. Avohuokoisia lämmöneristeitä käytettäessä muovikalvon tai muovitiivistyspaperin käyttö on paras ratkaisu. Solumuovieristeitä käytettäessä eristeen oma vesihöyrynvastus muodostaa riittävän höyrynsulun lämmöneristettä lisättäessä. Kevytbetonirakenne on rapattava ulkopuolelta, jotta viistosade ei pääsee kastelemaan seinää. Hirsiseinässä on estettävä viistosateen tunkeutuminen saumojen kautta eristetilaan (esim. paisuvat saumatiivisteet) Rakenteen on päästävä kuivumaan riittävästi ennen sisäpuolisen lämmöneristyksen ja höyrynsulun laittoa. Kosteutta läpäisevän ilmansulun käyttö ei paranna avohuokoisella lämmöneristeellä eristetyn rakenteen kuivumista sisäänpäin. Juha Vinha 18
19 RAKENTEEN SISÄPINNALTA VAADITTAVA VESIHÖYRYNVASTUS SISÄPUOLISTA LÄMMÖNERISTYSTÄ KÄYTETTÄESSÄ 19 RIL Esimerkiksi 25 mm hirsipaneelia ja paperipohjaista ilmansulkukalvoa käytettäessä (Z p,yht 10 x10 9 m 2 spa/kg) turvallinen sisäpuolisen mineraalivillaeristeen paksuus on 180 mm hirsiseinällä enintään 50 mm (R 1,5 m 2 K/W). Juha Vinha 19
20 PUURAKENTEINEN TUULETETTU YLÄPOHJA Homehtumisriski lisääntyy voimakkaasti puurakenteiden ulko-osissa ilmastonmuutoksen ja lämmöneristyksen lisäyksen vaikutuksesta. Uusissa rakennuksissa tuuletustilan kosteusteknistä toimintaa voidaan parantaa lämpöä eristävällä aluskatteella. Vinoissa yläpohjissa lämmöneristys toteutetaan puupalkkien yläpuolelle laitettavalla tuulensuojalla. Vuoden 2050 ilmastossa riittävä aluskatteen lämmönvastus on n. 0,5 m 2 K/W (esim. 20 mm XPS-eristettä). Vuoden 2100 ilmastossa vastaava arvo on 1,0 m 2 K/W (esim. 40 mm XPS-eristettä). Yläpohjan tuuletuksessa suositeltava ilmanvaihtokerroin on 0,5 1,0 1/h. Yläpohjan ilmatiiviys on erittäin tärkeä. Kuva: Hedtec Oy, Olosuhdevahti Vanhoissa rakennuksissa yläpohja on pyrittävä saamaan ilmatiiviiksi aina, kun lämmöneristystä lisätään. Tarvittaessa yläpohjaa voidaan myös esimerkiksi lämmittää. Juha Vinha 20
21 VAIPPARAKENTEISSA TAPAHTUVA SISÄINEN KONVEKTIO Sisäinen konvektio heikentää avohuokoisilla lämmöneristeillä eristettyjen vaipparakenteiden U-arvoa Juha Vinha 21
22 ULKOSEINIEN SISÄINEN KONVEKTIO TTY:n rakennusfysikaalinen tutkimuslaitteisto: Ulkoseinärakenteissa sisäinen konvektio ei ole merkittävää, jos lämmöneristekerroksen paksuus on enintään 200 mm. 300 mm paksulla yhtenäisellä eristeellä sisäinen konvektio lisää lämpöenergian kulutusta keskimäärin n. 10 %. Lämmöneristyskerrokseen laitettava pystysuuntainen konvektiokatko vähentää konvektiota, mutta ei välttämättä poista konvektion vaikutusta kokonaan. Uudessa RakMK C4:ssä annetut U-arvon laskentaohjeet ottavat sisäisen konvektion vaikutuksen kohtuullisen hyvin huomioon ulkoseinärakenteissa. Juha Vinha 22
23 YLÄPOHJIEN SISÄINEN KONVEKTIO TTY:n yläpohjarakenteiden tutkimuslaitteisto: Yläpohjarakenteissa sisäinen konvektio voi lisätä paksujen (600 mm) puhalluseristeiden läpi siirtyvää lämpövirtaa enimmillään jopa %. Lämmöneristepaksuutta lisättäessä konvektion suhteellinen osuus lisääntyy. Hyvin vesihöyryä läpäisevän tuulensuojan käyttö lämmöneristeen yläpinnassa ei vähennä sisäistä konvektiota puhalletussa lasivillaeristeessä. Puhalletussa puukuitueristeessä konvektio vähenee jonkin verran. 100 mm levyeristeen käyttö puhalletun lasivillaeristeen alapuolella vähentää sisäistä konvektiota. Sisäisen konvektion vaikutusta voidaan vähentää oleellisesti pienentämällä puhalluseristeen ilmanläpäisevyyttä tai korvaamalla puhalluserite levyeristeellä. Nykyiset U-arvon laskentaohjeet eivät ota sisäisen konvektion vaikutusta huomioon riittävästi yläpohjarakenteissa. Juha Vinha 23
24 VÄHÄN TUULETTUVAT YLÄPOHJAT Juha Vinha 24
25 RYÖMINTÄTILAINEN ALAPOHJA Alapohjan toimivuuden edellytyksenä on lisäksi monet aiemmin korostetut asiat: Eloperäinen materiaali tulee poistaa ryömintätilasta Maapohja ei saa olla monttu. Salaojasorakerros perusmaan päälle ja perusmaan pinnan kallistus ulospäin salaojiin. Ryömintätilan pohja tulisi lämpöeristää varsinkin puurakenteista alapohjaa käytettäessä. Myös sepelin käyttö maan pinnalla parantaa alapohjan kosteusolosuhteita. Lämmöneristys vähentää maan viilentävää vaikutusta ryömintätilassa. Lämmöneristys alentaa maapohjan lämpötilaa, jolloin diffuusiolla maasta haihtuvan kosteuden määrä vähenee. Vuoden 2050 ilmastossa maan pinnan lämmönvastus tulee olla vähintään 1,3 m 2 K/W (esim. 50 mm EPS tai 150 mm kevytsoraa). Puuvasojen alapuolelle tarvitaan hyvin lämpöä eristävä tuulensuoja, jonka lämmönvastus on vähintään 0,4 m 2 K/W. Tuulensuojan tulee olla hyvin kosteutta kestävä. Alapohjarakenteen ilmatiiviys on erittäin tärkeä. Ryömintätilan tuuletuksessa suositeltava ilmanvaihtokerroin on 0,5 1,0 1/h, jos kosteutta tulee ryömintätilaan pääasiassa ulkoilman mukana. Muussa tapauksessa ilmanvaihtokertoimen on oltava isompi. Koneellinen kuivatus tai lämmitys ei ole välttämätön, jos alapohja tehdään muuten rakenteellisesti oikein. Juha Vinha 25
26 ULKOSEINÄN LIITOS PERUSMUURIIN JA RYÖMINTÄTILAISEEN ALAPOHJAAN Juha Vinha 26
27 ROUTASUOJAUKSEN LISÄÄMINEN Alapohjan lämmöneristyksen kasvaessa tulee lisätä rakennuksen routasuojausta. Erityisesti tämä koskee maanvastaisella alapohjalla toteutettuja rakennuksia. Riittävä routaeristys tulee varmistaa varsinkin rakennuksen ulkonurkissa. Jos alapohjan lämmöneristys kasvaa merkittävästi, routasuojauksen mitoitus saatetaan joutua tekemään kylmän rakennuksen mukaan. RIL on julkaissut juuri uuden routasuojausohjeen. Juha Vinha 27
28 IKKUNOIDEN KONDENSOITUMISRISKIN LISÄÄNTYMINEN 28 Kondenssituntien lukumäärä aukealla paikalla olevassa rakennuksessa Ikkunoiden kondensoitumista esiintyy eniten aamuyön tunteina syksyllä. Ikkunan lasiosan U-arvoa ei tule enää pienentää (nykyisin tasolla n. 0,6 W/(m 2 K)) ellei ulkopinnan emissiviteettiä alenneta. Varjostukset vähentävät kondensoitumista ja ikkunan ulkopinnan matalaemissiviteettipinta (selektiivipinta) poistaa sen kokonaan. Ikkunan U-arvoa voidaan parantaa myös karmin U-arvoa parantamalla. Matalaemissivitettipintojen (selektiivipinta) lisääminen ikkunaan heikentää matkapuhelimien kuuluvuutta osassa rakennuksista (mm. betonirakenteiset sekä tiiviillä alumiinilaminaattipintaisilla polyuretaanieristeillä toteutetut rakennukset). Juha Vinha 28
29 IKKUNOIDEN AIHEUTTAMAT KYLMÄSILLAT RIL Matalaenergiarakentaminen. Asuinrakennukset. Arkkitehtonisista syistä tai kiinnittämisen helpottamiseksi ikkuna voidaan haluta asentaa rakenteen sisä- tai ulkopintaan. Ikkunat tulee kuitenkin asentaa lämmöneristeen kohdalle! Juha Vinha 29
30 IKKUNAN KOON VAIKUTUS U-ARVOON Lähde: Hemmilä K Mahdollisuudet parantaa ikkunoiden lämmöneristävyyttä. Lasirakentaja 1/08. Juha Vinha 30
31 MÄRKÄTILAN SEINÄT Puurunkoisen ulkoseinän yhteydessä märkätilan sisäpuoli olisi suositeltavinta tehdä kivirakenteen päälle. Vaatii alustaksi kivirakenteisen ala-/ välipohjan. Jos vedeneristys tehdään levyn päälle, paras tapa on jättää tuuletusväli siinäkin tapauksessa levyn taakse. Juha Vinha 31
32 KELLARIN SEINIEN LISÄERISTYS Kosteus- ja lämmöneristys puuttuvat yleensä seinän ulkopuolelta. kosteus- ja homeongelmia kellaritiloissa Sisäpuolelta eristämisessä samat ongelmat kuin muissakin sisäpuolelta eristetyissä seinissä - lisänä vielä maaperän kosteus. Ulkopuolinen lämmön- ja kosteudeneristys aina kun mahdollista. Eristys sisäpuolella: kalsiumsilikaattieriste suositeltavin vaihtoehto tai kevytbetonija kevytsoraharkko, myös solumuovieriste joissakin tapauksissa, EI PUURUNKOA SISÄPUOLELLE! Ei ilmarakoa vanhan rakenteen ja lisäeristyksen väliin. Välipohjan ja ulkoseinän liitosalueen kylmäsillat ovat usein ongelma varsinkin, jos rakenne korjataan ulkopuolisella lämmöneristyksellä. Juha Vinha 32
33 RAKENNUKSEN PAINE-EROT Sisä- ja ulkoilman lämpötilaeroista syntyvät paine-erot Juha Vinha 33
34 RAKENNUKSEN PAINE-EROT TALVITILANTEESSA Lämpötilaerojen ja ilmanvaihdon vaikutus 1. Ylipaine sisällä 2. Alipaine sisällä (koneellinen poisto) 3. Tasapainotettu ilmanvaihto (koneellinen tulo-poisto) Paine-erojakauma syntyy, jos tuloilmanvaihto on suurempi kuin poistoilmanvaihto. Ilmavuodot lisäävät energiankulutusta. Sisäilman kosteus virtaa rakenteisiin rakennuksen yläosasta. Mikrobien ja radonin virtaus sisälle on vähäistä. Vuotokohdat toimivat korvausilmakanavina. Tyynellä säällä ilmavuodot eivät aiheuta lisäenergiankulutusta, mutta vetovalitukset lisääntyvät. Sisäilman kosteuslisä ei aiheuta haittaa rakenteille. Suuri riski alapohjasta tuleville mikrobeille ja radonille. Rakennuksen yläosan ilmavuodot lisäävät energiankulutusta. Rakennuksen alaosan ilmavuodot heikentävät LTO:n hyötysuhdetta. Kosteuskonvektioriski rakennuksen yläosassa. Vedontunne ja radonriski rakennuksen alaosassa. Juha Vinha 34
35 VAIPAN ILMANPITÄVYYS Vaipan ilmanpitävyyden parantamisella on lähes pelkästään positiivisia vaikutuksia ja se on keskeinen edellytys matalaenergiarakentamiselle 1) Erilaisten haitallisten aineiden ja mikrobien virtaus sisäilmaan vähenee. 2) Kosteuden virtaus vaipparakenteisiin vähenee. 3) Vaipparakenteiden sisäpinnat eivät jäähdy ulkoa tulevien ilmavirtausten seurauksena. 4) Rakennuksen energiankulutus vähenee ilmanvaihdon tapahtuessa LTO:n kautta. 5) Rakennuksen käyttäjien kokema vedon tunne vähenee. 6) Ilmanvaihdon säätäminen ja tavoiteltujen painesuhteiden säätäminen helpottuu, mutta toisaalta säätöjen tekeminen on vielä aiempaakin tärkeämpää. Riittävän ilmanvaihdon takaaminen on ensiarvoisen tärkeää! Ilmanvaihdon tulo- ja poistoilmavirtojen säätäminen on erittäin tärkeää! Erityisesti, jos rakennuksen ilmanvuotoluku q 50 on alle 0,5 m 3 /(m 2 h). Juha Vinha 35
36 RAKENNUKSEN PAINE-EROJEN HALLINTA Rakennuksen alhainen ilmanvuotoluku ei takaa rakenteiden moitteetonta toimintaa ilmavuotojen osalta (paikalliset suuret vuodot). Ilmanvaihto tulee säätää oikein! Tavoitteena on pieni alipaine rakennuksen sisällä (-5 Pa). Käytännössä rakennuksen yläosassa esiintyy talvella myös ylipainetta. Ilmanvaihdon toimintaan on kiinnitettävä suurta huomiota (seuranta- ja hälytyslaitteet, suodattimien vaihto, tuuletusmahdollisuus) Rakennuksen ilmanvuotoluvun q 50 erinomainen taso on 0,5-1,0 m 3 /(m 2 h). Viimeisten kymmenysten metsästäminen voi tuoda enemmän haittoja kuin hyötyjä. Ilmanvaihdon säätö Paine-ero (Pa) n 50 = 0,15 1/h n 50 = 4,0 1/h n 50 = 10,0 1/h Tasapainotettu ilmanvaihto % vähemmän tuloilmaa % enemmän tuloilmaa Juha Vinha 36
37 ESIMERKKI ILMAVUOTOKOHTIEN ETSINNÄSTÄ LÄMPÖKUVAUKSELLA Puurunkoinen omakotitalo Olosuhteet: Ulkolämpötila 4 C Sisälämpötila 21,5 C Mittaustulokset Normaali Alipaine Sp1 15,1 C 12,7 C Sp2 17,0 C 14,5 C Sp3 14,4 C 9,9 C Normaalit olosuhteet sisällä Sisällä 50 Pa alipaine FLIR Systems 24.0 C FLIR Systems 24.0 C Sp3 Sp2 22 Sp3 Sp Sp Sp Juha Vinha 37
38 VUOTOKOHTIEN SIJAINTI TTY:N JA TKK:N ASUINRAKENNUSTUTKIMUKSISSA pientalot ja kerrostalot Prosenttiosuus, % Ilmansulun läpiviennit ja sähköasennukset. Ulkoseinän ja alapohjan liittymä Pientalot Ulkoseinän ja välipohjan liittymä 37 8 Ulkoseinän ja yläpohjan liittymä Kerrostalot 5 4 Ulkoseinien välinen nurkka 31 Ovet ja ikkunat 72 Pääasialliset ilmavuotokohdat pientaloissa olivat: - ulkoseinän ja yläpohjan liitoksissa - ovien ja ikkunoiden liitoksissa sekä itse ovissa ja ikkunoissa (jakauma ~ 50% / 50%) - puurunkoisen ulkoseinän ja välipohjan liitoksissa Kerrostaloissa ilmavuodot keskittyivät ovien ja ikkunoiden liitoksiin sekä itse oviin ja ikkunoihin (jakauma ~ 50% / 50%). Juha Vinha 38
39 KIVIRAKENTEISEN ULKOSEINÄN JA YLÄPOHJAN LIITOS Juha Vinha 39
40 PUURAKENTEISEN ULKOSEINÄN JA VÄLIPOHJAN LIITOS Juha Vinha 40
41 PUURAKENTEISEN ULKOSEINÄN JA MAANVASTAISEN ALAPOHJAN LIITOS Juha Vinha 41
42 PUURAKENTEISEN ULKOSEINÄN JA MAANVASTAISEN ALAPOHJAN LIITOS Juha Vinha 42
43 PUURAKENTEISEN ULKOSEINÄN JA MAANVASTAISEN ALAPOHJAN LIITOS Juha Vinha 43
44 LÄPIVIENNIT Juha Vinha 44
45 HORMILIITOKSET Juha Vinha 45
46 IKKUNALIITOKSET Juha Vinha 46
47 TTY:N JULKAISUJA RAKENTEIDEN JA LIITOSTEN TOTEUTUKSESTA Juha Vinha 47
48 ILMASTONMUUTOKSEN JA LÄMMÖNERISTYKSEN LISÄYKSEN VAIKUTUKSIA TAVANOMAISISSA VAIPPARAKENTEISSA Vaatii lisää kuivumisaikaa Vaatii rakenteellisia muutoksia Käytöstä tulisi luopua - solumuovieristeiset betonisandwich- ja sisäkuorielementit - ulkopuolelta solumuovieristeillä eristettävät kivirakenteet - sisäpuolelta lisäeristettävät massiivirakenteet Kivirakenteen riittävä kuivuminen on varmistettava, jos rakenne pinnoitetaan sisäpuolelta vesihöyrytiiviillä pinnoitteella tai materiaalilla tai peitetään kaapistoilla tai muilla kuivumista rajoittavilla rakenteilla. Sisäpuolelta lämpöeristettyjen massiivirakenteiden riittävä kuivuminen on varmistettava ennen sisäpuolen lämmöneristyksen ja höyrynsulun laittamista. - puurakenteinen tuuletettu yläpohja (lämpöä eristävä aluskate/ tulensuoja, vähemmän ilmaa läp. lämmöneriste) - tiiliverhottu puurankaseinä (lämpöä eristävä tuulensuoja, erillinen höyrynsulkukerros tuuletusrakoon yli 10 m korkeissa seinissä) - sisäpuolelta lisäeristetty hirsiseinä (ilmanpitävä ja riittävä höyrynsulku) - ryömintätilainen alapohja (maanpinnan lämmöneristys, lämpöä eristävä ja kosteutta kestävä tuulensuoja puurakenteisessa alapohjassa) - maanvastainen alapohja (routaeristyksen lisäys) - ikkunat (ulkolasin ulkopintaan matalaemissivitettipinta) - tuulettumaton eristerappaus puurankarakenteen päällä Korvaavana rakenteena voidaan käyttää esim. tuuletetun levyverhouksen päälle tehtyä rappausta tai muuta ratkaisua, jossa rakenne tuuletetaan. Taulukossa esitetyt asiat ovat voimassa myös vanhoja rakenteita korjattaessa ja lisäeristettäessä. Juha Vinha 48
49 ILMASTONMUUTOKSEN JA LÄMMÖNERISTYKSEN LISÄYKSEN VAIKUTUKSET RAKENNUSTEN ENERGIANKULUTUKSESSA TkT Juha Jokisalo Tutkitut talotyypit: Pientalo Huoneistoala 134 m² Kerrostalo 3 asuinkerrosta + kellari Huoneistoala 1627 m² Toimisto Nettoala 5390 m² Atriumtila 526 m² Avokonttorit 4043 m² Neuvotteluhuoneet 178 m² Toimistohuoneet 643 m² Juha Vinha 49
50 LASKENNAN LÄHTÖTIETOJA Lämmöneristystaso: Muita lähtötietoja: Kaikissa tapauksissa: - MSE ikkunat (1.0 W/(m²K), g=0.56, ST = 0.44) - Vaipan ilmanpitävyys n 50 = 1.0 1/h Rakennusten sijainti: Vantaa Sisäiset lämpökuormat: D3 (2012) määräystaso (laitteet, valaistus ja henkilöt) Jäähdytyksen asetusarvo: Pientalo ja kerrostalo: (koneellinen jäähdytys käytössä tarpeen mukaan 7/24 h) 24/27 C = kesäkuukausina ( ) 27 C ja muina aikoina 24 C Toimisto: (koneellinen jäähdytys käytössä tarpeen mukaan arkisin klo 6-21) 24/25 C = kesäkuukausina ( ) 25 C ja muina aikoina 24 C Rakennus U-arvot, W/m²K Lämmönersitystason valintaperuste: US YP AP Pientalo A Normitaso C3 (2008) B Normitaso C3 (2010) C Matalaenergiapientalo (RIL ) D Passiivipientalo (RIL ) Kerrostalo ja toimisto ¹ A Normitaso C3 (2008) B Normitaso C3 (2010) C Matalaenergiakarrostalo (RIL ) D Passiivikerrostalo (RIL ) E Passiivipientalo (RIL ) ¹ Toimistossa vain US ja YP:n lämmönersitystaso otettu huomioon. (Toimistossa AP:n lämpöhäviöitä ei ole otettu huomioon kellarikerroksessa sijaitsevan paikotustilan vuoksi.) Juha Vinha 50
51 TILOJEN JA ILMANVAIHDON LÄMMITYS- JA JÄÄHDYTYSTARVE kwh/m²a Pientalo: A (läm.) B (läm.) C (läm.) D (läm.) A (jäähd.) B (jäähd.) C (jäähd.) D (jäähd.) kwh/m²a Toimisto: Lämmitystarve Jäähdytystarve Jäähdytystarve A (läm.) B (läm.) C (läm.) D (läm.) E (läm.) A (jäähd.) B (jäähd.) C (jäähd.) D (jäähd.) E (jäähd.) kwh/m²a Kerrostalo: Lämmitystarve A (läm.) B (läm.) C (läm.) D (läm.) E (läm.) A (jäähd.) B (jäähd.) C (jäähd.) D (jäähd.) E (jäähd.) Lämmitystarve Jäähdytystarve Juha Vinha 51
52 YHTEENVETO FRAME -PROJEKTIN TUTKIMUSTULOKSISTA Rakennusten energiankulutus Lämmöneristyksen lisääminen v määräysten mukaisesta vertailutasosta ei ole kerrosaloissa ja toimistoissa kannattavaa, koska ostoenergiansäästö on marginaalinen. Pientaloissa asia riippuu siitä, kuinka pitkä takaisinmaksuaika lisäeristämiselle voidaan hyväksyä. Kerrostaloissa ja toimistorakennuksissa jo vuoden 2008 rakentamismääräysten mukaiset U-arvotasot tutkittujen vaipparakenteiden (US, YP ja AP) osalta olisivat olleet energiansäästön kannalta varsin riittäviä. Tulevaisuudessa rakennusten lämmitystarve vähenee ja jäähdytystarve kasvaa. Lämmöneristystason lisäämisellä saavutettava energiansäästö tulee ilmastonmuutoksen myötä edelleen pienenemään. Rakennusten energiankulutusta voidaan hieman pienentää hyödyntämällä rakenteiden termistä massaa. Rakennusten energiankulutusta voidaan jatkossa pienentää erityisesti energiatehokkailla lämmitys- ja jäähdytysratkaisuilla sekä passiivisilla jäähdytystavoilla. Juha Vinha 52
53 ASUKKAIDEN VAIKUTUS ENERGIANKULUTUKSEEN Energian ominaiskulutus lattiapinta-alaa kohti luvun alussa tehdyissä puurunkoisissa pientaloissa (TTY:n ja TKK:n kenttätutkimus) Energiatehokkuusluokka A (normeerattuna Jyväskylän säätietoihin, vanha luokitus) Keskimääräiset Ilmanvaihtomäärät koneellisilla IV- järjestelmillä lähes samat. Tuloksissa ei ole otettu huomioon takassa ja saunassa poltettua puuta. Asumistottumuksilla on ratkaiseva merkitys pientalojen energiankulutuksessa! Juha Vinha 53
54 LISÄTIETOA FRAME -PROJEKTISTA Projektin loppuraportit (tutkimusraportit 159 ja 160) ja viimeisen yleisöseminaarin esitykset ovat saatavilla TTY:n rakennusfysiikan tutkimusryhmän kotisivuilta osoitteesta: Rakennusaikaiseen kosteudenhallintaan liittyvää aineistoa on lisäksi saatavilla osoitteesta: Rakennusfysiikan ilmastolliset testivuodet on julkaistu Ilmatieteen laitoksen kotisivuilla osoitteessa: Tutkimuksen rahoittajina olivat: Tekes, Ympäristöministeriö, Rakennusteollisuus RT ry:n toimialaliitot sekä yksittäisinä yrityksinä Finnfoam Oy, Suomen Kuitulevy Oy ja Fibratus Oy. Juha Vinha 54
FRAME-hankkeen johtopäätöksiä
FRAME-hankkeen johtopäätöksiä Vaipan ilmanpitävyys Vaipan ilmanpitävyyden parantamisella on lähes pelkästään positiivisia vaikutuksia ja se on keskeinen edellytys matalaenergiarakentamiselle Erilaisten
FRAME-PROJEKTIN YHTEENVETO
FRAME-PROJEKTIN YHTEENVETO Ilmastonmuutoksen ja lämmöneristyksen lisäyksen vaikutukset vaipparakenteiden ja rakennusten rakennusfysikaalisessa toiminnassa 13.3.2013 Prof. Juha Vinha TTY, Rakennustekniikan
FRAME-PROJEKTIN YHTEENVETO
FRAME-PROJEKTIN YHTEENVETO 8.11.2012 Tutk.joht. Juha Vinha TTY, Rakennustekniikan laitos VAIPAN ILMANPITÄVYYS Vaipan ilmanpitävyyden parantamisella on lähes pelkästään positiivisia vaikutuksia ja se on
RIL 107: LUVUT 2 JA 4
RIL 107: LUVUT 2 JA 4 13.11.2012 Tutk.joht. Juha Vinha TTY, Rakennustekniikan laitos SISÄILMAN KOSTEUSLISÄN MITOITUSARVOT 10 Sisäilman kosteuslisä, ν (g/m 3 ) 9 8 7 6 5 4 3 2 1 1 2 3 0-30 -25-20 -15-10
KOSTEUDENHALLINTA ENERGIATEHOKKAASSA RAKENTAMISESSA
KOSTEUDENHALLINTA ENERGIATEHOKKAASSA RAKENTAMISESSA 28.3.2009 TkT Juha Vinha Energiatehokas koti tiivis ja terveellinen?, 28.3.2009 Helsingin Messukeskus PERUSASIAT KUNTOON KUTEN ENNENKIN Energiatehokas
FRAME-PROJEKTI 8.11.2012 Tutk.joht. Juha Vinha TTY, Rakennustekniikan laitos
FRAME-PROJEKTI 8.11.2012 Tutk.joht. Juha Vinha TTY, Rakennustekniikan laitos LÄMMÖNERISTYKSEN LISÄYKSEN VAIKUTUKSET Lämmöneristyksen lisääminen heikentää monien vaipparakenteiden kosteusteknistä toimintaa:
UUDET ENERGIAMÄÄRÄYKSET JA NIIDEN VAIKUTUKSET
UUDET ENERGIAMÄÄRÄYKSET JA NIIDEN VAIKUTUKSET 8.5.2014 Prof. Juha Vinha TTY, Rakennustekniikan laitos RAKENUSTEN ENERGIANKULUTUKSEN VÄHENTÄMISEN AIKATAULU Aikataulu 1.1.2015 voimaan vaatimukset uusiutuvista
FRAME-PROJEKTI PÄÄTTYY MITÄ OPITTIIN?
FRAME-PROJEKTI PÄÄTTYY MITÄ OPITTIIN? 27.11.2012 Tutk.joht. Juha Vinha TTY, Rakennustekniikan laitos LÄMMÖNERISTYKSEN LISÄYKSEN VAIKUTUKSET Lämmöneristyksen lisääminen heikentää monien vaipparakenteiden
ENERGIAA SÄÄSTÄVIEN JULKISIVUKORJAUSTEN KOSTEUSTEKNINEN TOIMINTA
ENERGIAA SÄÄSTÄVIEN JULKISIVUKORJAUSTEN KOSTEUSTEKNINEN TOIMINTA 3.2.2015 Prof. Juha Vinha TTY, Rakennustekniikan laitos LÄMMÖNERISTYKSEN LISÄYKSEN VAIKUTUKSET SEINÄRAKENTEIDEN KOSTEUSTEKNISEEN ULKOPUOLELTA
MITÄ RISKEJÄ ENERGIANSÄÄSTÖ AIHETTAA RAKENTEILLE JA KEINOT VÄLTTÄÄ NE
MITÄ RISKEJÄ ENERGIANSÄÄSTÖ AIHETTAA RAKENTEILLE JA KEINOT VÄLTTÄÄ NE 10.10.2012 Tutk.joht. Juha Vinha TTY, Rakennustekniikan laitos LÄMMÖNERISTYKSEN LISÄYKSEN VAIKUTUKSET Lämmöneristyksen lisääminen heikentää
FRAME-PROJEKTIN ESITTELY
FRAME-PROJEKTIN ESITTELY 11.6.2009 TkT Juha Vinha TAUSTA TTY teki ympäristöministeriölle selvityksen, jossa tuotiin esiin useita erilaisia riskitekijöitä ja haasteita, joita liittyy rakennusvaipan lisälämmöneristämiseen.
ILMASTONMUUTOS VAIKUTUKSET RAKENTAMISEN SUUNNITTELUUN JA RAKENTAMISEEN
ILMASTONMUUTOS VAIKUTUKSET RAKENTAMISEN SUUNNITTELUUN JA RAKENTAMISEEN 8.2.2019 Prof. Juha Vinha Rakennusfysiikka TAU, Rakennustekniikka ESITYKSEN SISÄLTÖ Ilmastonmuutoksen vaikutukset Rakennusaikainen
LISÄERISTÄMISEN VAIKUTUKSET PUURAKENTEIDEN KOSTEUSTEKNISESSÄ TOIMINNASSA
LISÄERISTÄMISEN VAIKUTUKSET PUURAKENTEIDEN KOSTEUSTEKNISESSÄ TOIMINNASSA 10.3.2009 TkT Juha Vinha Puista bisnestä Rakentamisen uudet määräykset ja ohjeet 2010, 10.3.2009 Ylivieska YLEISTÄ Lämmöneristyksen
Rakennuksen energiankulutus muuttuvassa ilmastossa
Rakennuksen energiankulutus muuttuvassa ilmastossa 8.11.2012 Juha Jokisalo Erikoistutkija, TkT juha.jokisalo@aalto.fi Aalto-yliopisto, Energiatekniikan laitos, LVI-tekniikka Taustaa Frame-hankkeen tutkimustulosten
FRAME-HANKE: ILMASTONMUUTOKSEN JA LÄMMÖNERISTYKSEN LISÄYKSEN VAIKUTUKSET RAKENTEIDEN SÄILYVYYTEEN
FRAME-HANKE: ILMASTONMUUTOKSEN JA LÄMMÖNERISTYKSEN LISÄYKSEN VAIKUTUKSET RAKENTEIDEN SÄILYVYYTEEN 25.9.2012 Tutk.joht. Juha Vinha TTY, Rakennustekniikan laitos LÄMMÖNERISTYKSEN LISÄYKSEN VAIKUTUKSET Lämmöneristyksen
ENERGIATEHOKKUUDEN VAIKUTUKSET UUDIS- JA KORJAUSRAKENTAMISESSA
ENERGIATEHOKKUUDEN VAIKUTUKSET UUDIS- JA KORJAUSRAKENTAMISESSA 26.11.2014 Prof. Juha Vinha TTY, Rakennustekniikan laitos RAKENUSTEN ENERGIANKULUTUKSEN VÄHENTÄMISEN NYKYINEN AIKATAULU 1.1.2015 voimaan vaatimukset
FRAME-PROJEKTI Future envelope assemblies and HVAC solutions
FRAME-PROJEKTI Future envelope assemblies and HVAC solutions 1.9.2010 Dos. Juha Vinha TTY, Rakennustekniikan laitos TAUSTA TTY teki Ympäristöministeriölle v. 2008 selvityksen, jossa tuotiin esiin useita
VARAUTUMINEN ILMASTONMUUTOKSEEN RAKENTAMISESSA
VARAUTUMINEN ILMASTONMUUTOKSEEN RAKENTAMISESSA 22.5.2019 Prof. Juha Vinha Rakennusfysiikka TAU, Rakennustekniikka ESITYKSEN SISÄLTÖ Ilmastonmuutoksen vaikutukset Rakennusaikainen kosteudenhallinta Lämmöneristyksen
HIRSIRAKENNUKSEN LÄMPÖ- JA KOSTEUSTEKNINEN TOIMINTA
HIRSIRAKENNUKSEN LÄMPÖ- JA KOSTEUSTEKNINEN TOIMINTA 9.9.2016 Prof. Juha Vinha TTY, Rakennustekniikan laitos Vain hyviä syitä: Julkisen hirsirakentamisen seminaari, 8.-9.9.2016, Pudasjärvi MASSIIVIHIRSISEINÄN
HAASTEET RAKENNUSFYSIIKAN
ENERGIATEHOKKUUDEN PARANTAMISEN HAASTEET RAKENNUSFYSIIKAN NÄKÖKULMASTA 6.9.2011 Tutk. joht. Juha Vinha Tampereen teknillinen yliopisto Rakennustekniikan laitos Rakennusfoorumi, Korjausrakentaminen ja energiatehokkuus,
VUODEN 2010 UUDET LÄMMÖNERISTYSTÄ JA ENERGIANKULUTUSTA KOSKEVAT RAKENTAMISMÄÄRÄYKSET
VUODEN 2010 UUDET LÄMMÖNERISTYSTÄ JA ENERGIANKULUTUSTA KOSKEVAT RAKENTAMISMÄÄRÄYKSET 14.4.2009 TkT Juha Vinha Kestävä rakentaminen -seminaari, 14.4.2009 Vaasa LÄMMÖNERISTYS- JA ENERGIAN- KULUTUSMÄÄRÄYSTEN
Energiatehokas rakentaminen aiheuttaa muutospaineita suunnitteluun ja rakentamiseen
FRAME-tutkimus Energiatehokas rakentaminen aiheuttaa muutospaineita suunnitteluun ja rakentamiseen Jutta Telivuo / Graphic Concrete Ltd Betonin toimitus Tampereen teknillisestä yliopistosta tehdyssä, 3-vuotisessa
RIL 249 MATALAENERGIARAKENTAMINEN
RIL 249-20092009 MATALAENERGIARAKENTAMINEN RAKENNETEKNINEN NÄKÖKULMA 7.12.2009 Juha Valjus RIL 249 MATALAENERGIARAKENTAMINEN Kirjan tarkoitus rakennesuunnittelijalle: Opastaa oikeaan suunnittelukäytäntöön
ILMATIIVIIDEN RAKENTEIDEN TOTEUTUS
ILMATIIVIIDEN RAKENTEIDEN TOTEUTUS 14.10.2014 Prof. Juha Vinha TTY, Rakennustekniikan laitos Matalaenergia- ja passiivitalojen rakenteiden haasteet, VASEK, Vaasa 14.10.2014 ILMANPITÄVIEN RAKENTEIDEN SUUNNITTELU-
KOSTEUSRISKEJÄ MATALAENERGIARAKENTAMISESSA ONKO NIITÄ/ MITEN HALLITAAN?
KOSTEUSRISKEJÄ MATALAENERGIARAKENTAMISESSA ONKO NIITÄ/ MITEN HALLITAAN? 29.4.2010 2010 Dos. Juha Vinha TTY, Rakennustekniikan laitos Kosteudenhallinta ja homevaurion estäminen miten hoidetaan?, RIL:n seminaari,
MATALAENERGIARAKENTAMISEN HAASTEET RAKENTEIDEN TOIMINTAAN
MATALAENERGIARAKENTAMISEN HAASTEET RAKENTEIDEN TOIMINTAAN 24.5.2012 Tutk.joht. Juha Vinha TTY, Rakennustekniikan laitos LÄMMÖNERISTYKSEN LISÄYKSEN VAIKUTUKSET Lämmöneristyksen lisääminen heikentää vaipparakenteiden
RAKENNUSTEN ILMANPITÄVYYS
RAKENNUSTEN ILMANPITÄVYYS tutkimustuloksia suunnitteluohjeet laadunvarmistuksessa Julkisivuyhdistyksen syyskokousseminaari Julkisivut ja energiatehokkuus 25.11.2008 Tampereen teknillinen yliopisto, Rakennustekniikan
ENERGIATEHOKKUUDEN JA ILMASTONMUUTOKSEN VAIKUTUKSIA UUDIS- JA KORJAUSRAKENTAMISEEN
ENERGIATEHOKKUUDEN JA ILMASTONMUUTOKSEN VAIKUTUKSIA UUDIS- JA KORJAUSRAKENTAMISEEN 14.10.2014 Prof. Juha Vinha TTY, Rakennustekniikan laitos RAKENUSTEN ENERGIANKULUTUKSEN VÄHENTÄMISEN NYKYINEN AIKATAULU
SÄÄSTÄ KOTIA KORJAAMALLA. Hannu Kääriäinen, 040-5857534, ,
, 040-5857534, e-mail, Hannu.Kaariainen@oamk.fi Mitä halutaan korjata? Korjataanko rakenteita, tekniikka, pintamateriaaleja. Onko jotakin pakko korjata, vauriot, hajuhaittaa yms. Huomioidaanko rakenteen
Massiivirakenteiden sisäpuolinen lämmöneristäminen
Massiivirakenteiden sisäpuolinen lämmöneristäminen FRAME YLEISÖSEMINAARI 8.. Sakari Nurmi Tampereen teknillinen yliopisto Rakennustekniikan laitos 8.. Haasteita Massiivirakenteiset seinät (hirsi-, kevytbetoni-
Suvilahti Projekti. Kokemuksia kerrostalon rakennusfysikaalisesta toiminnasta
Suvilahti Projekti Kokemuksia kerrostalon rakennusfysikaalisesta toiminnasta Maa- ja aurinkoenergian hyödyntäminen Matalaenergia kerrostalorakentamisessa Vaasan asuntomessualueen viereen Lakea Oy rakennuttaa
TTS Työtehoseura kouluttaa tutkii kehittää
TTS Työtehoseura kouluttaa tutkii kehittää PUURAKENTAMINEN OULU 23.9.2016 2 RANKARAKENTEET Määräysten mukaisen vertailuarvon saavuttaminen, 200 mm eristevahvuus Matalaenergia- ja passiivirakentaminen,
Lämmöneristemateriaalin vaikutus suojaustarpeeseen. Betonipäivät 2014 Toni Pakkala, TTY, Rakenteiden elinkaaritekniikka
Lämmöneristemateriaalin vaikutus suojaustarpeeseen Betonipäivät 2014 Toni Pakkala, TTY, Rakenteiden elinkaaritekniikka Lämmöneristemateriaalin vaikutus suojaustarpeeseen Sisältö 1. Rakennusvaiheen kosteuslähteet
Lohjan rakennusvalvonta 15.2.2016
Lohjan rakennusvalvonta 15.2.2016 Rakennusvalvonnan uudet puhelinajat Tulosalue esimies, johtava rakennustarkastaja Paula Mäenpää, soittoaika klo 12.00-13.00 - lupakäsittely / lautakunnan luvat Tarkastusinsinööri,
TIILIVERHOTTUJEN BETONISEINIEN KUIVUMINEN
TIILIVERHOTTUJEN BETONISEINIEN KUIVUMINEN Tilaaja Saint-Gobain Rakennustuotteet Oy / Kimmo Huttunen Laatija A-Insinöörit Suunnittelu Oy / Jarkko Piironen Suoritus 1.10. Laskentatarkastelut 2 Laskentatarkastelut
RAKENNUSFYSIIKAN KÄSIKIRJAN TOTEUTUS
RAKENNUSFYSIIKAN KÄSIKIRJAN TOTEUTUS 12.12.2011 Tutk.joht. Juha Vinha TTY, Rakennustekniikan laitos Rakennusfysiikan käsikirja, esittely - ja keskustelutilaisuus, Helsinki 12.12. 2011 KÄSIKIRJAN TOTEUTUSTILANNE
BETONIJULKISIVUJEN TOIMINTA
FRAME Tutkimuksen päätösseminaari TTY Tietotalo 8.11.2012 Jukka Lahdensivu Tampereen teknillinen yliopisto, Rakennustekniikan laitos BETONIJULKISIVUJEN TOIMINTA Betonijulkisivujen toiminta Sisältö: - Tutkimusaineisto
Matalaenergiatalon betonijulkisivut. 13.5.2009 Julkisivuyhdistys 2009 Arto Suikka
Matalaenergiatalon betonijulkisivut Muutos aiempaan 30 %:n parannus seinän ja ikkunan U-arvoihin Oleellisesti parempi tiiveys Uusia eristevaihtoehtoja käyttöön Lisäkustannus esim. betonisessa ulkoseinärakenteessa
ThermiSol EPS- ja Platina -eristeiden paloturvallinen käyttö tiiliverhoillussa ulkoseinässä
TUTKIMUSRAPORTTI VTT-R-00774-12 ThermiSol EPS- ja Platina -eristeiden paloturvallinen käyttö tiiliverhoillussa ulkoseinässä Kirjoittaja: Luottamuksellisuus: Esko Mikkola Julkinen 2 (6) Sisällysluettelo
LISÄERISTÄMINEN. VAIKUTUKSET Rakenteen rakennusfysikaaliseen toimintaan? Rakennuksen ilmatiiviyteen? Energiankulutukseen? Viihtyvyyteen?
Hankesuunnittelu Suunnittelu Toteutus Seuranta Tiiviysmittaus Ilmavuotojen paikannus Rakenneavaukset Materiaalivalinnat Rakennusfysik. Suun. Ilmanvaihto Työmenetelmät Tiiviysmittaus Puhdas työmaa Tiiviysmittaus
Ohjeistus korjausrakentamisesta
Ohjeistus korjausrakentamisesta Matts Almgrén Energianeuvoja, Turun kaupunki/valonia VARELY - Rakentamisen ohjauksen seminaari - Matts Almgren Energianeuvonta Varsinais-Suomessa Valonia, Rakennusvalvonta,
Betonisandwich- elementit
Betonisandwich- elementit -lämmöneristeet -ansastus -mallipiirustukset -tiiveys -detaljit -kuljetus -nostot -kosteustekninen toiminta -ääneneristys -palonkestävyys -kustannukset Seinätyypit Sandwich Uritetulla
Energiatehokkaiden puurakenteiden lämpö-, kosteusja tiiviystekninen toimivuus
TEKNOLOGIAN TUTKIMUSKESKUS VTT OY Energiatehokkaiden puurakenteiden lämpö-, kosteusja tiiviystekninen toimivuus Tuomo Ojanen, erikoistutkija Teknologian tutkimuskeskus VTT Oy Sisältö Puurakenteiden erityispiirteet
RIL 107-2012 Rakennusten veden- ja. varmatoimisiin ja vikasietoisiin ratkaisuihin. Pekka Laamanen
RIL 107-2012 Rakennusten veden- ja kosteudeneristysohjeet tähtäävät varmatoimisiin ja vikasietoisiin ratkaisuihin Pekka Laamanen 13.3.2013 1 RIL 107-2012 Rakennusten veden- ja kosteudeneristysohjeet 1976,
Suunnitteluratkaisuista nyt ja tulevaisuudessa
Suunnitteluratkaisuista nyt ja tulevaisuudessa - kriittisyyden perusteita - tulevaisuuden muuttuvia haasteita - esimerkkejä - yhteenvetoa - työkaluja - kirjallisuutta -. Rakennesuunnittelijoiden ajankohtaispäivä
Näin lisäeristät 4. Sisäpuolinen lisäeristys. Tuotteina PAROC extra ja PAROC-tiivistystuotteet
Näin lisäeristät 4 Sisäpuolinen lisäeristys Tuotteina PAROC extra ja PAROC-tiivistystuotteet Tammikuu 202 Sisäpuolinen lisälämmöneristys Lisäeristyksen paksuuden määrittää ulkopuolelle jäävän eristeen
Lämmön siirtyminen rakenteessa. Lämpimästä kylmempään päin Lämpötilat rakenteen eri puolilla pyrkivät tasoittumaan
Mikko Myller Lämmön siirtyminen rakenteessa Lämpimästä kylmempään päin Lämpötilat rakenteen eri puolilla pyrkivät tasoittumaan Lämpöhäviöt Lämpö siirtyy 1) Kulkeutumalla (vesipatterin putkisto, iv-kanava)
Rakennusfysiikka 2007, Tampereen teknillinen yliopisto, RIL Seminaari Tampere-talossa 18 19.10.2007. Tiedämmekö, miten talot kuluttavat energiaa?
Rakennusfysiikka 2007, Tampereen teknillinen yliopisto, RIL Seminaari Tampere-talossa 18 19.10.2007 Tiedämmekö, miten talot kuluttavat energiaa? Professori Ralf Lindberg, Tampereen teknillinen yliopisto
TIETOKANSIO Energiatehokas rakentaminen. Keski-Suomen Energiatoimisto www.kesto.fi/energianeuvonta energianeuvonta@kesto.fi
TIETOKANSIO Energiatehokas rakentaminen Keski-Suomen Energiatoimisto www.kesto.fi/energianeuvonta energianeuvonta@kesto.fi Sisältö Miksi rakentaa energiatehokkaasti? Termit tutuiksi Mikä on matalaenergiatalo?
FRAME: Ulkoseinien sisäinen konvektio
1 FRAME: Ulkoseinien sisäinen konvektio Sisäisen konvektion vaikutus lämmönläpäisykertoimeen huokoisella lämmöneristeellä eristetyissä ulkoseinissä Petteri Huttunen TTY/RTEK 2 Luonnollisen konvektion muodostuminen
Lisätietoa rakennusten lämpökuvauksesta
Lisätietoa rakennusten lämpökuvauksesta Lämpökameraa voidaan mm. Paikantaa kylmäsiltoja Paikantaa ilmavuotokohtia, eristepuutteita Löytää putkivuodot ja tukokset Paikantaa lämmitysputkien ja kaapeleiden
LÄMPÖKAMERAKATSELMUS. Kokonkatu 6 33960 Pirkkala. Haarlankatu 1 B FI-33230 Tampere p. 0207 495 630 www.raksystems-anticimex.fi Y-tunnus: 0905045-0
LÄMPÖKAMERAKATSELMUS Kokonkatu 6 33960 Pirkkala Lämpökamerakatselmus 2 1. KOHTEEN YLEISTIEDOT Lämpökuvauskohde Kokonkatu 6 33960 Pirkkala Tilaaja Kesko / Vesa Saarenheimo Lämpökuvauspäivä 14.1.2011 Lämpökuvauksen
MISTÄ SE HOME TALOIHIN TULEE?
MISTÄ SE HOME TALOIHIN TULEE? KOSTEUSVAURIOT JA MUUT SISÄILMAONGELMAT Juhani Pirinen 15.10.2014 Hieman kosteusvaurioista Kosteuden lähteet SADE, LUMI PUUTTEELLINEN TUULETUS VESIKATTEEN ALLA TIIVISTYMINEN
ENERGIATODISTUS. TOAS Veikkola 1 Insinöörinkatu 84 33720 Tampere. Muut asuinkerrostalot. Uudisrakennusten määräystaso 2012
ENERGIATODISTUS Rakennuksen nimi ja osoite: TOAS Veikkola Insinöörinkatu 84 70 Tampere Rakennustunnus: 87-65-758- Rakennuksen valmistumisvuosi: 99 Rakennuksen käyttötarkoitusluokka: Todistustunnus: Muut
Ilmatiiveys ja vuotokohdat uusissa pientaloissa
Ilmatiiveys ja vuotokohdat uusissa pientaloissa 1/2014 Vertia Oy 15.5.2014 Heikki Jussila, Tutkimusjohtaja 040 900 5609 www.vertia.fi Johdanto Tämä raportti perustuu Vertia Oy:n ja sen yhteistyökumppaneiden
Lausunto 1(6) Kaanaantie 65, Sälinkää LAUSUNTO SÄLINKÄÄN TERVEYSTALO KIINTEISTÖSTÄ JA ULKORAKENNUKSESTA
Lausunto 1(6) LAUSUNTO SÄLINKÄÄN TERVEYSTALO KIINTEISTÖSTÄ JA ULKORAKENNUKSESTA Tällä lausunnolla otetaan kantaa sekä vuonna 1967 rakennetun Sälinkään terveystalon, ja pihapiirissä olevan ulkorakennuksen
Lisälämmöneristäminen olennainen osa korjausrakentamista
Lisälämmöneristäminen olennainen osa korjausrakentamista Energiatodistusten laatijoiden ajankohtaispäivä 16.5.2019 Tuomo Ojanen, VTT Esityksen sisältö Rakennuksen tehtävä Hyvin lämmöneristetty ulkovaippa
ENERGIASELVITYS. Rakennustunnus: 50670 Otava. Paikkakunta: Mikkeli Bruttopinta-ala: Huoneistoala: 171,1 m² Rakennustilavuus: Ikkunapinta-ala:
RAKENNUKSEN PERUSTIEDOT Rakennus: Osoite: ENERGIASELVITYS Haapanen Kalle ja Sanna Valmistumisvuosi: 2012 Pillistöntie 31 Rakennustunnus: 50670 Otava Paikkakunta: Mikkeli Bruttopinta-ala: Huoneistoala:
Tuovi Rahkonen 27.2.2013. Lämpötilahäviöiden tasaus Pinta-alat, m 2
Rakennuksen lämpöhäviöiden tasauslaskelma D3-2007 Rakennuskohde Rakennustyyppi Rakennesuunnittelija Tasauslaskelman tekijä Päiväys Tulos : Suunnitteluratkaisu Rakennuksen yleistiedot Rakennustilavuus Maanpäälliset
Kristiina Kero, Toni Teittinen TIETOMALLIPOHJAINEN ENERGIA-ANALYYSI JA TAKAISINMAKSUAJAN MÄÄRITYS Tutkimusraportti
Kristiina Kero, Toni Teittinen TIETOMALLIPOHJAINEN ENERGIA-ANALYYSI JA TAKAISINMAKSUAJAN MÄÄRITYS Tutkimusraportti II SISÄLLYS 1. Johdanto... 1 2. Tietomallipohjainen määrä- ja kustannuslaskenta... 2 3.
RAKENNUSTEN ENERGIATEHOKKUUDEN PARANTAMISEN HAASTEITA TEORIA JA KÄYTÄNTÖ
RAKENNUSTEN ENERGIATEHOKKUUDEN PARANTAMISEN HAASTEITA TEORIA JA KÄYTÄNTÖ 20.9.2016 Prof. TTY, Rakennustekniikan laitos RAKENNUSTEN ENERGIANKULUTUKSEN VÄHENTÄMISEN HAASTEET Muut vaikutukset Huomioon otettavien
1 RAKENNNESELVITYS. 9 LIITE 5. s. 1. Korutie 3 Työnumero: 8.9.2011 Ilkka Meriläinen 51392.27
9 LIITE 5. s. 1 1 RAKENNNESELVITYS 1.1 TEHTÄVÄN MÄÄRITTELY Selvitys on rajattu koskemaan :ssa olevan rakennuksen 1. ja 2. kerroksen tiloihin 103, 113, 118, 204 ja 249 liittyviä rakenteita. 1.2 YLEISKUVAUS
Rakentamisen ja asumisen energianeuvonta Keski-Suomessa. Lauri Penttinen Keski-Suomen Energiatoimisto
Rakentamisen ja asumisen energianeuvonta Keski-Suomessa Keski-Suomen Energiatoimisto 1 Sisältö Keski-Suomen Energiatoimisto Energianeuvonta Keski-Suomessa Rakennusten energiatehokkuus Lämmitystavat Kodin
Vaarantaako energiansäästö rakennusten terveellisyyden? TkT Juhani Pirinen Hengitysliitto Helin korjausneuvonta
Vaarantaako energiansäästö rakennusten terveellisyyden? TkT Juhani Pirinen Hengitysliitto Helin korjausneuvonta Hengitysliitto Heli ry www.heli.fi Sosiaali- terveysalan järjestö hengityssairaiden edunvalvonta
RIL 107-2012 Rakennusten veden- ja kosteudeneristysohjeet Tilaisuuden avaus
RIL 107-2012 Rakennusten veden- ja kosteudeneristysohjeet Tilaisuuden avaus Gunnar Åström RIL 13.30 Tilaisuuden avaus ja hankkeen yleisesittely Gunnar Åström, RIL, tekninen johtaja 13.45 Julkaisun tavoitteet
COMBI-HANKEEN YLEISESITTELY 2015-2017. Prof. Juha Vinha 28.1.2016
COMBI-HANKEEN YLEISESITTELY 2015-2017 Prof. RAKENUSTEN ENERGIATEHOKKUUDEN PARANTAMISEN NYKYINEN AIKATAULU Uudisrakennukset 2016 lähes nollaenergiarakentamista koskevat määräykset tulevat lausunnolle. 2017
MITEN KERROS- JA RIVITALOT PYSTYVÄT VASTAAMAAN KORJAUSRAKENTAMISEN MÄÄRÄYKSIIN? Kimmo Rautiainen, Pientaloteollisuus
MITEN KERROS- JA RIVITALOT PYSTYVÄT VASTAAMAAN KORJAUSRAKENTAMISEN MÄÄRÄYKSIIN? Kimmo Rautiainen, Pientaloteollisuus 1 Tarjolla tänään Määräysten huomioon ottaminen korjaushankkeen eri vaiheissa Esimerkkirakennukset
Ympäristöministeriön asetus rakennuksen kosteusteknisestä toimivuudesta
Ympäristöministeriön asetus rakennuksen kosteusteknisestä toimivuudesta Rakennusvalvonnan ajankohtaisseminaari 5.2.2018 Savoy-teatteri, Helsinki Yli-insinööri Katja Outinen Asetus rakennuksen kosteusteknisestä
RAKENNUSVALVONTA. Tommi Riippa 18.4.2013
Tommi Riippa 18.4.2013 LISÄERISTÄMINEN Lämpöä eristävän materiaalin lisäämisellä rakenteen lämmöneristävyys kasvaa Energian kulutus vähenee, mutta rakenteen ulko-osien olosuhteet huononevat Lisäeristeen
RIL 107-2012 Rakennusten veden- ja kosteudeneristysohjeet -julkistamisseminaari 13.11.2012
RIL 107-2012 Rakennusten veden- ja kosteudeneristysohjeet -julkistamisseminaari 13.11.2012 Julkaisun tavoitteet ja yleiset periaatteet Pekka Laamanen 14.11.2012 1 RIL 107-2012 Julkaisu sisältää veden-
Kosteus- ja mikrobivauriot koulurakennuksissa TTY:n suorittamien kosteusteknisten kuntotutkimusten perusteella
Kosteus- ja mikrobivauriot koulurakennuksissa TTY:n suorittamien kosteusteknisten kuntotutkimusten perusteella Sisäilmastoseminaari 2014 Petri Annila, Jommi Suonketo ja Matti Pentti Esityksen sisältö Tutkimusaineiston
Kosteudenhallintasuunnitelman esimerkki
1 Kosteudenhallintasuunnitelman esimerkki Sisällysluettelo Hankkeen yleistiedot... 2 Laatutavoitteet... 3 Kosteusriskit... 4 Kuivumisajat... 5 Olosuhdehallinta... 6 Eritysohjeet... 7 Valvonta ja mittaus...
Kosteusturvalliset matalaenergia- ja. Jyri Nieminen VTT
Kosteusturvalliset matalaenergia- ja passiivitaloratkaisut VTT Rakentamisprosessin kosteuden hallinta - asenteet ja ajattelemattomuus Lämmöneristeiden varastointi? Kosteusongelmien syyt rakennusvirheissä,
RIL 107-2012. Suomen Rakennusinsinöörien Liitto RIL ry. Rakennusten veden- ja kosteudeneristysohjeet
RIL 107-2012 Suomen Rakennusinsinöörien Liitto RIL ry Rakennusten veden- ja kosteudeneristysohjeet 2 RIL 107-2012 RILin julkaisuilla on oma kotisivu, joka löytyy osoitteesta www.ril.fi Kirjakauppa ko.
Materiaalinäkökulma rakennusten ympäristöarvioinnissa
Korjaussivut julkaisuun SYKEra16/211 Materiaalinäkökulma rakennusten ympäristöarvioinnissa Sirkka Koskela, Marja-Riitta Korhonen, Jyri Seppälä, Tarja Häkkinen ja Sirje Vares Korjatut sivut 26-31 ja 41
Ryömintätilaisten alapohjien toiminta
1 Ryömintätilaisten alapohjien toiminta FRAME-projektin päätösseminaari Tampere 8.11.2012 Anssi Laukkarinen Tampereen teknillinen yliopisto Rakennustekniikan laitos 2 Sisältö Johdanto Tulokset Päätelmät
Rakennuksen energiatodistus ja energiatehokkuusluvun määrittäminen
Rakennuksen energiatodistus ja energiatehokkuusluvun määrittäminen Uudispientalon energiatodistusesimerkki 13.3.2008 YMPÄRISTÖMINISTERIÖ Uudispientalon energiatodistusesimerkki Tässä monisteessa esitetään
1950-LUVUN OMAKOTITALON PERUSKORJAUKSEN VIRHEET KOSTEIDEN TILOJEN KORJAUKSESSA JA NIIDEN UUDELLEEN KORJAUS
Jari Lehesvuori 1950-LUVUN OMAKOTITALON PERUSKORJAUKSEN VIRHEET KOSTEIDEN TILOJEN KORJAUKSESSA JA NIIDEN UUDELLEEN KORJAUS TÄSSÄ TUTKIMUKSESSA SELVITETÄÄN, ONKO 50-LUVULLA RAKENNETUN JA 80- LUVULLA PERUSKORJATUN
Wise Group Finland Oy. Käpylän peruskoulu Väinölänkatu 7
Wise Group Finland Oy Käpylän peruskoulu Väinölänkatu 7 Väinölänkatu 7 1. Tutkimuksen laajuus ja tutkimusmenetelmät 2. Koonti merkittävimmistä havainnoista ja korjaustarpeista 3. Koonti toimenpide-ehdotuksista
ThermiSol-eristeiden rakennekuvat
ThermiSol-eristeiden rakennekuvat Yksi talo. Kaikki ERISTEET. Sisällysluettelo Aihe thermisol-tuotteet Piha-alueen routaeristykset 1.1 Piha-alueen routaeristykset ThermiSol EPS 120 Routa, ThermiSol Super
ENERGIATODISTUS. Rakennus. Valmistumisvuosi: Rakennustunnus: 21600 Parainen. Asuntojen lukumäärä: 1
ENERGIATODISTUS Rakennus Rakennustyyppi: Erilliset pientalot (enintään 6 asuntoa) Osoite: Valoniemenkuja 5 21600 Parainen Valmistumisvuosi: Rakennustunnus: Asuntojen lukumäärä: 1 2012 Energiatodistus perustuu
LÄMMÖNERISTYS- JA ENERGIATEHOKKUUSMÄÄRÄYSTEN MUUTOKSET 2012
LÄMMÖNERISTYS- JA ENERGIATEHOKKUUSMÄÄRÄYSTEN MUUTOKSET 2012 14.10.2014 Prof. Juha Vinha TTY, Rakennustekniikan laitos Matalaenergia- ja passiivitalojen rakenteiden haasteet, VASEK, Vaasa 14.10.2014 LÄMMÖNERISTYS-
Saako sähköllä lämmittää?
Saako sähköllä lämmittää? Pirkko Harsia Yliopettaja, TkL Mitä tarkastellaan? Päästöt? Hinta? Energiatehokkuus? Tarpeet? Kulutus? Energian siirto? Lämmitysjärjestelmä? Mikä on hyväksyttävää sähkön käyttöä?
Erityismenettely ulkoseinän rakennusfysikaalisessa suunnittelussa
Erityismenettely ulkoseinän rakennusfysikaalisessa suunnittelussa Anssi Knuutila Opinnäytetyö, Rakennusterveysasiantuntija RTA 2015-2016 Maankäyttö- ja rakennuslaki (MRL 132/1999) 150 d Erityismenettely
Asetus rakennusten kosteusteknisestä toimivuudesta pääkohdat muutoksista
Asetus rakennusten kosteusteknisestä toimivuudesta pääkohdat muutoksista Sisäilmastoseminaari 15.3.2018 Messukeskus, Helsinki Yli-insinööri Katja Outinen Asetus rakennuksen kosteusteknisestä toimivuudesta
Energiatehokas rakentaminen ja remontointi PORNAINEN 21.09.2011. Pientalorakentamisen Kehittämiskeskus ry Jouko Lommi
Energiatehokas rakentaminen ja remontointi PORNAINEN 21.09.2011 Pientalorakentamisen Kehittämiskeskus ry Jouko Lommi Pientalorakentamisen Kehittämiskeskus ry PRKK RY on ainoa Omakotirakentajia ja remontoijia
Anna Kujala. Kosteusteknisesti turvallinen puurakenteinen pientalo
Anna Kujala Kosteusteknisesti turvallinen puurakenteinen pientalo Opinnäytetyö Kevät 2012 Tekniikan yksikkö Rakennustekniikan koulutusohjelma Talonrakennustekniikan suuntautumisvaihtoehto 2 SEINÄJOEN AMMATTIKORKEAKOULU
PÄIVÄMÄÄRÄ TYÖNUMERO TYÖN SUORITTAJA PUHELIN TYÖKOHDE. Välikarintie 62 29100 Luvia
PÄIVÄMÄÄRÄ TYÖNUMERO TYÖN SUORITTAJA PUHELIN 13.11.15 10185 Markku Viljanen 050 9186694 TILAAJA Satakunnan Ulosottovirasto PL44 28101 Pori sari.merivalli@oikeus.fi TYÖKOHDE Välikarintie 62 29100 Luvia
Energiatehokkuus ja lämmitystavat. Keski-Suomen Energiatoimisto www.kesto.fi/energianeuvonta energianeuvonta@kesto.fi
Energiatehokkuus ja lämmitystavat Keski-Suomen Energiatoimisto www.kesto.fi/energianeuvonta energianeuvonta@kesto.fi 1 Sisältö Rakennusten energiankulutus nyt ja tulevaisuudessa Lämmitysmuotojen kustannuksia
Lähes nollaenergiatalo EPBD:n mukaan
1 Lähes nollaenergiatalo EPBD:n mukaan Lähes nollaenergiatalo on hyvin energiatehokas Energiantarve katetaan uusiutuvista lähteistä peräisin olevalla energialla rakennuksessa tai sen lähellä Kustannusoptimi
KK-Kartoitus RAPORTTI 4605/2016 1/7
KK-Kartoitus RAPORTTI 4605/2016 1/7 Venetie 2, 63100 Kuortane Omakotitalon katselmus 1.6.2016 klo 09.00 KK-Kartoitus RAPORTTI 4605/2016 2/7 Tilaus 23.5.2016: Etelä-Pohjanmaan ulosottovirasto Laskutusosoite:
Yläpohjan sellukuitulämmöneristyksen painumisen vaikutus rakenteen kokonaislämmönläpäisyyn
Yläpohjan sellukuitulämmöneristyksen painumisen vaikutus rakenteen kokonaislämmönläpäisyyn Asiakas: Työn sisältö Pahtataide Oy Selvityksessä tarkasteltiin kosteuden tiivistymisen riskiä yläpohjan kattotuolien
Miksi? EU:n ilmasto- ja energispolitiikan keskeinen sitoumus;
Soveltamisala: -rakennuksiin, joissa käytettään energiaa valaistukseen, tilojen ja ilmanvaihdon lämmitykseen tai jäähdytykseen ja joissa tehdään MRL:n mukaan rakennus- tai toimenpideluvanvaraista korjaus-
RAKENNUSFYSIIKKA 2013 -SEMINAARIN YHTEENVETO
RAKENNUSFYSIIKKA 2013 -SEMINAARIN YHTEENVETO 24.10.2013 Prof. TTY, Rakennustekniikan laitos Kosteus- ja homeongelmien vähentäminen 2 Aikataulut Valvonta Vastuut Asiantuntemus Koulutus ja tiedotus Asenteet
Energiatehokkuuden ja sisäilmaston hallinta ja parantaminen
Energiatehokkuuden ja sisäilmaston hallinta ja parantaminen TkT Risto Ruotsalainen, tiimipäällikkö Rakennusten energiatehokkuuden palvelut VTT Expert Services Oy Rakenna & Remontoi -messujen asiantuntijaseminaari
Professori Ralf Lindberg Tampereen teknillinen yliopisto
Professori Ralf Lindberg Tampereen teknillinen yliopisto Dekaani, Tampereen teknillinen yliopisto, Rakennetun ympäristön tiedekunta 1.1.2008-31.12.2009 Rakennustekniikan osaston varajohtaja, Tampereen
Saumadetaljien huomioiminen ikkuna-asennuksissa energiatehokkuusvaatimusten ehdoilla. Petri Silvennoinen Julkisivuyhdistys Saumausyhdistys
Saumadetaljien huomioiminen ikkuna-asennuksissa energiatehokkuusvaatimusten ehdoilla Petri Silvennoinen Julkisivuyhdistys Saumausyhdistys JULKISIVUMESSUT, JULKISIVUSEMINAARI, 14.10.2011 Ikkuna-asennukset
ENERGIATEHOKAS JULKISIVURAKENTAMINEN JA - KORJAAMINEN RAKENNESUUNNITTELIJAN NÄKÖKULMASTA. DI Saija Varjonen, A-Insinöörit Suunnittelu Oy
ENERGIATEHOKAS JULKISIVURAKENTAMINEN JA - KORJAAMINEN RAKENNESUUNNITTELIJAN NÄKÖKULMASTA DI Saija Varjonen, A-Insinöörit Suunnittelu Oy Esityksen sisältö Energiatavoitteet ja energiatehokkuusvaatimukset
L Ä M P Ö K U V A U S. Kuntotutkimus. Tarhapuiston päiväkoti VANTAA 5,0 C. Tutkimuslaitos Tutkija
1/11 L Ä M P Ö K U V A U S Kuntotutkimus Tarhapuiston päiväkoti VANTAA 5,0 C 4 2 0-2 -2,0 C Tutkimuslaitos Tutkija Hämeen Ammattikorkeakoulu Rakennuslaboratorio Sauli Paloniitty Projektipäällikkö 2/11
Näin lisäeristät 2. Purueristeisen seinän ulkopuolinen lisäeristys. Eristeinä PAROC Renova tai PAROC WPS 3n
Näin lisäeristät 2 Purueristeisen seinän ulkopuolinen lisäeristys Eristeinä PAROC Renova tai PAROC WPS 3n Tammikuu 2012 Ulkopuolinen lisäeristys PAROC Renova levyllä Puurunkoinen, purueristeinen talo,