Akateemisen ajattelun alkeiskurssi

Koko: px
Aloita esitys sivulta:

Download "Akateemisen ajattelun alkeiskurssi"

Transkriptio

1 CHEM-A1600: Aalto-kurssi, 3 op Akateemisen ajattelun alkeiskurssi : 12 kertaa

2 Mitä ajattelu on? Ajattelua on se hukka-aika, joka kuluu jonkun näkemisestä siihen kun tietää mitä tehdä. Edward de Bono

3 Ajattelu on vaativaa Useimmat ihmiset ajattelevat kerran pari vuodessa; olen hankkinut itselleni kansainvälistä mainetta ajattelemalla kerran pari viikossa. George Bernard Shaw

4 Akateeminen ajattelu: Ajattelutaitoja, joita yliopisto-opiskelu ja akateemiset ammatit edellyttävät työssä asiantuntijoina, johtajina, suunnittelijoina, tutkijoina, päättäjinä, keksijöinä, yrittäjinä... Kriittinen lukutaito Kysyminen, kysymyksenasettelu ja haastaminen Numerotaidot (suuruusluokat, approksimaatiot,...) Luova ongelmanratkaisu Suunnittelu, kokeilu ja erehtyminen Argumentointi ja väittely

5 Kurssi on tekemällä oppimista, ei tenttiä, ei oppikirjaa Yhtään merkittävää keksintöä ei ole tehty ilman rohkeaa arvausta. Uuden tekemisessä on dilemma: sinun pitää uskoa uuteen ideaasi vaikka alussa ei ole mitään todisteita sen toimivuudesta. Sitten lasket sen läpi, ja mietit onko vastaus järkevä. Ja jos ei ole, teet uudet alkuarvaukset ja toisen yrityksen.

6 Kurssin rakenne Perjantaisin 13-16: sekaisin harjoituksia, testejä (joissa opiskelijoita käytetään koekaniineina), suunnittelutehtäviä, ryhmäväittelyitä ja pieniä tutkimusprojekteja Harjoituksia sekä yksin ja ryhmissä Arvostelu: hyväksytty/hylätty Henk koht kotitehtävistä saa (raaka)pisteitä: 1=joku hyvä idea ja yritys, mutta ei kunnon lopputulosta 2=hyvä idea ja päästy lopputulokseen asti 3=esityskelpoinen lopputulos Riittävä määrä pisteitä vaaditaan hyväksyttyyn suoritukseen edellyttää säännöllistä läsnäoloa.

7 Suorittaminen 12 tuntipalautusta * 2p = 24p 6 henk koht palautusta * 5 p= 30 p 2 ryhmäpalautusta * 10 p = 20p Max=74 pistettä Läpäisyyn 45 pistettä ja osallistuminen ryhmäpalautuksiin

8 Kurssin luonteesta Edellyttää jatkuvaa hereilläoloa: jokainen joutuu esittämään omia arvioita vaikkapa USA:n autojen lukumäärästä tai bangladeshiläisten naisten lapsiluvusta. Tehtävät tuntuvat vaikeilta koska ne ovat erilaisia kuin lukiossa ja muilla kursseilla. Ne ovat kuitenkin helppoja sillä ne ratkeavat approksimaatioilla ja helpoilla malleilla. Kurssi on vaikea koska sitten taas siirrytään kokonaan uuden aiheen pariin.

9 Arkiajattelun haastaminen, heuristiikkoja parempaan päättelyyn

10 Ajattelu on prosessi Jotta se voi kehittyä, sitä pitää tarkkailla emme ole kiinnostuneet niinkään tuloksesta vaan siitä miten siihen päädyttiin.

11 Niinpä: mutta mistä tiedämme vastauksen? Duncan Watts

12 Epäonnistumiset ovat osa oppimisprosessia, ja tällä kurssilla pärjää hyvillä epäonnistumisilla.

13 Ajatteluvarmuus: Ajatellaan itse, kokeillaan, testataan ja katsotaan menikö oikein.

14 Mitä on tiede? Millaiset prosessit tuottavat tieteellistä tietoa?

15 Tiedon luotettavuuden arviointi: Mistä tiedämme että tietomme on hyvää? (vaikka se olisi approksimatiivista)

16 Tieteiden luokittelu Miten tekniikka eroaa tieteestä? Ihmistieteet luonnontieteistä? Kokeellinen tutkimus havainnoivasta?

17 Numerotaidot Paljonko maksaa lenkkareiden rahti Kiinasta Suomeen? Miten autonrenkaan kulutusurasta päätellään molekyylien koko? Montako ihmistä eläimet työllistävät Suomessa?

18 Todennäköisyys ja riski: Satunnaisuuden hallinta tieteessä ja taloudessa

19 Mallintaminen ja approksimaatiot: Laskemalla käsiksi vaikeisiin ongelmiin

20 Kriittinen lukutaito: Uskotko Hesaria? Löytääkö Google hyviä vastauksia? Uskotko Maailmanpankin arviota mikrolainojen hyväätekevästä vaikutuksesta kehitysmaiden talouteen?

21 Argumentointi ja väittely: Jos kukaan ei tiedä oikeaa vastausta, tärkeää on perustella oma kantansa hyvin.

22 Aikataulu ja salit Pvm Sali Aihe DF Tiedon saatavuus, luotettavuus ja tarkkuus DF Mittaamisesta E Todennäköisyydestä, riskistä ja epävarmuudesta DF Rakennusprojekti E Approksimaatioita ja suuruusluokka-arvioita I E Ihmisistä tutkimuskohteina väliviikko U8 Tekniikka ja design U8 Approksimaatioita ja suuruusluokka-arvioita II U8 Malleista ja simulaatioista U8 Tieteenfilosofiaa U8 Analogiat U8 Tieto ja päätöksenteko E = Kandiopetuksen talo, Otakaari 1, E-Sali DF = Design Factory Stage, Betonimiehenkuja 5

Uuden OPS:n henki Petteri Elo OPS-koulutus 2016

Uuden OPS:n henki Petteri Elo OPS-koulutus 2016 Uuden OPS:n henki Yhteystiedot Petteri Elo petteri.elo@pedanow.com +358405506020 www.pedanow.com Twitter: @PetteriElo VÄITE # 1 Oppikirjat ohjaavat liikaa opetusta. www.ivn.us Luku 3.3: Tavoiteena laaja-alainen

Lisätiedot

Valmistaudu peliin, keskity omaan pelaamiseesi. Porin Narukerä Markku Gardin 6.2.2015

Valmistaudu peliin, keskity omaan pelaamiseesi. Porin Narukerä Markku Gardin 6.2.2015 Valmistaudu peliin, keskity omaan pelaamiseesi Porin Narukerä Markku Gardin 6.2.2015 Mentaaliharjoittelun perusta (hyvä tietää) Aivot ohjaavat - hermojärjestelmät, hormonit ja lihakset toimeenpanevat Omat

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi esiopetus talvi Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista, että

Lisätiedot

Koe on kaksiosainen: siihen kuuluvat tekstitaidon koe ja esseekoe. Tekstitaidon kokeen arvioinnissa painottuu lukutaito ja esseekokeessa

Koe on kaksiosainen: siihen kuuluvat tekstitaidon koe ja esseekoe. Tekstitaidon kokeen arvioinnissa painottuu lukutaito ja esseekokeessa Koe on kaksiosainen: siihen kuuluvat tekstitaidon koe ja esseekoe. Tekstitaidon kokeen arvioinnissa painottuu lukutaito ja esseekokeessa kirjoitustaito. Kokeet järjestetään eri päivinä: esimerkiksi tänä

Lisätiedot

LC-8011 Työelämän venäjän perusteet 1. Aalto-yliopisto Kielikeskus Alexandra Belikova

LC-8011 Työelämän venäjän perusteet 1. Aalto-yliopisto Kielikeskus Alexandra Belikova LC-8011 Työelämän venäjän perusteet 1 Aalto-yliopisto Kielikeskus Alexandra Belikova Työelämän venäjän perusteet 1: aika ja paikka Opetusperiodi I+II tai II+III tai III+IV (syksy 2016, kevät 2017) - pitempi

Lisätiedot

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9

Lisätiedot

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu

Lisätiedot

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS...

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 1.1 INDUKTIO JA DEDUKTIO... 9 1.2 SYYT JA VAIKUTUKSET... 11 TEHTÄVIÄ... 13

Lisätiedot

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen, syksy 2016

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen, syksy 2016 CHEM-A1200 Kemiallinen rakenne ja sitoutuminen, syksy 2016 Kontaktiopetus 70 h Luennot 44 h Laboratoriotyöt 24 h + 2 h = 26 h Oma työ 65 h Laskutuvat ja kotitehtävät 24 h Laboratoriotöiden loppuraportti

Lisätiedot

T Käyttäjäkeskeisen tuotekehityksen harjoitustyö kevät 2005

T Käyttäjäkeskeisen tuotekehityksen harjoitustyö kevät 2005 T-121.110 Käyttäjäkeskeisen tuotekehityksen harjoitustyö kevät 2005 Kurssin tavoitteet Muodostaa näkemys käyttäjäkeskeisestä tuotesuunnittelusta Kasvattaa ymmärrystä prosessin vaiheista Tutustua käyttäjäkeskeisen

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Kurssin käytännön järjestelyt. Tuotantotalous 1 Tuomo Tanila

Kurssin käytännön järjestelyt. Tuotantotalous 1 Tuomo Tanila Kurssin käytännön järjestelyt Tuotantotalous 1 Tuomo Tanila For English speaking students The lectures of this course are only in Finnish on spring semester 2017. The assignment, weekly exercises and the

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Sarjat ja integraalit, kevät 2014

Sarjat ja integraalit, kevät 2014 Sarjat ja integraalit, kevät 2014 Peter Hästö 12. maaliskuuta 2014 Matemaattisten tieteiden laitos Osaamistavoitteet Kurssin onnistuneen suorittamisen jälkeen opiskelija osaa erottaa jatkuvuuden ja tasaisen

Lisätiedot

Rutiineista kokeiluihin: Dialogi luovuutta lisäävänä toimintatapana

Rutiineista kokeiluihin: Dialogi luovuutta lisäävänä toimintatapana Rutiineista kokeiluihin: Dialogi luovuutta lisäävänä toimintatapana 10.6.2015 www.aretai.org Dialogin lähtökohtia 1. Kokemusten erot Jokainen ihminen katsoo tilannetta omasta näkökulmastaan, jonka määrittävät

Lisätiedot

Innovaatioista. Vesa Taatila 17.1.2014

Innovaatioista. Vesa Taatila 17.1.2014 Innovaatioista Vesa Taatila 17.1.2014 Sisältöä Mikä innovaatio on? Miten innovaatiot syntyvät? Miksi USA tuottaa enemmän innovaatioita kuin EU? Mitkä asiat tappavat innovaatiot? Miksi innovaatioita? Muutos

Lisätiedot

Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Satunnaisalgoritmit Topi Paavilainen Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Helsinki, 23. helmikuuta 2014 1 Johdanto Satunnaisalgoritmit ovat algoritmeja, joiden

Lisätiedot

Kurssipalaute HTKP103 Johdanto tieto- ja viestintäteknologiaan, harjoitukset, syksy 2015

Kurssipalaute HTKP103 Johdanto tieto- ja viestintäteknologiaan, harjoitukset, syksy 2015 Kyselyyn vastanneiden määrä: 88/0 Kurssipalaute HTKP103 Johdanto tieto- ja viestintäteknologiaan, harjoitukset, syksy 2015 OPETUS JA TYÖSKENTELYTAVAT Vastaa seuraaviin väittämiin asteikolla 1-5 Kurssilla

Lisätiedot

Johdatus historiatieteeseen

Johdatus historiatieteeseen Johdatus historiatieteeseen Verkkokeskustelulla tuettu luentosarja Jari Ojala jaojala@campus.jyu.fi Lähtökohtia Historian perusopintojen massaluento Kurssin yleiset tavoitteet: Kehittää teoreettista ajattelua

Lisätiedot

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin)

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin) 1/10 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise

Lisätiedot

https://noppa.oulu.fi/noppa/kurssi/811122p/etusivu

https://noppa.oulu.fi/noppa/kurssi/811122p/etusivu Johdatus ohjelmointiin 811122P Yleiset järjestelyt: Kurssin sivut noppa -järjestelmässä: https://noppa.oulu.fi/noppa/kurssi/811122p/etusivu 0. Kurssin suorittaminen Tänä vuonna kurssin suorittaminen tapahtuu

Lisätiedot

Kurssin esittely. Kurssin esittely. MS-C2107 Sovelletun matematiikan tietokonetyöt 1

Kurssin esittely. Kurssin esittely. MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Kurssin esittely MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Opettajat Tuntiopettaja Anna Anttalainen (BIO). Harrastuksia kiltatoiminta ja bodypump.

Lisätiedot

Oppiminen, osaaminen, kestävä hyvinvointi ja johtaminen. Anneli Rautiainen 1.11.2013 Esi- ja perusopetuksen yksikön päällikkö

Oppiminen, osaaminen, kestävä hyvinvointi ja johtaminen. Anneli Rautiainen 1.11.2013 Esi- ja perusopetuksen yksikön päällikkö Oppiminen, osaaminen, kestävä hyvinvointi ja johtaminen Anneli Rautiainen 1.11.2013 Esi- ja perusopetuksen yksikön päällikkö TAVOITTEENA MAAILMAN OSAAVIN KANSA 2020 OPPIMINEN OSAAMINEN KESTÄVÄ HYVINVOINTI

Lisätiedot

TVT:n käyttö kemian opetuksessa

TVT:n käyttö kemian opetuksessa TVT:n käyttö kemian opetuksessa Ari Myllyviita, FM, yhteisöpedagogi (AMK) Kemian ja matematiikan lehtori, Opettajakouluttaja, Oppikirjailija, Hankekoordinaattori (Norssiope.fi -hanke), Helsingin yliopiston

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi esiopetus kevät Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista, että

Lisätiedot

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden 1 KERTAUSTA JA TÄYDENNYSTÄ Luento 30.9.2014 Olkoon satunnaisotos X 1, X 2,, X n normaalijakaumasta N(µ, σ 2 ), tällöin ~ N(µ, σ 2 /n), kaava (6). Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma

Lisätiedot

KTKP040 Tieteellinen ajattelu ja tieto

KTKP040 Tieteellinen ajattelu ja tieto KTKP040 Tieteellinen ajattelu ja tieto Tutkimuksellisia lähestymistapoja 15.2.2016 Timo Laine 1. Miksi kasvatusta tutkitaan ja miksi me opiskelemme sen tutkimista eikä vain tuloksia? 2. Tutkimisen filosofiset

Lisätiedot

Ajattelutaitojen interventiosta 1.-luokan oppilaille - pilottitutkimus

Ajattelutaitojen interventiosta 1.-luokan oppilaille - pilottitutkimus AJATELLAAN! Ajattelutaitojen interventiosta 1.-luokan oppilaille - pilottitutkimus Risto Hotulainen & co Opettajankoulutuslaitos/Erityispedagogiikka 17.3.2016 1 AJATTELUTAITOJEN HARJOIT- TAMISESTA (meidän

Lisätiedot

D R A A M A T Y Ö P A J O I S S A O N T I L A A I D E O I L L E J A P E R S O O N I L L E

D R A A M A T Y Ö P A J O I S S A O N T I L A A I D E O I L L E J A P E R S O O N I L L E D R A A M A T Y Ö P A J O I S S A O N T I L A A I D E O I L L E J A P E R S O O N I L L E Draamatyöpajassa ryhmä ideoi ja tuottaa synopsiksen pohjalta musiikkiteatteriesityksen käsikirjoituksen. Käsikirjoitus

Lisätiedot

Kohti tentitöntä matematiikkaa

Kohti tentitöntä matematiikkaa Kohti tentitöntä matematiikkaa Riikka Nurmiainen Esitys Matematiikan, fysiikan ja kemian AMK-opettajien päivillä 2152015 Arviointikokeiluja talotekniikan matematiikan opintojaksoilla Miksi? Koska laskemalla

Lisätiedot

A130A0760 Ekonomin viestintätaidot

A130A0760 Ekonomin viestintätaidot A130A0760 Ekonomin viestintätaidot Johdanto ja ohjeita kurssille Opettajat: Päivi Maijanen-Kyläheiko Heidi Parkkinen Lauri Haiko Mirka Rahman Päivän ohjelma 9.15 10.00 Esittäytyminen 10.00 10.45 Kurssin

Lisätiedot

Kyselytutkimus opiskelijoiden ajankäytöstä tietojenkäsittelyteorian peruskurssilla

Kyselytutkimus opiskelijoiden ajankäytöstä tietojenkäsittelyteorian peruskurssilla Kyselytutkimus opiskelijoiden ajankäytöstä tietojenkäsittelyteorian peruskurssilla Harri Haanpää Peda-forum 2004 AB TEKNILLINEN KORKEAKOULU Tietojenkäsittelyteorian laboratorio T 79.148 Tietojenkäsittelyteorian

Lisätiedot

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

AMMATTISTARTIN ALOITTAVAT. Syksyn 2010 valtakunnallinen kysely. Yhteenvetoraportti, N=742, Julkaistu: 9.9.2010. Vertailuryhmä: Kaikki vastaajat

AMMATTISTARTIN ALOITTAVAT. Syksyn 2010 valtakunnallinen kysely. Yhteenvetoraportti, N=742, Julkaistu: 9.9.2010. Vertailuryhmä: Kaikki vastaajat AMMATTISTARTIN ALOITTAVAT. Syksyn 2010 valtakunnallinen kysely. Yhteenvetoraportti, N=742, Julkaistu: 9.9.2010 Vertailuryhmä: Kaikki vastaajat Oletko? Nainen 431 58,09% Mies 311 41,91% 742 100% Ikäsi?

Lisätiedot

Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi

Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi Mat-2.4142 Optimointiopin seminaari 9.2.2011 Lähteet: Salo, A. & Hämäläinen, R. P., 2010.

Lisätiedot

ENG3042.Kand Kandidaatintyö ja seminaari (10 op) ENY ENG3044.Kand Kandidaatintyö ja seminaari (10 op) RYM Saija Toivonen

ENG3042.Kand Kandidaatintyö ja seminaari (10 op) ENY ENG3044.Kand Kandidaatintyö ja seminaari (10 op) RYM Saija Toivonen ENG3042.Kand Kandidaatintyö ja seminaari (10 op) ENY ENG3044.Kand Kandidaatintyö ja seminaari (10 op) RYM Henkilökunta Koordinaattori: Opintosihteeri Tiina Nikander Aikatauluun, ohjelmaan, suorituskirjauksiin

Lisätiedot

LASKINTEN JA TAULUKOIDEN TARKISTUS

LASKINTEN JA TAULUKOIDEN TARKISTUS LASKINTEN JA TAULUKOIDEN TARKISTUS Yo-kokeessa käytettävät laskimet ja taulukkokirjat on tuotava aikuislukion kansliaan tarkistettavaksi viimeistään yo-koetta edeltävänä päivänä kello 18 mennessä. Jos

Lisätiedot

GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus

GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus Mitä jäi mieleen viime viikosta? Mitä mieltä olet tehtävistä, joissa GeoGebralla työskentely yhdistetään paperilla jaettaviin ohjeisiin

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12

Lisätiedot

Ammattiosaajan työkykypassi Vahvista työkykyäsi!

Ammattiosaajan työkykypassi Vahvista työkykyäsi! Ammattiosaajan työkykypassi Vahvista työkykyäsi! Keski-Pohjanmaan ammattiopisto Työkykypassi Jotain yleistä tekstiä työkykypassista? Suoritukset Liikunta (40 h) Terveys (40 h) Työvalmiudet (40 h) Kiinnostukset

Lisätiedot

Miten kirjasto voi tukea tutkijoita ja tutkijaryhmiä.

Miten kirjasto voi tukea tutkijoita ja tutkijaryhmiä. Miten kirjasto voi tukea tutkijoita ja tutkijaryhmiä juha.himanka@helsinki.fi Tausta Käytäntö Tilanne Platon 2 Menon 84E 1 2 85A 4 3 Tutkimus: uuden tiedon löytämistä (totuus) mitä sitten on tieto? "ne

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Käytännön järjestelyt Luennot: Luennot maanantaisin (sali E) ja keskiviikkoisin (sali U4) klo 10-12 Luennoitsija: (lauri.viitasaari@aalto.fi)

Lisätiedot

Energiaympyrä. Kaikilla meillä on tietty määrä energiaa käytettävissä päivittäin. Mihin sinä haluat käyttää oman energiasi? ? 30% ?

Energiaympyrä. Kaikilla meillä on tietty määrä energiaa käytettävissä päivittäin. Mihin sinä haluat käyttää oman energiasi? ? 30% ? Polunvalaisija Energiaympyrä? 30% Kaikilla meillä on tietty määrä energiaa käytettävissä päivittäin. Mihin sinä haluat käyttää oman energiasi?? 70% S i s ä l t ä v a i u l k o a o h j a u t u v a? Plussat

Lisätiedot

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,

Lisätiedot

Steven Kelly & Mia+Janne

Steven Kelly & Mia+Janne Luomisoppi evoluutio Steven Kelly & Mia+Janne Tämä ei ole väittely! Pidetään kiinni yhteisestä uskosta: Alussa Jumala loi Se, että on Luoja, ratkaisee paljon: käytetään sitä rohkeasti apologiassa Eri mielipiteitä

Lisätiedot

Koulun kerhotoiminnan valtakunnallinen ajankohtaistilaisuus Katse tulevaisuuteen uusi ja viihtyisä koulupäivä Paasitorni

Koulun kerhotoiminnan valtakunnallinen ajankohtaistilaisuus Katse tulevaisuuteen uusi ja viihtyisä koulupäivä Paasitorni Koulun kerhotoiminnan valtakunnallinen ajankohtaistilaisuus 4.10.2013 Katse tulevaisuuteen uusi ja viihtyisä koulupäivä Paasitorni Opetusneuvos, esi- ja perusopetuksen yksikön päällikkö Anneli Rautiainen

Lisätiedot

Menetelmiä jatkuvaan opiskeluun kannustamiseen ja oppimisen seurantaan

Menetelmiä jatkuvaan opiskeluun kannustamiseen ja oppimisen seurantaan Menetelmiä jatkuvaan opiskeluun kannustamiseen ja oppimisen seurantaan Matemaattiset menetelmät, syksy 2012 Lassi Korhonen, Oulun yliopisto, Matematiikan jaos 4.12.2012 1 Lähtökohta, opiskelijan näkökulma

Lisätiedot

KUMPI OHJAA, STRATEGIA VAI BUDJETTI?

KUMPI OHJAA, STRATEGIA VAI BUDJETTI? KUMPI OHJAA, STRATEGIA VAI BUDJETTI? Aalto University Executive Education Teemu Malmi Professori, AUSB WORKSHOP Alustus: Budjetti ohjaa, kaikki hyvin? Keskustelu pöydissä Yhteenveto Alustus: Miten varmistan,

Lisätiedot

Tervetuloa! Matematiikka tutuksi

Tervetuloa! Matematiikka tutuksi Tervetuloa! Matematiikka tutuksi Tavoitteet Yritetään vastata seuraaviin kysymyksiin: Mitä matematiikassa tutkitaan ja mihin sitä tarvitaan? Mitä tarkoitetaan todistuksella ja mitä hyötyä on käsitteiden

Lisätiedot

Kurssin opettajat, tavoitteet ja käytänteet (kevät 2016) MS-C2107 Sovelletun matematiikan tietokonetyöt 1

Kurssin opettajat, tavoitteet ja käytänteet (kevät 2016) MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Kurssin opettajat, tavoitteet ja käytänteet (kevät 2016) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Kuvissa Anna Anttalainen, Juho Timonen, Touko Väänänen

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi ensimmäinen luokka kevät Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista,

Lisätiedot

Tutkiva Oppiminen Varhaiskasvatuksessa. Professori Lasse Lipponen PED0031, VARHAISPEDAGOGIIKKA

Tutkiva Oppiminen Varhaiskasvatuksessa. Professori Lasse Lipponen PED0031, VARHAISPEDAGOGIIKKA Tutkiva Oppiminen Varhaiskasvatuksessa Professori Lasse Lipponen 09.10.2017 PED0031, VARHAISPEDAGOGIIKKA Hakkarainen K., Lonka K. & Lipponen L. (1999) Tutkiva oppiminen. Älykkään toiminnan rajat ja niiden

Lisätiedot

Alue- ja yhdyskuntasuunnittelijan oppisopimustyyppinen koulutus

Alue- ja yhdyskuntasuunnittelijan oppisopimustyyppinen koulutus Alue- ja yhdyskuntasuunnittelijan oppisopimustyyppinen koulutus Hanna Mattila & Eeva Mynttinen Yhdyskuntasuunnittelun tutkimus- ja koulutuskeskus Aalto-yliopisto, Insinööritieteellinen korkeakoulu Mitä

Lisätiedot

Ohjelmistojen mallintaminen, kesä 2010

Ohjelmistojen mallintaminen, kesä 2010 582104 Ohjelmistojen mallintaminen, kesä 2010 1 Ohjelmistojen mallintaminen Software Modeling Perusopintojen pakollinen opintojakso, 4 op Esitietoina edellytetään oliokäsitteistön tuntemus Ohjelmoinnin

Lisätiedot

T Johdatus tietoliikenteeseen 5 op

T Johdatus tietoliikenteeseen 5 op T-110.2100 Johdatus tietoliikenteeseen 5 op T-110.2100 Johdatus tietoliikenteeseen Suunnattu tietotekniikan opiskelijoille Esivaatimuksena Tietokone Työvälineenä -kurssi T-106.1001 Kurssin tavoitteet:

Lisätiedot

OPS: Monitieteinen? Tieteenalarajat ylittävä? Laaja-alainen? OPS-sarja 21.10.2015 Rose Matilainen & Taina Saarinen

OPS: Monitieteinen? Tieteenalarajat ylittävä? Laaja-alainen? OPS-sarja 21.10.2015 Rose Matilainen & Taina Saarinen OPS: Monitieteinen? Tieteenalarajat ylittävä? Laaja-alainen? OPS-sarja 21.10.2015 Rose Matilainen & Taina Saarinen Monitieteellinen?, Tieteenalarajat ylittävä? JY:n linjaus 21.9.2015: tiedekuntien ja laitosten

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa

Lisätiedot

Johdanto päivän teemoihin. Osallistuva kaupunkisuunnittelu 31.10.2011 Joensuu

Johdanto päivän teemoihin. Osallistuva kaupunkisuunnittelu 31.10.2011 Joensuu Johdanto päivän teemoihin Osallistuva kaupunkisuunnittelu 31.10.2011 Joensuu Kansalaaset tuloo Helsingin Roihuvuoren asukaspuiston yhteissuunnittelu (http://www.roihuvuori.com/index.php?option=com_content&task=view&id=2199

Lisätiedot

OPS 2016 Keskustelupohja vanhempainiltoihin VESILAHDEN KOULUTOIMI

OPS 2016 Keskustelupohja vanhempainiltoihin VESILAHDEN KOULUTOIMI OPS 2016 Keskustelupohja vanhempainiltoihin VESILAHDEN KOULUTOIMI Valtioneuvoston vuonna 2012 antaman asetuksen pohjalta käynnistynyt koulun opetussuunnitelman uudistamistyö jatkuu. 15.4.-15.5.2014 on

Lisätiedot

Luovuus ja työorganisaatio

Luovuus ja työorganisaatio Luovuus ja työorganisaatio 5 op kurssi 27.10 15.12.2015 Janita Saarinen Janita Saarinen, TAMK 2015 1 Kuka olet? Mistä tulet? Miksi olet täällä? Mitä odotat? Janita Saarinen, TAMK 2015 2 Mitä luovuus on?

Lisätiedot

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 Jokaisen tehtävän jälkeen on pieni kommentti tehtävään liittyen Nämä eivät sisällä mitään kovin kriittistä tietoa tehtävään liittyen, joten niistä ei tarvitse välittää

Lisätiedot

Eväitä opintojen sujumiseen, opintojen suunnittelu ja esteettömyys opiskelussa. Opintopsykologi Katri Ruth

Eväitä opintojen sujumiseen, opintojen suunnittelu ja esteettömyys opiskelussa. Opintopsykologi Katri Ruth Johdatus akateemisiin opintoihin 2011 Eväitä opintojen sujumiseen, opintojen suunnittelu ja esteettömyys opiskelussa. Opintopsykologi Katri Ruth Tervetuloa opiskelijaksi! Opintopsykologi Katri Ruth MIKÄ

Lisätiedot

Ajatuksia ja näkemyksiä Hämeen korkeakouluverkoston tulevaisuudesta

Ajatuksia ja näkemyksiä Hämeen korkeakouluverkoston tulevaisuudesta 1 Ajatuksia ja näkemyksiä Hämeen korkeakouluverkoston tulevaisuudesta 2 Yliopistoilla ja korkeakouluilla monia rooleja Yliopistot ovat erilaisia, tieteenalat ovat erilaisia alueet ovat erilaisia, maat

Lisätiedot

Ajankäytön suunnittelu opiskelussa. SCI-A0000 Johdatus opiskeluun Susanna Reunanen 29.10.2015

Ajankäytön suunnittelu opiskelussa. SCI-A0000 Johdatus opiskeluun Susanna Reunanen 29.10.2015 Ajankäytön suunnittelu opiskelussa SCI-A0000 Johdatus opiskeluun Susanna Reunanen 29.10.2015 Sisältö Ajankäytön suunnittelu Ajankäytön vinkkejä Esimerkkejä ajankäytön suunnitteluun Linkkejä 30.10.2015

Lisätiedot

SYKSY Seuraa opetusaikataulua päivitysten havaitsemiseksi

SYKSY Seuraa opetusaikataulua päivitysten havaitsemiseksi SYKSY 2017 2 lv. Seuraa opetusaikataulua päivitysten havaitsemiseksi Muutokset on merkitty punaisella! HOIT4009 IKÄÄNTYNEEN/HOIT0701 KLIINISEN HOITOTYÖN /HOIT0908 MIELENTERVEYS- ASIAKKAAN TERVEYS JA SEN

Lisätiedot

OPISKELIJAN NÄKÖKULMA. Katja Lempinen Satakunnan ammattikorkeakoulu

OPISKELIJAN NÄKÖKULMA. Katja Lempinen Satakunnan ammattikorkeakoulu OPISKELIJAN NÄKÖKULMA Katja Lempinen Satakunnan ammattikorkeakoulu 2 EXAM-konsortion käyttäjäkysely opiskelijoille 2017 Vastauksia 2119 kpl 15 eri yliopistosta ja korkeakoulusta. Vastaajista : 36,5% tehnyt

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi toinen luokka talvi Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista,

Lisätiedot

Mitä opittiin, kun suurten opiskelijamäärien opetus ja ohjaus sulautettiin verkkoon?

Mitä opittiin, kun suurten opiskelijamäärien opetus ja ohjaus sulautettiin verkkoon? Mitä opittiin, kun suurten opiskelijamäärien opetus ja ohjaus sulautettiin verkkoon? Case Sosiaali/Terveyshallintotieteen aineopinnot 35 op Koulutus- ja kehittämispalvelu Aducate; suunnittelija TtM Ulla

Lisätiedot

Elisse Heinimaa / Luentojen tekstit Tallinnassa ja Tartossa REGGIO EMILIA -PEDAGOGIIKAN PERIAATTEITA JA PERUSKÄSITTEITÄ

Elisse Heinimaa / Luentojen tekstit Tallinnassa ja Tartossa REGGIO EMILIA -PEDAGOGIIKAN PERIAATTEITA JA PERUSKÄSITTEITÄ 1 Elisse Heinimaa / Luentojen tekstit 3. - 4.5.2013 Tallinnassa ja Tartossa REGGIO EMILIA -PEDAGOGIIKAN PERIAATTEITA JA PERUSKÄSITTEITÄ REGGIO EMILIAN PÄIVÄKOTIEN KASVATUSAJATTELUN OMINAISPIIRTEITÄ: PÄIVÄKOTI

Lisätiedot

Tekesin rahoitus nuorille yrityksille. Jaana Rantanen

Tekesin rahoitus nuorille yrityksille. Jaana Rantanen Tekesin rahoitus nuorille yrityksille Jaana Rantanen 20.4.2017 Tekesin rahoitus nuorille kasvuyrityksille Tempo Asiakastarve Kohdemarkkina Konseptin testaus Tiimi T&K Tuotteen, palvelun, liiketoimintamallin

Lisätiedot

NY Yrittäjyyskasvatuksen polku ja OPS2016

NY Yrittäjyyskasvatuksen polku ja OPS2016 NY Yrittäjyyskasvatuksen polku ja OPS2016 Nuori Yrittäjyys Yrittäjyyttä, työelämätaitoja, taloudenhallintaa 7-25- vuotiaille nuorille tekemällä oppien 55 000 oppijaa 2013-14 YES verkosto (17:lla alueella)

Lisätiedot

Suomen päässälaskuinstituutti. Risto Pietilä

Suomen päässälaskuinstituutti. Risto Pietilä Suomen päässälaskuinstituutti Risto Pietilä Risto Pietilä Hämeenlinnan lyseon lukio, ylioppilas 1999 3-kertainen MAOL-piirimestari päässälaskussa Kemian suomenmestari 1999, olympiapronssi Tekniikan ylioppilas

Lisätiedot

5 asiaa, jotka sinun on hyvä tietää sinun aivoista

5 asiaa, jotka sinun on hyvä tietää sinun aivoista 5 asiaa, jotka sinun on hyvä tietää sinun aivoista VILMA HEISKANEN 26.11.2014 Lähde: http://powerofpositivity.com/5-things-must-know-mind/ Puhu parin kanssa Lue parin kanssa aivoista Mitä ajattelet? Oletko

Lisätiedot

ELEC-C5210 Satunnaisprosessit tietoliikenteessä

ELEC-C5210 Satunnaisprosessit tietoliikenteessä ELEC-C5210 Satunnaisprosessit tietoliikenteessä Esa Ollila Aalto University, Department of Signal Processing and Acoustics, Finland esa.ollila@aalto.fi http://signal.hut.fi/~esollila/ Kevät 2017 E. Ollila

Lisätiedot

Ihminen ensin tukea, apua ja ratkaisuja!

Ihminen ensin tukea, apua ja ratkaisuja! Ihminen ensin tukea, apua ja ratkaisuja! 41. Valtakunnalliset Kuntoutuspäivät 10.-11.4.2013 Aikuiskouluttaja Raine Manninen www.rainemanninen.fi Uskotko itsesi kehittämiseen, vai kuluuko aikasi itsesi

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

LUT:n strategia 2015 YHDESSÄ

LUT:n strategia 2015 YHDESSÄ LUT:n strategia 2015 YHDESSÄ Painopistealueet Kestävän kilpailukyvyn luominen Kansainvälinen Vihreä energia ja teknologia Venäjä-yhteyksien rakentaja Yhdessä Painopisteemme ovat monitieteisiä kokonaisuuksia

Lisätiedot

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: 4.10.2016/1 MTTTP1, luento 4.10.2016 7.4 Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 4.10.2016/2

Lisätiedot

Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus

Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus Mat-2.4142 Optimointiopin seminaari 2.3.2011 Lähteet: Clemen, R. T., & Smith, J. E. (2009). On the Choice of Baselines

Lisätiedot

Räätälöimällä julkiseen keittiöön avaintekijöitä lähi-innovaatioihin Kouvola

Räätälöimällä julkiseen keittiöön avaintekijöitä lähi-innovaatioihin Kouvola Räätälöimällä julkiseen keittiöön avaintekijöitä lähi-innovaatioihin Kouvola 7.4.2016 / Hanna-Maija Väisänen & Leena Viitaharju 8.4.2016 1 Esityksen sisältö: Tausta Miten innovaatio voi saada alkunsa?

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

Menestyskulttuuri syntyy ihmisistä ja yhteistyöstä

Menestyskulttuuri syntyy ihmisistä ja yhteistyöstä Menestyskulttuuri syntyy ihmisistä ja yhteistyöstä Juha Laakkonen Toimitusjohtaja Lappset Group Oy Laatuseminaari 23.5.2013, Marina Congress Center, Helsinki We invite mankind outdoors! Lappset luo puitteet

Lisätiedot

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä

Lisätiedot

Muuttuvassa maailmassa tieto ei ole valtaa osaaminen ja oppiminen on!

Muuttuvassa maailmassa tieto ei ole valtaa osaaminen ja oppiminen on! Muuttuvassa maailmassa tieto ei ole valtaa osaaminen ja oppiminen on! Valtakunnalliset Lukiopäivät 2.11. 2011 Tuija Pulkkinen, dekaani Aalto-yliopiston Sähkötekniikan korkeakoulu Ympäristön muutos 1980

Lisätiedot

Elämäntaitojen nelikenttä

Elämäntaitojen nelikenttä Polunvalaisija Elämäntaitojen nelikenttä A B Pitkän aikavälin tavoite Lyhyen aikavälin tavoite Nyt Punnitseminen V a l l i t s e v a t a j a t u k s e t T O I S T O K u i n k a u s e i n a j a t t e l

Lisätiedot

SUOKI TOIMINTA PASSI

SUOKI TOIMINTA PASSI I K O SU M I TO A T IN A P I SS nimi: Näitä taitoja, joita harjoittelet tässä passissa, sinä tarvitset: A Työharjoittelussa B Vapaa-aikana C Koulussa Nämä taidot kehittyvät, kun teet tehtävät huolellisesti:

Lisätiedot

Pedagogisen koulutuksen ja opetuskokemuksen vaikutus yliopisto-opettajien opetuksellisiin lähestymistapoihin

Pedagogisen koulutuksen ja opetuskokemuksen vaikutus yliopisto-opettajien opetuksellisiin lähestymistapoihin Pedagogisen koulutuksen ja opetuskokemuksen vaikutus yliopisto-opettajien opetuksellisiin lähestymistapoihin Liisa Postareff, Anne Nevgi & Sari Lindblom-Ylänne Helsingin yliopisto Tutkimuksen tarkoitus

Lisätiedot

Arvioinnin monipuolistaminen lukion opetussuunnitelman perusteiden (2015) mukaan

Arvioinnin monipuolistaminen lukion opetussuunnitelman perusteiden (2015) mukaan Arvioinnin monipuolistaminen lukion opetussuunnitelman perusteiden (2015) mukaan OPS-koulutus Joensuu 16.1.2016 Marja Tamm Matematiikan ja kemian lehtori, FM, Helsingin kielilukio 3.vpj. ja OPS-vastaava,

Lisätiedot

STEP 1 Tilaa ajattelulle

STEP 1 Tilaa ajattelulle Työkalu, jonka avulla opettaja voi suunnitella ja toteuttaa systemaattista ajattelutaitojen opettamista STEP 1 Tilaa ajattelulle Susan Granlund Euran Kirkonkylän koulu ja Kirsi Urmson Rauman normaalikoulu

Lisätiedot

TEKSTITAIDOT JA ARVIOINTI. Mirja Tarnanen

TEKSTITAIDOT JA ARVIOINTI. Mirja Tarnanen TEKSTITAIDOT JA ARVIOINTI Mirja Tarnanen mirja.tarnanen@jyu.fi Miksi arviointia tulisi kehittää? 2000-luvun muutokset; globaalius, muuttoliikkeet, digitalisaatio, kestävä kehitys Kansalaisena elämisen

Lisätiedot

Liikunta- ja terveystieteiden tiedekunta, Viveca. TAITOVALMENNUS valmentajien täydennyskoulutus

Liikunta- ja terveystieteiden tiedekunta, Viveca. TAITOVALMENNUS valmentajien täydennyskoulutus Liikunta- ja terveystieteiden tiedekunta, Viveca TAITOVALMENNUS valmentajien täydennyskoulutus taitovalmennus valmentajien täydennyskoulutus, 20 op Jyväskylän yliopiston liikunta- ja terveystieteiden tiedekunta

Lisätiedot

Työelämävalmiudet: Oivallus-hankeken seminaari

Työelämävalmiudet: Oivallus-hankeken seminaari Työelämävalmiudet: Oivallus-hankeken seminaari Optek Opetusteknologia koulun arjessa Jari Lavonen, Professor of Physics and Chemistry Education, Head of the department Department of Teacher Education,

Lisätiedot

Dialogin tavoitteet ja kriteerit. Anas Hajjar Suomen Islamilaisen yhdyskunnan Imaami Tampere

Dialogin tavoitteet ja kriteerit. Anas Hajjar Suomen Islamilaisen yhdyskunnan Imaami Tampere Dialogin tavoitteet ja kriteerit Anas Hajjar Suomen Islamilaisen yhdyskunnan Imaami Tampere 28.9.2016 Dialogi Kahden tai useamman tahon keskustelevat ja vastaavat toisilleen Arabiaksi Hiwar paluu asiasta

Lisätiedot