Muokkaustöiden energian kulutus. Muokkaus, maan kovuus ja energian kulutus

Koko: px
Aloita esitys sivulta:

Download "Muokkaustöiden energian kulutus. Muokkaus, maan kovuus ja energian kulutus"

Transkriptio

1 Muokkaustöiden energian kulutus Muokkaus, maan kovuus ja energian kulutus Muokkauksen tavoitteena on tuottaa maahan kasville sopiva itämis- ja kasvualusta. Siinä itävä siemen saa hyvän maakontaktin joka varmistaa itämiseen tarvittavan kosteuden saannin. Hyvärakenteisessa maassa kasvin juuret kasvavat nopeasti, jolloin maan vesi- ja ravinnevarat tulevat kasvin käyttöön. Tällaisessa maassa myös kaasujen vaihto pelaa kasvin ja maan kannalta riittävän tehokkaasti. Toisaalta muokkauksen tavoitteena on myös mullata edellisen kasvin jätteet, karjanlanta ja mm. kalkki muokkauskerrokseen kasvin ja maan tarpeisiin. Maan pinta myös tasaantuu muokkauksen yhteydessä joko tarkoituksella tai tahattomasti muokkausmenetelmästä riippuen. Erityisesti kynnössä maan pinnan korkeuserot voivat jopa kasvaa, mutta kylvömuokkauksen yhteydessä epätasaisuudet jälleen tasaantuvat. Muokkaustapahtuma voidaan jakaa maan leikkaamiseen, murustamiseen ja muodon muutokseen sekä maa-aineksen siirtämiseen. Kaikkiin näistä kuluu energiaa. Energia tarpeeseen vaikuttaa mm. maata muokkaavan työvälineen (auran terä, äkeen piikki) muoto, työtapa ja työskentelykulma maahan ja kulkusuuntaan nähden. Muokkaussyvyydellä on suuri vaikutus energia tarpeeseen. Muokkaussyvyyden lisääminen lisää käsiteltävän maan määrää, ja syvemmällä maan kovuus voi olla suurempi ja toisaalta kullakin muokkausvälineillä on oma työtapansa ja ominaisvetovastus joka yleensä kasvavat muokkaussyvyyttä kasvatettaessa, jopa kiihtyvästi. Eri maalajeilla on oma luontainen muokkausvastuksensa. Puhuttaessa raskaista maista tarkoitetaan ominaispainon lisäksi myös muokkaustöihin tarvittavaa voimaa. Jako keveisiin ja raskaisiin maihin ei silti suoraviivaisesti kerro muokkaukseen tarvittavan energia määrää. Keveillä mailla voi traktorin kulkuvastus olla raskaita maita suurempi ja toisaalta pyörien vetokyky huonompi joista kumpikin lisää energian kulutusta. Myös maan kosteus vaikuttaa muokkauksessa tarvittavaan energian määrän. Maan muokkauksen osuus kasvinviljelyn kokonaisenergian kulutuksesta vaihtelee laajoissa rajoissa (5 25 %) muokkaus- ja kylvömenetelmästä riippuen (Arvidsson 2010). Mikkolan ja Ahokkaan (2009) mukaan suurin osa kasvinviljelyn energiasta kuluu typpiravinteen valmistamiseen. Muokkaukseen kuluva energia ilmoitetaan yleensä hyvin käytännön läheisesti l/ha. Ilmoitustavan ongelmana on, että se ei kerro mitään muokkauksesta. Kun maa yleisesti kynnetään n. 20 cm syvyyteen, jää esimerkiksi lautasmuokkauksen syvyys noin puoleen tästä. Jos lautasmuokkauksen energian tarve osoittautuu alhaisemmaksi, voi se johtua mm. erilaisesta muokkausperiaatteesta tai eriasteisesta muokkausintensiteetistä pienemmän muokkaussyvyyden lisäksi. Muokkaussyvyyden vaikutusta voidaan arvioida ottamalla huomioon käsitellyn maaprofiilin poikkipinta-ala (muokkaussyvyys * työvälineen työleveys). Kun muokkausvälineen aiheuttama vetovastus jaetaan käsitellyn maan poikkipinta-alalla, saadaan ominaisvastus k ( kn/m 2 ). Lukua voidaan käyttää luokittelemaan eri maalajeja esimerkiksi niiden aiheuttaman kyntövastuksen mukaan tai vertailtaessa eri muokkausvälineiden vetämiseen tarvittavaa voimaa samalla maalajilla. Ominaisvastus vaihtelee kivennäismailla tavallisesti kn/m 2 (Arvidsson 2004, Ahokas ja Mikkola 1986), mutta se voi hyvin kuivissa oloissa olla savimailla jopa yli 150 kn/m 2. Ominaisvastuksesta päästään hehtaarin työmäärään ja samalla laskennalliseen polttoaineen kulutukseen l/ha kertomalla keskenään ominaisvastus, työvälineen muokkausprofiilin poikkipinta-ala (työleveys (b) x työsyvyys (t)) ja hehtaarille kertyvät ajometrit(w=kbts).

2 Esimerkki Auran ominaisvastus (k) on 100 kn/m 2, auran leveys (b) 1.6 m, työsyvyys (t) 0.2 m ja ajomatka hehtaarille (s) 6250 m. Mikä on hehtaarin työmäärä ja vastaava polttoaineen kulutus? Entä mikä on hehtaarin kyntötyön polttoaineen kulutus, kun otetaan traktorityön hyötysuhde huomioon? Lasketaan ensin hehtaarin työmäärä W=kbts. W = 100 kn m 2 1.6m 0.2m 6250m = 200 MNm (= 200 MJ). Tätä vastaavaksi polttoaineen kulutukseksi voidaan laskea polttoaineen 43 MJ/kg energiasisällöllä 5.6 l/ha. Todellinen hehtaarikulutus l/ha saadaan kun arvioidaan ja otetaan laskennassa huomioon traktorin pyörien vetohyötysuhde, voimansiirron hyötysuhde ja muut traktorin sisäiset tappiot sekä moottorin hyötysuhde. Näin saatuun lukemaan täytyy vielä lisätä kääntymisiin ja muuhun tuottamattomaan toimintaan liittyvä polttoaineen kulutus. Vetohyötysuhde voi parhaimmillaan olla n. 70 %, voimansiirron hyötysuhde mukaan lukien hydrauliikan häviöt n. 80 % ja moottorin hyötysuhde n. 40 %. Kun teoreettinen kulutus jaetaan hyötysuhteiden tulolla (5.6 l/ha/( )), saadaan todellista hehtaarikulutusta vastaava lukema 25 l/ha. Laskelman mukaan noin 22 % polttoaineen energiasta päätyy varsinaiseksi maan kääntämistyöksi. Käytännössä kulutus on totuttu ilmoittamaan l/ha, mutta McLaughlin (2008) käyttää käänteistä käsitettä litraa polttoainetta tuotettua vetoenergian gigajoulea kohden kuvaamaan traktorin sopivuutta kyseiseen työhön. Jos lukema on korkea, on traktori työhön suuri ja pieni luku osoittaa traktorin olevan sopiva. Edellisessä esimerkkilaskelmassa lukema olisi ollut l/1 GJ vetotyötä. Tämä taso osoittaa McLaughli n esittämän luokittelun mukaan, että auran ja traktorin kokosuhde olisi esimerkissä kohdallaan. Kun otetaan huomioon maan ominaisvastuksen koko vaihtelualue ja sekä traktorin hyötysuhteiden vaihtoehdot, vaihtele polttoaineen kulutus laajoissa rajoissa (Kuvio 1.). Kuvio muodostaa raamin, jonka ilmaisemia kulutuslukemia on käytännössä vaikea alittaa tai ylittää. Hyötysuhteiden yhtäaikainen asettuminen erinomaiselle tasolle onnistuu vain erikoistapauksissa. Samoin niiden yhtäaikainen asettuminen huonolle tasolle edellyttää mm., että veto-olosuhteet ovat huonot ja traktoria kuormitetaan liian vähän (moottorin hyötysuhde). Vaihteiston huono hyötysuhde (tässä 0.75) tulee vastaan esimerkiksi silloin, kun vaihteisto on rakenteeltaan monimutkainen, traktorissa on täyspowershift- tyyppinen vaihteisto tai traktorin portaatonta vaihteistoa käytetään sille epäedullisella välitysalueella. Maan kovuuteen ja sitä kautta ominaisvastukseen kyntäjä voi vaikuttaa mm. välttämällä maan tiivistymistä aiheuttavia toimenpiteitä ja toisaalta hyvin kuivan maan kyntämistä. Traktorin vetohyötysuhteeseen voi niin ikään vaikuttaa mm. sopivan kyntökelin valitsemisella ja varmistamalla, että vetävät renkaat ovat hyväkuntoiset ja niissä on riittävän alhainen ilmanpaine. Traktorin moottorin hyötysuhteeseen käyttäjä voi vaikuttaa sovittamalla traktorin ja auran koon hyvin yhteen sekä käyttämällä sellaista ajonopeutta, että moottori kuormittuu lähes täysin.

3 Kulutus l/ha kn/m2 100 kn/m2 150 kn/m Erinomainen ƞ Hyvä ƞ Alhainen ƞ Kuvio 1. Maan ominaisvastuksen sekä traktorin veto- voimansiirto- ja moottorihyötysuhteiden vaikutus kyntötyön (kyntösyvyys 20 cm) laskennalliseen hehtaarikohtaiseen polttoaineen kulutukseen. (Hyötysuhteet erinomaisesta alhaiseen: vetohyötysuhde , voimansiirron hyötysuhde , moottorin hyötysuhde- 0, ) Kyntö Kyntö on runsaasti energiaa vaativa muokkausmenetelmä. Tämä johtuu pääosin suuresta työsyvyydestä (yleensä cm) mikä seurauksena käsiteltävän maan poikkipinta-ala on suuri. Kyntövastus ja energian kulutus kasvaa kasvavan vetovastuksen myötä kyntösyvyyden lisääntyessä (Kuvio 2.). Tämä on varsin ymmärrettävää sillä käsiteltävän maan tilavuus kasvaa 100 m 3 /1 cm/ha ja käsiteltävä massa maalajista riippuen n. 150 t/ha. Kuvion 2. aineistosta voidaan laskea käyttäen kuvion 1. keskimmäisiä hyötysuhdelukemia hyväksi, että kuivalla savella hehtaarikohtainen kulutus on ilman päisteajoa lähes 35 l/ha. Kulutuksen kasvu voi olla eksponentiaalista (Kuvio 3.) jos kyntösyvyyden lisäsentit tuovat entistä kovempaa maata (kyntöantura) kynnettäväksi. Auran terän rakeenne voi olla myös sellainen, että kyntösyvyyden lisääntyessä viilun kääntämisen tarvitaan enemmän työtä. Kuvion 3. kanssa hyvin yhteneviä tuloksia ovat saaneet myös Ahokas ja Mikkola (1986). Heidän tuloksista on laskettavissa, että kyntösyvyyden lisääntyminen 18 >> 24 cm (33 %) lisäsi kyntövastusta multamaalla n. 50 % ja hiesumaalla n. 80 %. Myös heidän kokeissaan oli nähtävissä kyntövastuksen jyrkkä nousu kyntösyvyyden noustessa normaalia kyntösyvyyttä suuremmaksi. Ilmeisesti jonkinmoinen kyntöantura on vaikuttanut tuloksiin sekä käytetty suhteellisen kapea (36 cm) viilun leveys.

4 Vetovastus kn/m 30,0 25,0 20,0 13 cm 17 cm 21 cm 15,0 10,0 5,0 0,0 Märkä savi Normaali savi Kuiva savi Märkä hiue Normaali hiue Kuiva hiue Kuvio 2. Auran vetovastus (kn/m) savi- ja hiuemaalla kolmessa eri kosteudessa 13, 17 ja 21 cm kyntösyvyyteen kynnettäessä. Normaalikosteus on tässä ollut muovailtavuuden raja-arvon tuntumassa. (Kuvio tehty Arvidsson 2004 aineistosta) Tutkimuksissa ja käytännön mittauksissa on kyntötyön polttoaineen kulutuksen havaittu vaihtelevan l/ha (mm. Clark ym. 1978, Danfors, 1988, Palonen ym. 1993). Alhaisimmat lukemat saadaan luonnollisesti kevyillä multa- ja turv la ja kohtuulliseen syvyyteen kyntäen. Arvidsson in (2010) tutkimuksissa polttoaineen kulutus oli savimaalla 20 cm kyntösyvyydellä keskimäärin n. 30 l/ha (suoritusajan kulutus ilman päiste- ym. sivuaikoja) ja hiesuisella hienolla hiedalla n. 15 l/ha. Vastaavat luvut olivat cm kyntösyvyydellä n. 20 ja n. 10 l/ha. Hänen tuloksistaan voidaan laskea, että polttoaineen kulutus väheni savimaalla kyntösyvyyden madaltuessa lähes 2 l/ha/cm vastaavan luvun ollessa hiesuisella hienolla hiedalla reilu yksi litra. Uotilan ja Liskolan (1969) tutkimuksessa kulutus nousi 1 l/ha/cm lisättäessä kyntösyvyyttä 20 >> 35 cm, ja kulutuksen nousussa oli havaittavissa lievää kiihtymistä suuremmissa syvyyksissä, mikä viittaa joko kyntöanturan olemassaoloon tai siihen, että kyntösyvyys alkoi muodostua liian suureksi käytetylle auran työleveydelle. Auran säädöt vaikuttavat kyntötyön polttoaineen kulutukseen. Toki lähtökohtana ovat oikeat säädöt, jotka on kohtuullisen helppo asettaakin, mutta auran sivukallistuksen säädössä esiintyy silti usein virheitä. Normaalisti auran terä ja erityisesti ojas asetetaan 90⁰ kulmaan maahan nähden. Liikaa viilun kääntymissuuntaan kallistettu aura voi lisätä kulutusta, pahimmillaan jopa kymmeniä prosentteja (von Getzlaff, 1952, Ahokas & Mikkola 1986). Tällöin siipi painaa viilua tiukasti edellistä vasten jolloin siiven ja maan väliset kitkavoimat kasvavat. Samalla vähenee myös auralta traktorille saatavissa oleva painonsiirto, mikä lisää vetävien pyörien luistoa lisäten samalla polttoaineen kulutusta. Päinvastaiseen suuntaan väärin säädetty aura saattaa kulkea hieman kevyemmin kuin oikein säädetty, mutta samalla viilujen sulkeutuminen voi vaarantua.

5 Kuvio 3. Kyntösyvyyden ja ajonopeuden kasvattaminen lisää maan aiheuttamaan kyntövastusta (kokeet hietasavella) (Kheiralla ym. 2004). Kuviossa kyntövastus on ilmaistu auran työleveysmetriä kohti (kn/m). Vetovastuslukemista saataisiin maan ominaisvastus jakamalla lukema ao. kyntösyvyydellä Kyntönopeus on monitahoinen kysymys liittyen oleellisesti auran ja traktorin koon yhteensovittamiseen, auran terän rakenteeseen, maan kivisyyteen ja kyntöolosuhteisiin. Nopeus vaikuttaa myös kyntötyön polttoaineen kulutukseen siten, että nopeuden kaksinkertaistamisen seurauksena voi hehtaarikohtainen kulutus lisääntyä % (Kuvio 3., Pedersen, 1971). Suurinta kulutuksen kasvu on kynnettäessä jyrkkämuotoisilla lieriöterillä, joilla kyntönopeuden lisääminen antaa maalle suuremman kiihtyvyyden ja useimmiten myös maan murustuminen lisääntyy. Kyntöauran koolla ei sinänsä ole juurikaan vaikutusta hehtaarikohtaiseen kulutukseen, mutta auran kokoon nähden väärän kokoinen traktori voi aiheuttaa lisäkulutusta. Käytännössä auran ja traktorin kokosuhde on kuitenkin harvoin niin pahoin pielessä, että hehtaarikohtainen kulutus sen vuoksi nousisi oleellisesti. Jos aura on pienehkö traktorin kokoon nähden, alenee luisto ja sitä myötä traktorin vetohyötysuhde paranee. Tämä kompensoi osin osakuormalla käyvän moottorin polttoaineen ominaiskulutuksen kasvusta johtuvaa hehtaarikohtaisen kulutuksen kasvua. Vasta jos moottorin kuormitusaste jää selvästi alle 50 %, voi hehtaarikohtaisessa kulutuksessa havaita nousua. Jos traktorin massa on liian pieni auran kokoon nähden, aiheuttaa vetävien pyörien luisto kulutuksen kasvua vaikka moottori toimisikin polttoaineen kulutuksen kannalta edullisimmalla alueella. Jos taas moottorin teho on alhainen, selvitään tilanteesta vaihtamalla pienemmälle vaihteelle kunhan vain traktorin massa riittää tarvittavan vetovoiman tuottamiseen. Kyntöön kuluva aika kasvaa, mutta hehtaarikohtaiseen kulutukseen tilanteella ei ole suurtakaan vaikutusta. Kyntöoloilla on merkittävä vaikutus hehtaarikohtaiseen energian kulutukseen. Vaikeissa oloissa renkaiden pito heikkenee ja sitä kautta luisto kasvaa lisäten kulutusta. Hyvin kuivissa oloissa pito on kyllä hyvä, mutta maa voi olla kyntöä ajatellen niin kovaa, että se lisää kulutusta. Arvidsson (2004) havaitsi ominaiskyntövastuksen (kn/m 2 ) alenevan savimaalla lähes puoleen maan vesipitoisuuden noustessa kaksinkertaiseksi (kuiva (16 %) >> märkä (29 %)) (Kuvio 2.). Toisaalta maan murustumiseen tarvittava energia oli alhaisin kosteusalueen puolivälissä, mikä oli lähellä maan muovailtavuuden rajaa. Käytännössä

6 tämä tarkoittaa sitä, että sopivan kosteaa maata kynnettäessä suurien kokkareiden osuus maan koko tilavuudesta on alhaisin. Tätä kuivempaa tai kosteampaa maata kynnettäessä maa muokkautuu heikommin, jolloin kylvömuokkaukselta vaaditaan enemmän erityisesti syyskylvöjä tehtäessä. Kevääseen mennessä routa murustaa maata, ja erot kyntöjäljessä ovat vaikeammin havaittavissa. Aurojen kunto vaikuttaa polttoaineen kulutukseen. Vantaan, kärjen ja leikkurin terävyyden merkitys on suurin kovilla mailla. Kun auran terän ja kärjen terävyys muuttui 1 mm >> 6 mm (terän kaarevan osuuden päiden yhdysjanan pituus) nousi vetovastus erityisesti savi ja hiesumailla mailla jopa yli 50 % (A. Natsis). Auran aiheuttamasta vetovastuksesta suurin osa kuluu viilun irrottamiseen ja nostamiseen ja vain vähäinen osa viilun kääntämiseen. Kun auran terän työleveyttä suurennetaan, kasvaa tietenkin myös terän vetovastus, mutta vähemmän kuin työleveyden muutos edellyttäisi. Kun ruotsalaisessa auratutkimuksessa työleveyttä muutettiin 30 >> 50 cm eli 66 %, kasvoi vetovastus % (Pettersson 1989). Työleveysmetriä kohden vetovastus kuitenkin aleni yli 20 %, mikä selittyy sillä, että viilun irrotukseen kuluva vetovastuksen osuus säilyy terän työleveyden muuttuessa suuruudeltaan terää kohti melko vakiona. Maan rakenteella ja viljelytekniikalla voidaan vaikuttaa aurojen vetovastukseen ja kynnön polttoaineen kulutukseen. Kanadalaisessa kokeessa maahan sekoitettiin vuosittain tai joka toinen vuosi 100 t karjanlantaa kahdeksan vuoden ajan. Lievästi kompostoitua lantaa vuosittain saaneen kivennäismaan (HtS) aiheuttama vetovastus aleni keskimärin 38 % pelkkää mineraalilannoitusta saaneeseen maahan verrattuna (McLaughlin ym. 2002). Kokeessa kompostoimattoman lannan vaikutus oli alempi, ollen 27 %. Vastaavasti hehtaaria kohti laskettu polttoaineen kulutus aleni 18 ja 13 %. Kun lantaa levitettiin puolet vähemmän, eli vain joka toinen vuosi (ka 50 t/ha/v), olivat vaikutuksen samansuuntaisia, mutta suuruudeltaan vajaa puolet edellisistä. Kokeessa vetovoiman aleneminen selitettiin parantuneella maan rakenteella, mutta asiaa ei varsinaisesti tutkittu. Maan viljelyhistoria vaikuttaa maan rakenteeseen ja sitä kautta tarvittavaan vetovatukseen ja polttoaineen kulutukseen. Tunnettua on yksipuolisen viljanviljelyn aiheuttama maan orgaanisen aineksen vähentyminen ja tiivistymisriskin lisääntymien. Jopa yksipuolinen heinäkasvien viljely saattaa lisätä maan kyntövastusta. Jopa kolme kertaa vuodessa tapahtuva raskaan korjuukaluston liikenne saattaa tiivistää maata, vaikka toisaalta uskotaan runsaan juuriston kuohkeuttavan maata. Kanadalaisessa kokeessa kuusi vuotta jatkunut yksipuolinen sinimailasen tai rehukattaran viljely aiheutti 5 10 % suuremman kyntövastuksen kuin monipuoliset viljelykierrot (Perfect ym. 1997). Toisaalta kun apilanurmi lopetettiin glyfosaatilla, laski se suuntaa-antavasti vetovastusta ensimmäisenä koevuotena ja noin 10 % toisena koevuotena (McLaughlin ym, 2004). Kasvin juuristoa ei kokeessa tutkittu, mutta tutkijat päättelivät juurien alkavan lahoamisen vaikuttaneen tulokseen. Kyntösyvyydellä on havaittu olevan vaikutusta kasvien satoon. Laajan, 17 vuotta kestäneen, Ruotsalaisen koesarjan perusteella näyttää siltä, että, varsinkin karkeilla hietamailla syvä, jopa 30 cm syvyyteen tapahtuva kyntö on edullinen (Håkansson 1998). Näillä mailla kyntösyvyyden lisäys ei myöskään lisää polttoaineen kulutusta niin paljon kuin kovemmilla mailla. Hiesupitoisilla mailla matalahko kyntö (n. 15 cm) osoittautui mainitussa tutkimuksessa edullisimmaksi, kun taas savilla ja savipitoisilla mailla syvä kyntö oli edullinen, mutta selvästi lisääntyvä polttoaineen kulutus rajaa syvyyden cm tasolle. Jos kyntö on matalaa, tulee monivuotisten rikkakasvien torjunnasta huolehtia muulla tavoilla.

7 Kultivaattori ja lautasäes Kyntöä korvaavat muokkausmenetelmät ovat yleistyneet viimeisen parin vuosikymmenen aikana. Niihin siirtymistä on perusteltu mm. muokkaukseen tarvittavan ajan ja polttoaineen kulutuksen vähenemisellä. Polttoaineen kulutuksen aleneminen toteutuu varsinkin jos muokkaussyvyys kyntöä korvaavilla menetelmillä on oleellisesti pienempi ja muokkauskertoja on vain yksi. Sen sijaan, jos muokkauskertoja on kaksi ja muokkaussyvyys on puolet tai enemmän kyntösyvyydestä, on polttoaineen kulutuksessa tuskin odotettavissa säästöä. Kultivaattoria käytettäessä muokkauksen lopputulokseen ja tarvittavaan polttoaineen kulutukseen vaikuttavat piikin muoto ja asento sekä piikin liikenopeus. Lisäksi vaikuttavat tietenkin maan ominaisuudet, mm. maalaji, maan tiiviysaste ja kosteus. Useimpiin näistä käyttäjä voi vaikuttaa ainakin jossain määrin. Kuviossa 4 on yleinen esitys piikin käyttäytymisestä maassa. Muokkautumisen kannalta tärkeitä tekijöitä ovat piikin kulma maahan nähden, piikin leveys ja työsyvyys. Työsyvyydessä merkityksellistä on myös ns. kriittinen syvyys, jota suuremmalla syvyydellä työskenneltäessä piikin aiheuttama maan liike on pääsääntöisesti eteen ja sivuille päin aiheuttaen pahimmillaan maan tiivistymistä. Piikin aiheuttama vetovastus kasvaa syvyyden myötä ja kasvu voi olla kiihtyvää jos muokattaessa ylitetään piikin kriittinen syvyys. Maan pinnalla piikin kulku-uran molemmin puolin on murustuneen maan kasaumat, joiden koko ja muoto riippuu ajonopeudesta ja piikin mallista. Maassa alkuperäiseen maan pintaan ulottuen on V- kirjaimen muotoinen alue, jossa maa on liikkunut ja murustunut. Piikin kulku-ura maassa sekä piikin kulkuuran sivuilla olevan käsitellyn maan poikkipinta-ala on perustana kun kultivaattorimuokkauksessa lasketaan maan ominaisvastusta (kn/m 2 ). Godwinin ym. (2004) mukaan ominaisvastus oli alhaisimmillaan 25 mm leveillä piikeillä (syvyys 165 mm), kun piikkien väli on n. 20 cm. Tällä piikkivälillä myös yhden piikin muokkautumisvyöhyke oli lähellä maksimiaan. Pienemmillä piikkiväleillä piikin muokkautumisvyöhyke selväsi pieneni vierekkäisten piikkien toimialueiden limittyessä (Kuvio 4, oikealla). Yli 25 cm piikkivälillä jokaisen piikin muokkautumisalueet olivat itsenäisiä ja piikkien väliin alkoi ilmaantua muokkaamaton kaista. Tässä vaiheessa myös yksittäisen piikin aiheuttama vastus oli suurimmillaan. Mitä pienempi on piikkiväli sitä enemmän muokkautumisvyöhykkeet menevät päällekkäin, mikä alentaa piikin aiheuttamaa vetovastusta jopa yli kolmanneksella. Samalla maa tulee tasaisemmin muokatuksi. Ajosuunta Maan pinta Muokkautumisvyöhyke Kriittinen syvyys Muokkaussyvyys Kuvio 4. Periaatekuvat maata muokkaavan piikin työtavasta. Kriittisen syvyyden alittamien voi aiheuttaa maan tiivistymistä. Oikeanpuoleisessa kuvassa (Godwin ym, 1984) piikkien etäisyyden vaikutus muokkauspohjaan ja muokkautumisvyöhykkeen muodostumiseen

8 Kultivaattorin piikin koko, muoto ja tyyppi vaikuttavat piikin aiheuttamaan vastukseen ja maan muokkautuvuuteen. Arvidsson ja Hillerström (2010) vertailivat eri tyyppisiä ja kokoisia piikkejä savi- ja hiuesavimaalla. He mittasivat auran ja kultivaattorin, jossa oli hanhenjalkaterällä varustetut piikit aiheuttavan erityisesti savimaalla alhaisemman ominaisvastuksen kuin muilla kärkityypeillä varustetut kultivaattorit aiheuttavat (Kuvio 5). Kynnön alhaisempi lukema johtuu siitä, että sivusta pystytasossa ja pohjaltaan lähes vaakasuorassa tapahtuva viilun irrotus on energiataloudellinen ja toisaalta, että maa jää kynnön jäljiltä melko karkeaksi (yli 32 mm murujen osuus alhainen). Myös hanhenjalkaterällä varustettu kultivaattoripiikki toimii melko pienellä kulmalla, jolloin maa pääsee nousemaan ylöspäin piikin edetessä johtaen myös muita kultivaattoreita karkeampaan työjälkeen. Tavanomainen piikki, jossa oli lähes vaakasuoraan asennetut siivekkeet toimi lähes siivekkeettömien tapaan. Lähes vaakasuorassa olevat piikit irrottavat maan muokattaessa lähes kauttaaltaan, mutta eivät lisää maan eri kerrosten ja kasvinjätteiden sekoittumista maahan. Sen sijaan hanhenjalkatyyppiset piikit ovat tässä suhteessa yleensä tehokkaista. Tutkijoiden mittauksissa näyttää jousirakenteisten piikkien ominaisvastus olevan jäykkien piikkien ominaisvastusta alhaisempi. Jousirakenteiset värisevät piikit myös hienonsivat maata tehokkaammin kuin jäykät piikit. Pienillä kulmilla piikin pystysuuntainen voima on negatiivinen, mikä tarkoittaa sitä, että piikki on maahakuinen. Kun piikin kulma kasvaa C tasolle, on pystysuuntaiset voimat lähellä nollaa (Godwin ja Spoor 1977) ja tätä suuremmilla kulmilla täytyy piikkiä painottaa, että se pysyisi työskentelysyvyydessään. Lautasmuokkaimen lautasten toimintaperiaate on esitetty kuvassa 6. Kuvan mukaisesti pystysuuntaan asetettuun pyörivään lautaseen kohdistuu pystysuuntainen kantava voima, pienillä muokkauskulmilla etunurkkaan sivuttainen voima kuperalle puolelle ja suurilla muokkauskulmilla lautasen takanurkkaan koveralle puolelle edellisiin nähden vastakkaiseen suuntaan vaikuttava sivuttaisvoima. Käsitellyn maan alue muodostuu kuviossa 7 nähtävästä lautasen syrjäyttämästä maa-alasta sekä lautasen sivulleen työntämästä ja nostamasta maasta. Kuvassa 7 tavan A mukaan asetetut lautaset ovat kytketty runkoon kukin omalla tukivarrellaan, B tapauksessa useita lautasia voi olla samalla laakeroidulla akselilla. Lautanen tekee maahan U-kirjaimen muotoisen uran ja heittää irrotetun maa-aineksen sivulle nopeudesta ja lautasen asennosta riippuvalla tavalla. Lautasten kulma ajosuuntaan nähden ja etäisyys toisistaan vaikuttavat muokkauspohjan muotoon. Muokkauksen lopputulokseen ja polttoaineen kulutukseen vaikuttavat lautasen halkaisija, lautasen akselin kulma vaakatasoon nähden, lautasen muokkauskulma, muokkaussyvyys sekä ajonopeus. Myös maan kovuus ja muut ominaisuudet kuten kosteus vaikuttavat sekä polttoaineen kulutukseen että muokkaustulokseen. Godwinin (2007) mukaan lautasen aiheuttama vetovastus on alhaisimmillaan noin 20 muokkauskulmalla ja kasvaa siitä melko suoraviivaisesti noin kolmanneksella muokkauskulman suurentuessa 35 tasolle. Pystysuuntainen voima oli samassa kokeessa 20 muokkauskulmalla korkea, mutta se laski kolmasosaan 35 muokkauskulmalla. Tähän maan lautasta kannattelevaan voimaan vaikutta lisäksi muokkaussyvyyden ja lautasen halkaisijan yhteisvaikutuksesta syntyvä kohtauskulma, joka suuretessaan aiheuttaa suuremman pystysuoran kannattelevan voiman. Mitä syvempään muokataan, sitä suurempi on tämä kohtauskulma ja samalla maan lautasta kannatteleva voima. Myös lautasen koveruus vaikuttaa pystysuoraan voimaan, sillä hyvin kovera lautanen suurelle muokkauskulmalle säädettynä muuttuu selvästi maahakuiseksi.

9 Vetovastus kn/3 m työleveydelle Yli 32 mm murujen osuus Ominaisvastus kn/m2 Energiaa J/m2 Kuvio 5. Kahdeksan erilaisen kultivaattorinpiikin ja auran aiheuttama vetovastus 3 m työleveyttä kohti (kn/3 m), ominaisvastus (kn/m 2 ), yli 32 mm murujen osuus muokkasukerroksessa (%) ja muokkauskerroksen ominaispinta-alaa kohti käytetty energia (J/m 2 ). Taulukko tehty Arvidsson 2010 savimaalla mittaamasta aineistosta. Muokkauskulma Ajosuunta Pienillä muokkauskulmilla sivuttaisvoima ja ylöspäin suuntautuva voima Käsitellyn maan alue Lautasen kehä Tunkeutumiskulma Kuvio 6. Lautasäkeen lautasen toimintaperiaate

10 A B 10 cm Kuva 7. Periaatekuva lautasmuokkaimen muokkaustavasta ajosuuntaan katsottaessa. Lautasten läpimitta 50 cm, etäisyys toisistaan 20 cm ja muokkaussyvyys 10 cm. (A: lautasten akselit kallistettu vaakatasosta ja lautasen muokkauskulma pienehkö ajosuuntaan nähden, B: lautaset pystyssä ja akselikulma (muokkauskulma) edellistä suurempi ajosuuntaan nähden) Nalavaden ym (2003) mittauksissa pystysuora voima säilyi loivasti koveralla lautasella jotakuinkin vakiona muokkauskulman vaihtelusta huolimatta. Käytännössä muokkaussyvyys ei saisi ylittää neljännestä lautasen halkaisijasta. Sivuttainen voima on pienillä, alle 20 kulmilla käytännössä hyvin pien, mutta se kasvaa merkittävästi muokkauskulman noustessa 35 tasolle (Godwin 2007). Tämän vuoksi lautasäkeessä täytyy olla sama määrä oikealle ja vasemmalle suunnattuja lautasia. Lautasäkeen vetovastukseen ja polttoaineen kulutukseen vaikuttaa hyvin paljon muokkaussyvyys ja äkeen muut varusteet edellä mainittujen lautasen asennosta johtuvien syiden lisäksi. Perusmuokkaukseen käytettävän pelkästään lautasia käsittävän lautasäkeen vetovastus voi vaihdella N/lautanen, kun muokkaussyvyys on cm ja lautasten halkaisija tyypillisesti n. 60 cm. Jos äkeen leveys on 3 m ja siinä on 24 lautasta, on koko äkeen vastus kn vastaten leveydeltään puolta pienemmän kyntöauran lukemia tyypillisissä kyntösyvyyksissä. Nykyisin käytetään pääasiassa lautasäkeitä, joissa on pienemmät lautaset (halkaisija n. 45 cm), lautasten väli keskimäärin cm ja muokkaussyvyys tilanteen mukaan 5 15 cm. Takana on lisäksi joko metalli- tai kumipintainen tiivistävä jyrä. Tällaisen lautasmuokkarin vetovoiman tarve on edelliseen nähden samaa luokaa tai jopa suurempi samalla muokkaussyvyydellä. Arvidssonin (2010) kokeissa 3 cm muokkaussyvyydellä vetovastus oli keskimäärin n. 5 kn/m. Kultivaattori ja lautasäes aiheuttavat pienemmän vetovastuksen ja polttoaineen kulutuksen kuin kyntöaura. Tähän vaikuttaa useimmiten selkeästi matalampi työsyvyys. Kun polttoaineen kulutus lasketaan muokkausprofiilia kohti, eli otetaan muokkaussyvyys huomioon, ovat kulutuslukemat yleensä suurempia kuin kynnettäessä. Tämä tarkoittaa sitä, että kultivaattorien ja lautasäkeiden ominaismuokkausvastus on korkeampi kuin kyntöauran. Ajonopeus on usein suurempi, jolloin maalle annetaan suurempi kiihtyvyys ja maa myös hajoaa ja muokkautuu hienommaksi kuin kynnettäessä. Tähän kaikkeen tarvitaan energiaa. Arvidsson (2010) havaitsi, että savimaalla kultivaattorin ja lautasäkeiden ominaisvastus oli noin kolmanneksen suurempi kuin kyntömenetelmien (Kuvio 8.), mutta niiden aiheuttama polttoaineen kulutus l/ha oli alle kolmasosa normaalisyvyiseen kyntöön verrattuna. Jos muokkauskeroja oli kaksi, jäi kulutus silti noin puolen kynnön kulutukseen nähden. Hiesumaalla kultivaattorin ja lautasäkeen ominaisvastus oli vain hieman korkeampi kuin kyntöauran, mutta sielläkin muokkaus niillä oli selkeästi polttoainetaloudellisempaa kuin kyntäminen. Kultivaattorin ja lautaäkeiden jäljiltä maan pinta on selvästi tasaisempaa ja murukoko on

11 keskimäärein pienempi kuin kynnön jäljiltä. Tämä vähentää kylvömuokkauksen tarvetta, tai jopa poistaa sen. Hiesumaan rakenne on ilmeisesti ollut varsin hyvä, koska myös kynnön jälkeen kylvömuokkauksen tarve on ollut hyvin vähäinen verrattuna savimaan vastaavaan lukemaan. Ominaisvastus kn/m Savimaa Hiuemaa 0 Kuvio 8. Perusmuokkausvälineiden kolmen koevuoden ominaisvastuksen keskiarvo (kn/m 2 ) savi- ja hiuemaalla, (Kuvio tehty Arvidsson 2010 aineistosta). Muokkausvälineet: Överum XL aurat, Väderstad Cultus kultivaattori, Värderstad lautasäen 605 mm lautaset, Värderstad Carrier lautasmuokkari. Käyttäjä voi valinnoillaan vaikuttaa monella tapaa perusmuokkauksen energian kulutukseen, mutta energiankulutuksen vähentämisellä on merkitystä vasta, jos se ei johda sadon kohtuuttomaan alenemiseen tai rikkakasvien ja tautientorjunnan vaikeutumiseen. Sadon suhteen on vaihtelevia tuloksia ja käytännön kokemuksia. Arvidsson n (2010) mukaan sato oli kolmen vuoden kokeessa kevennettyjen muokkausmenetelmien jälkeen 0 10 % alempia kuin normaalisti kynnetyiltä ruuduilta. Zentnerin (2004) 12 vuotta kestäneissä eri kasvivuorotuksia sisältäneissä kokeissa satotaso oli suunnilleen sama sekä perinteisesti, että minimimuokatuilla aloilla kuin suorakylvössä. S-piikkiäes S-piikkiäkeen piikin muokkaustapaan pätevät samat periaatteet kuin kultivaattorin piikin osalta on esitetty mm. kuviossa 4. Piikit maata muokkaavat kärjet ovat tyypillisesti leveydeltään mm, mutta joissakin tapauksissa on käytetty 50 mm leveitä kärkilappuja tavoiteltaessa tasaisempaa muokkauspohjaa. Muokkaussyvyys on yleensä 2-7 cm jolloin ei käytännössä koskaan ole vaaraa kriittisen syvyyden ylittymisestä. S-piikkiäes on kokonaisuus, jossa muokkauksen polttoaineen kulutukseen vaikuttavat piikkien lisäksi ennen piikkejä oleva ladan tai muun maata tasaavan laitteen käyttö ja säädöt, kantavien pyörien kulkuvastus ja äkeen takana olevan haran tai varpajyrän aiheuttama vastus. Joissakin äkeissä voi olla maan kokkareita murustavia ja maata tasaavia latoja äkeen rakenteen sisällä tai äkeen takana edessä olevan ladan lisäksi. Äkeen aiheuttama vetovastus ja siten polttoaineen kulutus kasvaa maata muokkaavien ja käsittelevien elementtien lisääntyessä.

12 Piikin vetovastus N Piikit aiheuttavat valtaosan s-piikkiäkeen vetovastuksesta ja siten polttoaineen kulutuksesta. Piikkien aiheuttama vastus riippuu oleellisesti maalajista ja muokkaussyvyydestä. Kuviossa 9 esitetään s-piikkiäkeen ensimmäiselle piikkiriville asetetun piikin vastuslukemia (Mäkinen 1985). Ensimmäisellä piikkirivillä olevan piikin aiheuttama vastus on jonkin verran suurempi kuin jälkimmäisillä piikkiakseleilla olevien piikkien, erityisesti ensimmäisellä muokkauskerralla. Muokkaussyvyyden kaksinkertaistaminen voi jopa kolminkertaistaa piikin aiheuttaman vastuksen. Tämän vuoksi tarpeettoman syvää muokkausta on syytä välttää. Varsinkin kivennäismailla muokkaustapahtumaa säätelee keväällä maan kosteusolot. Sulamis- ja sadevesien jäljiltä maa on aluksi märkä ja muokkauskelvoton, eikä kanna myöskään muokkauskalustoa, mutta maan kuivuessa pintaan muodostuu yhä paksumpi muokkautuva kerros itämiselle välttämättömän kosteuden löytyessä yhä syvemmältä. Kylvömuokkauksen tulee ulottua tähän kosteaan maan rajaan. Tämän vuoksi muokkaussyvyyttä ei voi säätää muokkausvastuksen tai energian säästön perusteella. Tosin muokkauskauden alkuvaiheessa kun maa on juuri muokkauskalustoa kantavaa, on kuiva kerros ja siten myös muokkauskerros ohuempi, jolloin maa muokkautuu pienemmällä polttoainemäärällä, kuin myöhemmin muokattaessa syvempään. Maalaji ja maan rakenne vaikuttavat oleellisesti piikin aiheuttamaan vetovastukseen ja muokkauksen polttoaineen kulutukseen. Kuvion 9 mukaan multamaalla piikin vastus on noin puolet savimaan lukemiin verrattuna. Orgaanisten maiden ryhmässä turvemaista multamaihin löytyy myös vaihtelua, ja sellaisilla multamailla, joissa kivennäismaan osuus lähenee 80 % voi piikin vastus lähetä kivennäismailla esiintyviä vastuslukemia. Kivennäismaat ryhmässä maan kovuus ja sen mukaisesti myös piikin vetovastus voi vaihdella laajoissa rajoissa. Vastus on alhaisin savettomilla karkeilla kivennäismailla ja suurin huonorakenteisilla hiesu ja savimailla. Mäkisen (1985) mukaan s-piikin vastus vaihteli keskimääräisellä 6 cm muokkaussyvyydellä N/piikki. Piikki oli kiinnitetty ensimmäiseen piikkiriviin, ja kärjen leveys oli 34 mm cm 6 cm 8 cm Muokkasusyvyys Savi, 1. muokkaus (7 km/h) Multa, 1. muokkaus (7 km/h) Savi, 2. muokkaus (10 km/h) Multa, 2. muokkaus (10 km/h) Kuvio 9. S-piikkiäkeen ensimmäisellä piikkiakselille asetetun s-piikin aiheuttama vetovastus savi- ja multamaalla eri muokkaussyvyyksillä. Kuvio on piirretty Mäkinen 1985 aineistosta. Ajonopeus vaikuttaa hieman piikin aiheuttamaan vastukseen. Mäkisen (1985) mukaan piikin vastus kasvoi savimaan toisella muokkauskerralla jopa lähes kaksinkertaiseksi ajonopeuden noustessa 7 13 km/h. Useimmissa muissa tutkimuksissa vetovastus on kasvanut korkeintaan muutaman kymmenen prosenttia nopeuden kaksinkertaistuessa. Näin oli tilanne myös Mäkisen tuloksissa multamaalla (20 30 % vastuksen lisääntyminen). Vastuksen nousua selittää erityisesti kivennäismailla kitkavoimien lisääntyminen ja se, että

13 maan muruille annetaan suuremmalla muokkausnopeudella suurempi kiihtyvyys, jolloin myös maan muokkautuminen ja maapartikkeleiden sekoittuminen lisääntyy. Äkeen varusteiden aiheuttamaan vetovastukseen vaikuttavat niiden käyttötapa (lata) ja niiden kannatteleman massan suuruus sekä maalaji ja maan kantavuus. Jos ladan edessä kuljettaa reilua maamäärää koko muokkauksen ajan voi se aiheuttaa jopa useamman litran kulutuslisän hehtaaria kohden. Pyörivien kannatinlaitteiden (pyörät ja varpajyrä) vetovastusta voidaan arvioida vierimisvastuskertoimen avulla. Pyörien kerroin vaihtelee maan kovuudesta ja kantavuudesta sekä pyörän koosta riippuen välillä. Varpajyrälle voidaan Mäkisen (1985) aineistosta laskea kertoimeksi olosuhteista ja maalajista riippuen Kun kertoimella kerrotaan varusteen kantaman massan aiheuttama painovoima, saadaan varusteen aiheuttama vetovastus. Äkeen piikkiin kohdistuu piikin tyypistä riippuen pystyvoima, mikä on poissa pyörien tai varpajyrän kuormasta. Jos äes on hyvin kevyt ja siinä käytetään pystypiikkejä, voi jopa käydä niin, että äkeen koko massa tarvitaan halutun muokkaussyvyyden saavuttamiseksi. Tällöin pyörien tai varpajyrän aiheuttama vetovastus on vähäinen, ja ladan vastus riippuu sen käyttötavasta. Pehmeillä multamailla äkeen massasta varsin suuri osa tulee pyörien tai varpajyrien kannettavaksi, jolloin varsinkin järeän s-piikkiäkeen aiheuttamasta vetovastuksesta merkittävä osa johtuu äkeen massan siirrosta. Multamailla äkeen painoksi riittää 10 kg piikkiä kohden. Tyypillisen hinattavan äkeen massa on 30 kg piikki. Tällöin esimerkiksi 5 m äkeen lisämassasta johtuva vetovastus voi pyörä-äkeellä olla kn, mikä on multamaaoloissa verrattavissa piikin aiheuttamaa vetovastukseen. Myös traktorin kulkuvastuksen voittamiseen voi kulua pehmeällä multamaalla enemmän polttoainetta kuin kantavalla kivennäismaalla. Yhteenvetona voi todeta, että vaikka piikin vastus olisikin alempi multamaalla, voi raskaan savimaan muokkaukseen tarkoitettu yhdistelmä kuluttaa polttoainetta multamaan muokkauksessa saman verran kuin savimaalla johtuen lisääntyneistä kulkuvastuksista. Useissa tutkimuksissa ja esityksissä on s-piikkiäkeellä tapahtuvan kylvömuokkauksen polttoaineen kulutukseksi esitetty 4 6 l/ha muokkauskertaa kohden. Ensimmäinen muokkauskerta on yleensä hieman toista ja mahdollisia seuraavia muokkauskeroja enemmän energiaa kuluttava. Jos lataa käytetään jatkuvaan maan siirtämiseen, voi polttoaineen kulutus helposti lisääntyä pari litraa hehtaaria kohti.

14 Kirjallisuusluettelo Ahokas, J. & Mikkola, H Traktorin polttoaineenkulutukseen vaikuttavia seikkoja. Vakolan tutkimuselostus nro 43. Vihti. Arvidsson, J Energy use efficiency in different tillage systems for winter wheat on a clay and silt loam in Sweden / Europ. J. Agronomy 33 (2010) Arvidsson, J. & Hillerström, O Specific draught, soil fragmentation and straw incorporation for different tine and share type. Soil & Tillage Research 110: Arvidsson, J., Keller, T. & Gustafsson, K Special draught for mouldboard plough, chisel plough and disc harrow at different water contents. Soil & Tillage Research 79 (2004) Clark, S., Schrock, M.D. & Kramer, J.A energy use in field operations opoturnities for conservation. Agricultural Engrg. Dept. Kansas State University. Manhattan, K.S. Danfors, B Bränsleförbrukning och avverkning vid olika system för jordbearbetning och sad. Olika sätt att spara motorbränsle och öka kapaciteten. Jordbrukstekniska institutet, meddelande nr 420. von Getzlaff, G Änderung der Kräfte bei Drehung der Pflugkörper aus der Normallage. Grundlagen der Landtechnik. Heft 3: Godwin, R.J A review of the effect of implement geometry on soil failure and implement forces. Soil & tillage Research 97: Godwin, R.J., Spoor, G. & Somroo, M.S The effect of tine arrangement on soil forces and disturbance. J. Agric. Eng. Res. 29: Godwin, R.J. & Spoor, G Soil Failure with Narrow Tines. J. Agric. Engng Res. 22: Håkansson, I., Stenberg, M., Rydberg, T Long-term experiments with different depths of mouldboard ploughing in Sweden. Soil & Tillage Research 46 (1998) Kheiralla, A.F., Yahya, A., Zohadie, M. & Ishak, W Modelling of power and energy requirements for tillageimplements operating in Serdang sandy clay loam, Malaysia. Soil & Tillage Research 78 (2004) McLaughlin, N.B., Drury, C.F., Reynolds, W.D., Yang, X.M, Li, Y.X., Welacky, T.W. & G. Stewart, G Energy inputs for conservation and conventional primary tillage implements in a clay loam soil. Transactions of the ASABE. 51(4): McLaughlin, N.B., MacLeod, J.A., Sanderson, J.B. & Ivany, J.A Effect of red clover (Trifolium pratense L.) kill with glyphosate on tillage implement draft. Soil & Tillage Research 79 (2004) McLauhglin, N.B., Gregorich, E.G., Dwyer, L.M. & Ma, B.L Effect of organic and inorganic soil nitrogen amendments on mouldboard draft. Soil & Tillage 64: Mikkola, H. & Ahokas, J Energy ratios in Finnish agricultural production. Agricultural and Food Science 18:

15 Mäkinen, A Joustopiikkiäkeen vetotehon tarve ja siihen vaikuttavat tekijät. Helsingin yliopisto, Maatalousteknologian laitos. 84 s. Laudaturtyö. Nalavade, P.P., Salokhe, V.M., Niyamapa, T. & Soni P Performance of Free Rolling and Powered Tillage Discs. Soil & Tillage Research 109 (2010) Natsis, A., Papadakis, G. & Pitsilis, J The Influence of Soil Type, Soil Water and Share Sharpness of a Mouldboard Plough on Energy Consumption, Rate of Work and Tillage Quality. J. Agric. Engng Res. (1999) 72, 171D176 Palonen, J. & Oksanen, E.H Labour, machinery and energy data bases in plant production. Työtehoseuran julkaisuja 330. Perfect, E., McLaughlin, N.B. & Kay, B.D Energy requirements for conventional tillage following different crop rotations. Transactions of the ASAE. VOL. 40(1): (Pedersen, S Plovens traekkraftbehov. Jordbruksteknisk Institut. Meddelelse 16.) ei tekstissä Pettersson, C-M Hur påverkas plogens dragkraftsbehov? Lantmannen 11: Uotila, P.J. & Liskola, K Kyntösyvyyden vaikutus traktorin polttoaineen kulutukseen, pyörien luistoon ja kyntökustannuksiin. Työtehoseuran maataloustiedotus s. Zentner, R.P., Lafond, G.P., Derksen, D.A., Nagyd, C.N., Wall, D.D. & MayW.E Effects of tillage method and crop rotation on non-renewable energy use efficiency for a thin Black Chernozem in the Canadian Prairies. Soil & Tillage Research 77 (2004)

Jussi Esala SeAMK Elintarvike ja maatalous

Jussi Esala SeAMK Elintarvike ja maatalous Muokkaus- ja kylvötöiden energiankulutus Jussi Esala SeAMK Elintarvike ja maatalous Muokkaustyöstä energiankulutukseen Tämä opas käsittelee polttoaineen kulutusta muokkaus- ja kylvötyössä. Oppaassa selvitetään,

Lisätiedot

Muokkauksen perusteet Maan muokkaus Muokkauksen energian kulutus Muokkauskokemuksia ja vähän tuloksiakin

Muokkauksen perusteet Maan muokkaus Muokkauksen energian kulutus Muokkauskokemuksia ja vähän tuloksiakin Muokkauksen ja kylvön perusteita, mitä tiedetään ja miten menetellään eri olosuhteissa MML Jussi Esala, yliopettaja (maatalousteknologia) Energia-akatemia Muokkauksen perusteet Maan muokkaus Muokkauksen

Lisätiedot

Kasvintuotannon energiankulutus. Peltotyöt Jussi Esala - SeAMK

Kasvintuotannon energiankulutus. Peltotyöt Jussi Esala - SeAMK Kasvintuotannon energiankulutus Peltotyöt Jussi Esala - SeAMK 2 Kasvintuotannon energiankulutus / peltotyöt Esityksen tarkastelutapa Suora energiankulutus Konekohtainen kulutus Työkone traktori kokosuhteen

Lisätiedot

Säästä polttoainetta. Säädä ja käytä muokkauskoneita oikein. Jussi Esala. SeAMK Elintarvike ja maatalous

Säästä polttoainetta. Säädä ja käytä muokkauskoneita oikein. Jussi Esala. SeAMK Elintarvike ja maatalous Säästä polttoainetta Säädä ja käytä muokkauskoneita oikein Jussi Esala SeAMK Elintarvike ja maatalous Työ ja polttoaineen kulutus Muokkauksen tavoitteena on tehdä maasta hyvä itämis- ja kasvualusta kasveille.

Lisätiedot

Energian säästö peltoviljelytöissä Jussi Esala. Askelia polttoaineen kulutustekijöiden ymmärtämiseen ja kulutuksen seuraamiseen

Energian säästö peltoviljelytöissä Jussi Esala. Askelia polttoaineen kulutustekijöiden ymmärtämiseen ja kulutuksen seuraamiseen Energian säästö peltoviljelytöissä Jussi Esala Askelia polttoaineen kulutustekijöiden ymmärtämiseen ja kulutuksen seuraamiseen Traktori ja työkone työssä > polttoaineen kulutus Polttoaineen kulutuksen

Lisätiedot

Peseekö käyttäjä tekniikan pihtauksessa Jussi Esala - SeAMK

Peseekö käyttäjä tekniikan pihtauksessa Jussi Esala - SeAMK Peseekö käyttäjä tekniikan pihtauksessa Jussi Esala - SeAMK Hanke Polttoaineen kulutuksen vähentäminen kasvinviljelytöissä Traktorin polttoainetta säästävät käyttöperiaatteet Kulutuksen seuranta Hanke

Lisätiedot

Maatalouskoneiden energiankulutus. Energian käyttö ja säästö maataloudessa Tapani Jokiniemi

Maatalouskoneiden energiankulutus. Energian käyttö ja säästö maataloudessa Tapani Jokiniemi Maatalouskoneiden energiankulutus Energian käyttö ja säästö maataloudessa Tapani Jokiniemi Kasvinviljelyn energiankulutus Valtaosa kasvinviljelyn käyttämästä energiasta (~ 50 % tai yli) kuluu lannoitteiden

Lisätiedot

Joker. Kompakti lautasäes sängen muokkaukseen ja kylvöalustan valmistamiseen

Joker. Kompakti lautasäes sängen muokkaukseen ja kylvöalustan valmistamiseen Joker Kompakti lautasäes sängen muokkaukseen ja kylvöalustan valmistamiseen MICHAEL HORSCH: Lautasmuokkaimemme ovat viime vuosina lunastaneet paikkansa nykyaikausessa maan muokkauksessa. Viljelijät arvostavat

Lisätiedot

Maatilan energian käyttö Jussi Esala - SeAMK. Hanke Maatilojen energian käyttö Energian käytön vähentäminen

Maatilan energian käyttö Jussi Esala - SeAMK. Hanke Maatilojen energian käyttö Energian käytön vähentäminen Maatilan energian käyttö Jussi Esala - SeAMK Hanke Maatilojen energian käyttö Energian käytön vähentäminen Hanke HY vetää kolmivuotista valtakunnallista hanketta SeAMK ja JAMK osatoteuttajia Manner-Suomen

Lisätiedot

Kevään 2018 muokkaus vaikean syksyn jälkeen. Hannu Mikkola Helsingin yliopisto, maataloustieteen laitos

Kevään 2018 muokkaus vaikean syksyn jälkeen. Hannu Mikkola Helsingin yliopisto, maataloustieteen laitos Kevään 2018 muokkaus vaikean syksyn jälkeen Hannu Mikkola Helsingin yliopisto, maataloustieteen laitos 26.1.2018 1 Värälän kylä, Elimäki o Suomen kyntämättä viljelyn historiassa Värälän kylä Elimellä on

Lisätiedot

VA K 0 LA. 1969 Koetusselostus 741 Test report

VA K 0 LA. 1969 Koetusselostus 741 Test report VA K 0 LA Rukkila ACV Helsinki 10 12;Z Helsinki 43 41 61 Pitäjizinmäki VALTION MAATALOUSKONEIDEN TUTKIMUSLAITOS Finnish Research Institute of Engineering in Agriculture and Forestry 1969 Koetusselostus

Lisätiedot

Maaseudun Energia-akatemia Arviointi oman tilan energian kulutuksesta

Maaseudun Energia-akatemia Arviointi oman tilan energian kulutuksesta Maaseudun Energia-akatemia Arviointi oman tilan energian kulutuksesta Maaseudun energia-akatemia Tavoitteena - Maatalouden energiatietouden ja energian tehokkaan käytön lisääminen - Hankkeessa tuotetaan

Lisätiedot

AINUTLAATUINEN DSD TEKNIIKKA

AINUTLAATUINEN DSD TEKNIIKKA DISCROLLER HEVA DiscRoller issa on kaikki tehokkaan muokkauskoneen pääpiirteet se toimii se on yksinkertainen ja mikä tärkeintä se säästää aikaa ja rahaa. HEVA DiscRoller in kahden vuoden kehityksen ja

Lisätiedot

Jukka Ahokas ja Hannu Mikkola Helsingin yliopisto Maataloustieteiden laitos - Agroteknologia

Jukka Ahokas ja Hannu Mikkola Helsingin yliopisto Maataloustieteiden laitos - Agroteknologia Jukka Ahokas ja Hannu Mikkola Helsingin yliopisto Maataloustieteiden laitos - Agroteknologia Autolla ajavat tietävät hyvin kuinka paljon auto kuluttaa polttoainetta 100 km kohti. Maataloustöissä kulutustietoja

Lisätiedot

Asiantuntijasi rikkojen torjunnassa

Asiantuntijasi rikkojen torjunnassa Asiantuntijasi rikkojen torjunnassa Kun viljelykasvien valikoima on laaja, kasvit ovat eri kasvuasteilla ja rivivälit erilevyisiä, ei oikean koneen löytäminen ole helppoa. Usein huomaat etteivät valmistajien

Lisätiedot

Konetyönäytöspäivä Juvalla 12.7.2013

Konetyönäytöspäivä Juvalla 12.7.2013 Konetyönäytöspäivä Juvalla 12.7.2013 2014 Anne Tillanen, Pirjo Kivijärvi ja Veikko Hintikainen MTT 28.2.2014 *************************************************************************************** Tilaisuuden

Lisätiedot

Pellon tasaus. Magnus Selenius Maanviljelijä Espoo 3.11.2010

Pellon tasaus. Magnus Selenius Maanviljelijä Espoo 3.11.2010 Pellon tasaus Magnus Selenius Maanviljelijä Espoo 3.11.2010 Nybyn tilan peltomaisemaa Pellot ovat pääosin varsin tasaisia Lohkojen koko n. 3-15 ha Kuva: Jukka Rajala 2 3.11.2010 Tasaisia peltoja Kuva:

Lisätiedot

Palkokasvien lannoitusvaikutuksen arviointi. Reijo Käki Luomun erikoisasiantuntija ProAgria

Palkokasvien lannoitusvaikutuksen arviointi. Reijo Käki Luomun erikoisasiantuntija ProAgria Palkokasvien lannoitusvaikutuksen arviointi Reijo Käki Luomun erikoisasiantuntija ProAgria 04.02.2012 Lannoitusvaikutuksen arviointi Tehdään viljelykierrolle Määritellään kasvien typentarve Lasketaan typenlähteet

Lisätiedot

Hakkurit. Ympäristönhoidosta urakointiin

Hakkurit. Ympäristönhoidosta urakointiin Hakkurit Ympäristönhoidosta urakointiin Puhumme kokemuksesta Junkkarin hakkurit ovat tyypiltään laikkahakkureita. Meillä on kokemusta niiden valmistamisesta jo yli 30 vuoden ja 10.000 laitteen verran.

Lisätiedot

VALTION MAATALOUSTEKNOLOGIAN TUTKIMUSLAITOS STATE RESEARCH INSTITUTE OF ENGINEERING IN AGRICULTURE AND FORESTRY

VALTION MAATALOUSTEKNOLOGIAN TUTKIMUSLAITOS STATE RESEARCH INSTITUTE OF ENGINEERING IN AGRICULTURE AND FORESTRY Vi-AKCn) PPA 1 03400 VIHTI 913-46 211 VALTION MAATALOUSTEKNOLOGIAN TUTKIMUSLAITOS STATE RESEARCH INSTITUTE OF ENGINEERING IN AGRICULTURE AND FORESTRY KOETUSSELOSTUS TEST REPORT NUMERO 1197 RYHMÄ 13 VUOSI

Lisätiedot

Väyläleikkurimallisto JD 7000 ja JD 8000. John Deere Erinomainen leikkuujälki

Väyläleikkurimallisto JD 7000 ja JD 8000. John Deere Erinomainen leikkuujälki Väyläleikkurimallisto JD 7000 ja JD 8000 John Deere Erinomainen leikkuujälki Helppo suoraan ajettavuus on väyläleikkurin tärkeimpiä ominaisuuksia. Maailman suurimpana golfkenttien hoitokoneiden valmistajana

Lisätiedot

Peltokuivatuksen tarve

Peltokuivatuksen tarve Peltokuivatuksen tarve Peltokuivatuksen tarve ja vesistövaikutukset Gårdskulla Gård, Siuntio 2.6.2014 Laura Alakukku, Helsingin yliopisto, maataloustieteiden laitos Maatalous-metsä tieteellinen tiedekunta

Lisätiedot

HONDA PELAA VARMASTI.

HONDA PELAA VARMASTI. Lumilingot 2014-2015 HONDA PELAA VARMASTI. Honda-lumilinkojen perusominaisuuksiin kuuluvat varmatoimisuus, suuri suorituskyky ja helppo hallittavuus. Hondan ylistettyjä ominaisuuksia ovat leveä ja korkea

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

Kverneland Taarup 9032 / 9035 / 9039

Kverneland Taarup 9032 / 9035 / 9039 Kverneland Taarup 9032 / 9035 / 9039 Yksiroottorinen karhotin Murtosokkasuojattu voimansiirto roottorille Säädettävä karhotinpressu Kokoon taitettavat turvakaiteet Korkealaatuiset Super-C piikit, 9 mm

Lisätiedot

Pellon muokkaus ja viljan kylväminen. Itä-Suomen maahanmuuttajien osaamisen kehittämisen pilotti (ISMO) -hanke

Pellon muokkaus ja viljan kylväminen. Itä-Suomen maahanmuuttajien osaamisen kehittämisen pilotti (ISMO) -hanke Pellon muokkaus ja viljan kylväminen Itä-Suomen maahanmuuttajien osaamisen kehittämisen pilotti (ISMO) -hanke Viljanviljelyn vaiheet 1. Perusmuokkaus 2. Kylvömuokkaus 3. Lannanlevitys 4. Kylväminen 5.

Lisätiedot

Suorakylvön hyödyt kymmenen keskeisintä syytä suorakylvöön

Suorakylvön hyödyt kymmenen keskeisintä syytä suorakylvöön Suorakylvön hyödyt kymmenen keskeisintä syytä suorakylvöön 1. Suorakylvö säästää polttoainetta Perinteisellä viljelymenetelmällä polttoaineen kulutus voi olla viisinkertainen suorakylvöön verrattuna Halpa

Lisätiedot

Rehumaissin viljelyohjeet Juha Anttila 2013

Rehumaissin viljelyohjeet Juha Anttila 2013 Rehumaissin viljelyohjeet Juha Anttila 2013 MAISSI Maissi reagoi päivän pituuteen. Kasvu nopeutuu vasta päivien lyhetessä heinäkuun puolivälissä Maissin tärkein osa on tähkä, tavoite maito/taikinatuleentuminen

Lisätiedot

1) Haarautuminen vähäistä, epätasaisesti jakautunut maaprofiiliin 0) Ei juuri ollenkaan sivuhaaroja, juurissa jyrkkiä mutkia ja juuret osin litteitä

1) Haarautuminen vähäistä, epätasaisesti jakautunut maaprofiiliin 0) Ei juuri ollenkaan sivuhaaroja, juurissa jyrkkiä mutkia ja juuret osin litteitä LIITE 4. Pellon kunnon havaintolomake LOHKON NIMI: Yleishavainnot lohkolla 1. Pellon kuivuminen muokkauskuntoon keväällä (lohkon sijainti ja kaltevuus huomioiden) 1) Ensimmäisiä lohkoja paikkakunnan olosuhteisiin

Lisätiedot

Energiatehokkaat maatalouskoneet. Jukka Ahokas Helsingin Yliopisto Maataloustieteiden laitos

Energiatehokkaat maatalouskoneet. Jukka Ahokas Helsingin Yliopisto Maataloustieteiden laitos Energiatehokkaat maatalouskoneet Jukka Ahokas Helsingin Yliopisto Maataloustieteiden laitos Kasvintuotanto Ruiskutus 1 % Kasvinsuojelu 5 % Puinti 6 % Kuljetus 0 % Kuivaus 11 % Kyntö 10 % Tasausäestys 2

Lisätiedot

Finnish Research Institute of Agricultural Engineering

Finnish Research Institute of Agricultural Engineering Helsinki Rukkila VAKOLA Helsinki 43 41 61 PltäJänmökl VALTION MAATALOUSKONEIDEN TUTKIMUSLAITOS Finnish Research Institute of Agricultural Engineering 1963 Koetusselostus 473 Test report WÄRTSILÄ-VÄKILANNOITTEENLEVITIN

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2016 Nimi: Henkilötunnus: VASTAUSOHJEET 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan klo

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

LAUTASMUOKKAIN RUBIN 12

LAUTASMUOKKAIN RUBIN 12 LAUTASMUOKKAIN RUBIN 12 Syvempi, nopeampi ja tehokkaampi muokkaus: Rubin 12 2 Aikaisemmilla lautasmuokkaimilla voitiin tehokkaasti ja tasaisesti sekoittaa kasvijätteitä ja maata noin 12 cm syvyyteen. Rubin

Lisätiedot

VA K 0 LA. 1960 Koetusselostus 371. Tehonmittauskoe 1 )

VA K 0 LA. 1960 Koetusselostus 371. Tehonmittauskoe 1 ) VA K 0 LA 4A' Helsinki Rukkila 2 Helsinki 43 48 12 Pitäjänmäki VALTION MAATALOUSKONEIDEN TUTKIMUSLAITOS Finnish Research Institute of Agricultural Engineering 1960 Koetusselostus 371 Tehonmittauskoe 1

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

PR0 CE S S 0 R -MON ITOI MIKONE

PR0 CE S S 0 R -MON ITOI MIKONE 25/1970 KOCKUM PR0 CE S S 0 R 7 8 ATK -MON ITOI MIKONE Huhtikuussa 1970 Kockum Söderhamn AB esitti uuden karsinta-katkontakoneen prototyypin, joka suorittaa myös puutavaran lajittelun ja kasauksen. Sitä

Lisätiedot

FR28 KUORMATRAKTORI. Ylivoimaa harvennukseen

FR28 KUORMATRAKTORI. Ylivoimaa harvennukseen FR28 KUORMATRAKTORI Ylivoimaa harvennukseen FR28 Kuormatraktori Sampo-Rosenlew Oy vastaa kysyntään esittelemällä FR28 kuormatraktorin, joka on harvennusten erikoiskone. 10 tonnin hyötykuormallaan se sopii

Lisätiedot

Rehumaissin viljelyohjeet

Rehumaissin viljelyohjeet Rehumaissin viljelyohjeet MAISSI Maissi reagoi päivän pituuteen. Kasvu nopeutuu vasta päivien lyhetessä heinäkuun puolivälissä. Maissin tärkein osa on tähkä, tavoite maito/taikinatuleentuminen Activate

Lisätiedot

JOUSTOPIIKKIÄKEET. Maxer Pro Maxer Master Pro Master Premium SK. www.k-maatalous.fi

JOUSTOPIIKKIÄKEET. Maxer Pro Maxer Master Pro Master Premium SK. www.k-maatalous.fi 2014 JOUSTOPIIKKIÄKEET Maxer Pro Maxer Master Pro Master Premium SK www.k-maatalous.fi K-MAATALOUS Maxer Pro Maxer Pro Maxer Pro on tarkoitettu sekä syksyllä että keväällä tapahtuvaan muokkaukseen sekä

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

Esittelykoneen lisävarusteet: Isot renkaat 19.0/45-17 (norm. 400/60-15.5), Hydraulisesti kokoon taittuva varpajyrä, 2 kpl maantasoituslevyjä.

Esittelykoneen lisävarusteet: Isot renkaat 19.0/45-17 (norm. 400/60-15.5), Hydraulisesti kokoon taittuva varpajyrä, 2 kpl maantasoituslevyjä. Esittelykonehinnasto - Kuhn maanmuokkaus Kuhn Discover XM 32 lautasäes: Koneella on ajettu noin 30 hehtaaria. Sarjanumero A1380. Valmistusvuosi 2010. Koneessa on voimassa tehdastakuu 1v. Vakiovarusteet:

Lisätiedot

Potila TUOTTEET. Joustopiikkiäkeet Kultivaattorit Pintaäkeet. www.k-maatalous.fi

Potila TUOTTEET. Joustopiikkiäkeet Kultivaattorit Pintaäkeet. www.k-maatalous.fi Potila TUOTTEET Joustopiikkiäkeet Kultivaattorit Pintaäkeet www.k-maatalous.fi K-MAATALOUS DETAIL A SCALE 6:25 Maxer Pro Maxer Pro Maxer Pro on tarkoitettu sekä syksyllä että keväällä tapahtuvaan muokkaukseen

Lisätiedot

VALTION MAATALOUSTEKNOLOGIAN TUTKIMUSLAITOS STATE RESEARCH INSTITUTE OF ENGINEERING IN AGRICULTURE AND FORESTRY

VALTION MAATALOUSTEKNOLOGIAN TUTKIMUSLAITOS STATE RESEARCH INSTITUTE OF ENGINEERING IN AGRICULTURE AND FORESTRY V/Ii1C:n) PPA 1 03400 VIHTI 913-46211 VALTION MAATALOUSTEKNOLOGIAN TUTKIMUSLAITOS STATE RESEARCH INSTITUTE OF ENGINEERING IN AGRICULTURE AND FORESTRY KOETUSSELOSTUS TEST REPORT NUMERO 1203 RYHMÄ 13 VUOSI

Lisätiedot

SADANTA LISÄÄNTYY JA EROOSION RISKI KASVAA: VARAUTUMISKEINOJA JA KOKEMUKSIA TILOILTA

SADANTA LISÄÄNTYY JA EROOSION RISKI KASVAA: VARAUTUMISKEINOJA JA KOKEMUKSIA TILOILTA SADANTA LISÄÄNTYY JA EROOSION RISKI KASVAA: VARAUTUMISKEINOJA JA KOKEMUKSIA TILOILTA Janne Heikkinen, TEHO Plus hanke Ilmaston muutos ja maaseutu (ILMASE) hankkeen työpaja 1.11.2012 Piispanristi ESITYKSEN

Lisätiedot

VOLVO S60 & V60 DRIV. Lisäys käyttöohjekirjaan

VOLVO S60 & V60 DRIV. Lisäys käyttöohjekirjaan VOLVO S60 & V60 DRIV Lisäys käyttöohjekirjaan Tästä lisäyksestä Tämä painotuote Tämä käyttöohje on auton käyttöohjekirjaa täydentävä lisäys. Volvo Personvagnar AB Lisäys käsittelee tämän automallin varsinaisen

Lisätiedot

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + =

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + = Mikä X? Esimerkki: Merkitse yhtä puuta kirjaimella ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3 + 2 = 5 + = 5 + = 1. Merkitse yhtä päärynää kirjaimella ja kirjoita yhtälöksi? Mikä tulee vastaukseksi?

Lisätiedot

Harjoitus 2: Hydrologinen kierto 30.9.2015

Harjoitus 2: Hydrologinen kierto 30.9.2015 Harjoitus 2: Hydrologinen kierto 30.9.2015 Harjoitusten aikataulu Aika Paikka Teema Ke 16.9. klo 12-14 R002/R1 1) Globaalit vesikysymykset Ke 23.9 klo 12-14 R002/R1 1. harjoitus: laskutupa Ke 30.9 klo

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Maan hoito muokkaamalla - muokkaus minimiin ja tiivistymät pois. Tuomas J. Mattila Kilpiän tila

Maan hoito muokkaamalla - muokkaus minimiin ja tiivistymät pois. Tuomas J. Mattila Kilpiän tila Maan hoito muokkaamalla - muokkaus minimiin ja tiivistymät pois Tuomas J. Mattila Kilpiän tila Muokkaus herättää voimakkaita tunteita Ray Archuleta, Slake test puoleen jos toiseen From the Soil Up, Donald

Lisätiedot

HARJOITUS 4 1. (E 5.29):

HARJOITUS 4 1. (E 5.29): HARJOITUS 4 1. (E 5.29): Työkalulaatikko, jonka massa on 45,0 kg, on levossa vaakasuoralla lattialla. Kohdistat laatikkoon asteittain kasvavan vaakasuoran työntövoiman ja havaitset, että laatikko alkaa

Lisätiedot

Kuva 1. VILMO-VÄKILANNOITTEENLEVITYSKONE, hevosvetoinen, malli 510

Kuva 1. VILMO-VÄKILANNOITTEENLEVITYSKONE, hevosvetoinen, malli 510 VAKO LA Postios. Helsinki RukkIla Puhelin Helsinki 84 78 12 Routatieas. Pita jänmiikl VALTION MAATALOUSKONEIDEN TUTKIMUSLAITOS 1954 Koetusselostus 158 Kuva 1 VILMO-VÄKILANNOITTEENLEVITYSKONE, hevosvetoinen,

Lisätiedot

Yleistietoja polttoaineenkulutuksesta. Yhteenveto PGRT

Yleistietoja polttoaineenkulutuksesta. Yhteenveto PGRT Yhteenveto Yhteenveto Tässä asiakirjassa esitellään ja selitetään lyhyesti ajoneuvon polttoaineenkulutukseen vaikuttavat tekijät. Ajoneuvon polttoaineenkulutukseen vaikuttavat useat eri tekijät: Renkaat

Lisätiedot

monipuolinen ilmaverho

monipuolinen ilmaverho monipuolinen ilmaverho Mitä patentoitu (no.: 4415079 C2) tarjoaa perinteisiin malleihin nähden järjestelmä korkea suojausteho alhainen energia kulutus matala melutaso helppokäyttöisyys ja säätömahdollisuudet

Lisätiedot

Ratapihaan liittyvien alueiden sekä kaupungintalon tontin asemakaavamuutoksen tärinäselvitys Suonenjoen kaupunki

Ratapihaan liittyvien alueiden sekä kaupungintalon tontin asemakaavamuutoksen tärinäselvitys Suonenjoen kaupunki Ratapihaan liittyvien alueiden sekä kaupungintalon tontin asemakaavamuutoksen tärinäselvitys Suonenjoen kaupunki 27.8.2014 1 Taustatiedot Suonenjoen kaupungin keskustassa on käynnissä asemakaavatyö, jonka

Lisätiedot

Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma, joka löytyy netistä.

Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma, joka löytyy netistä. Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma, joka löytyy netistä. Alla on a)-vaiheen monivalintakysymyksiä. Pääsykokeessa on joko samoja tai samantapaisia. Perehdy siis huolella niihin.

Lisätiedot

Energia-alan keskeisiä termejä. 1. Energiatase (energy balance)

Energia-alan keskeisiä termejä. 1. Energiatase (energy balance) Energia-alan keskeisiä termejä 1. Energiatase (energy balance) Energiataseet perustuvat energian häviämättömyyden lakiin. Systeemi rajataan ja siihen meneviä ja sieltä tulevia energiavirtoja tarkastellaan.

Lisätiedot

FYSIIKAN HARJOITUSTEHTÄVIÄ

FYSIIKAN HARJOITUSTEHTÄVIÄ FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on

Lisätiedot

301.4C. Minikaivukone

301.4C. Minikaivukone 301.4C Minikaivukone Moottori Nettoteho 13,2 kw 17,7 hp Paino Työpaino turvakaaren kanssa 1 380 kg 3 042 lb Työpaino ohjaamon kanssa 1 470 kg 3 241 lb Monipuolisuus Helppo kuljettaa ja käyttää erilaisilla

Lisätiedot

VALTION MAATALOUSKONEIDEN TUTKIMUSLAITOS

VALTION MAATALOUSKONEIDEN TUTKIMUSLAITOS VALTION MAATALOUSKONEIDEN TUTKIMUSLAITOS Postios. Helsinki Rukkila Puh. Helsinki 847812 Rautatieas. Pitäjänmäki Koetusselostus 112 1952 JO-BU-SENIOR polttomoottorisaha Ilmoittaja: Oy Seanpor t A b, Helsinki.

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

50 vuotta Väderstadin varmoja ratkaisuja

50 vuotta Väderstadin varmoja ratkaisuja 1962-2012 50 vuotta Väderstadin varmoja ratkaisuja 1962-2012 2 Auraton viljely asettaa viljelijälle kovia haasteita. Oikeiden toimintatapojen valintaan vaikuttavat useat tekijät, kuten esikasvi ja seuraavan

Lisätiedot

MEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta

MEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta MEKANIIKAN TEHTÄVIÄ Ympyröi oikea vaihtoehto. Normaali ilmanpaine on a) 1013 kpa b) 1013 mbar c) 1 Pa Kappaleen liike on tasaista, jos a) kappaleen paikka pysyy samana b) kappaleen nopeus pysyy samana

Lisätiedot

Viljankäsittelyn tehostaminen tulevaisuuden yksiköissä Jukka Ahokas & Hannu Mikkola Maataloustieteiden laitos Helsingin yliopisto

Viljankäsittelyn tehostaminen tulevaisuuden yksiköissä Jukka Ahokas & Hannu Mikkola Maataloustieteiden laitos Helsingin yliopisto Viljankäsittelyn tehostaminen tulevaisuuden yksiköissä Jukka Ahokas & Hannu Mikkola Maataloustieteiden laitos Helsingin yliopisto ravikeskus 2.10.2013 www.helsinki.fi/yliopisto 3.10.2013 1 Kuivauksen tehostamisen

Lisätiedot

VICON TWIN-SET-LANNOITTEENLEVITIN

VICON TWIN-SET-LANNOITTEENLEVITIN &CO Helsinki Rukkila VAK LA Helsinki 43 41 61 VALTION MAATALOUSKONEIDEN TUTKIMUSLAITOS Finnish Research Institute of Agricultural Engineering 1964 Koetusselostus 496 Test report VICON TWIN-SET-LANNOITTEENLEVITIN

Lisätiedot

YLIVOIMAINEN KUMINAKETJU KYLVÖSIEMENMÄÄRÄN VAIKUTUS TAIMETTUMISEEN JA SATOON

YLIVOIMAINEN KUMINAKETJU KYLVÖSIEMENMÄÄRÄN VAIKUTUS TAIMETTUMISEEN JA SATOON 1 YLIVOIMAINEN KUMINAKETJU KYLVÖSIEMENMÄÄRÄN VAIKUTUS TAIMETTUMISEEN JA SATOON Erikoistutkija Marjo Keskitalo, MTT Kasvintuotannon tutkimus, Jokioinen. marjo.keskitalo@mtt.fi KOKEEN TAUSTAA Kuminan kylvösiemenmääräksi

Lisätiedot

Taloudellisen ajon koulutusta viljelijöille. Koulutuspaketti Hämeenlinna 11.12.2013 Fredrik Ek, Markku Lappi, Maarit Kari, ProAgria

Taloudellisen ajon koulutusta viljelijöille. Koulutuspaketti Hämeenlinna 11.12.2013 Fredrik Ek, Markku Lappi, Maarit Kari, ProAgria Taloudellisen ajon koulutusta viljelijöille Koulutuspaketti Hämeenlinna 11.12.2013 Fredrik Ek, Markku Lappi, Maarit Kari, ProAgria Historiaa Kasvihuonekaasupäästöjen päälähteet maataloudessa Typen oksidit;

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

VUOROVAIKUTUS JA VOIMA

VUOROVAIKUTUS JA VOIMA VUOROVAIKUTUS JA VOIMA Isaac Newton 1642-1727 Voiman tunnus: F Voiman yksikkö: 1 N (newton) = 1 kgm/s 2 Vuorovaikutus=> Voima Miten Maa ja Kuu vaikuttavat toisiinsa? Pesäpallon ja Maan välinen gravitaatiovuorovaikutus

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

PARAS KYLVÖLANNOITIN KAIKKIIN OLOSUHTEISIIN.

PARAS KYLVÖLANNOITIN KAIKKIIN OLOSUHTEISIIN. NOVA COMBI PARAS KYLVÖLANNOITIN KAIKKIIN OLOSUHTEISIIN. Nova Combi on yleiskylvölannoitin kaikille viljelymenetelmille ja kaikille maalajeille. Kone käy rajoituksetta niin suorakylvöön, minimimuokattuun

Lisätiedot

Traktorit ja työkoneet Jukka Ahokas

Traktorit ja työkoneet Jukka Ahokas Traktorit ja työkoneet Jukka Ahokas 1 Sisältö 1 Traktorimoottorit 4 1.1 Traktorimoottorit......................................... 4 1.2 Moottorin polttoainetalous.................................... 5

Lisätiedot

Viljavuuden hoito -Osa 2 -Hyvän rakenteen ylläpito. Jukka Rajala Erikoissuunnittelija Helsingin yliopisto, Ruralia-instituutti 2012

Viljavuuden hoito -Osa 2 -Hyvän rakenteen ylläpito. Jukka Rajala Erikoissuunnittelija Helsingin yliopisto, Ruralia-instituutti 2012 Viljavuuden hoito -Osa 2 -Hyvän rakenteen ylläpito Jukka Rajala Erikoissuunnittelija Helsingin yliopisto, Ruralia-instituutti 2012 Mihin suuntaan pellon viljavuus kehittyy? Runsaasti pieneliöstön ravintoa

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma

KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma Sekä A- että B-osiosta tulee saada vähintään 10 pistettä. Mikäli A-osion pistemäärä on vähemmän kuin 10 pistettä,

Lisätiedot

Vähennä energian kulutusta ja kasvata satoa kasvihuoneviljelyssä

Vähennä energian kulutusta ja kasvata satoa kasvihuoneviljelyssä Avoinkirje kasvihuoneviljelijöille Aiheena energia- ja tuotantotehokkuus. Vähennä energian kulutusta ja kasvata satoa kasvihuoneviljelyssä Kasvihuoneen kokonaisenergian kulutusta on mahdollista pienentää

Lisätiedot

Luku 7 Energiansäästö

Luku 7 Energiansäästö Luku 7 Energiansäästö Asko J. Vuorinen Ekoenergo Oy Pohjana: Energiankäyttäjän käsikirja 2013 1 Sisältö Energialasku Lämmitys Sähkö Liikenne Ravinto 2 ENERGIALASKU 3 Perheen energialasku Asuminen Kulutuskohde

Lisätiedot

KIVI-PEKKA KIVI-PEKKA

KIVI-PEKKA KIVI-PEKKA KIVI-PEKKA PELTOTYÖKONEET KIVENKERÄYSKONE MUOKKAIN MULTIVAATTORI LIETELANNAN KIEKKOMULTAIN Myynti, valmistus, huolto ja varaosat SEPPÄLÄNSALMENTIE 181 58900 RANTASALMI KIVI-PEKKA KIVENKERÄYSKONE OMINAISUUDET

Lisätiedot

Onko peltobiomassan viljely ja jalostaminen energiaksi energiatehokasta - Syökö peltoenergiakasvien

Onko peltobiomassan viljely ja jalostaminen energiaksi energiatehokasta - Syökö peltoenergiakasvien Jussi Esala, SeAMK Onko peltobiomassan viljely ja jalostaminen energiaksi energiatehokasta - Syökö peltoenergiakasvien tuotantoon ja jalostukseen kuluva energia kasveista saatavan energiahyödyn? Bioenergiapotentiaali

Lisätiedot

Traktorit ja työkoneet Jukka Ahokas

Traktorit ja työkoneet Jukka Ahokas Traktorit ja työkoneet Jukka Ahokas 1 Esipuhe Tämä materiaali on tuotettu Euroopan maaseudun kehittämisen maatalousrahaston rahoittaman Maaseudun Energia-akatemia nimisen hankkeen (http://www.energia-akatemia.fi)

Lisätiedot

Maan rakenteen hallinta ja pellon kuivatus

Maan rakenteen hallinta ja pellon kuivatus Maan rakenteen hallinta ja pellon kuivatus Tuomas Mattila ja Jukka Rajala Yliopistotutkija ja maanviljelijä Helsingin yliopisto Ruralia-instituutti 13.12.2018 Huittinen Rikalan Säätiö Maan rakenteen hallinta

Lisätiedot

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen 4.3 Newtonin II laki Esim. jääkiekko märällä jäällä: pystysuuntaiset voimat kumoavat toisensa: jään kiekkoon kohdistama tukivoima n on yhtäsuuri, mutta vastakkaismerkkinen kuin kiekon paino w: n = w kitka

Lisätiedot

Kalium porraskokeen tuloksia Sokerijuurikkaan Tutkimuskeskus (SjT)

Kalium porraskokeen tuloksia Sokerijuurikkaan Tutkimuskeskus (SjT) Kalium porraskokeen tuloksia 2013-2016 Sokerijuurikkaan Tutkimuskeskus (SjT) Maaperän Kalium-pitoisuus Vuoden 2012 yhteenvedosta voidaan todeta, että juurikasmaiden kaliumin (K) määrä on karkean arvion

Lisätiedot

Lumen teknisiä ominaisuuksia

Lumen teknisiä ominaisuuksia Lumen teknisiä ominaisuuksia Lumi syntyy ilmakehässä kun vesihöyrystä tiivistyneessä lämpötila laskee alle 0 C:n ja pilven sisällä on alijäähtynyttä vettä. Kun lämpötila on noin -5 C, vesihöyrystä, jäähiukkasista

Lisätiedot

NOSTOLAITE KULTIVAATTOREIDEN KÄYTTÖOHJE

NOSTOLAITE KULTIVAATTOREIDEN KÄYTTÖOHJE POTILA NOSTOLAITE KULTIVAATTOREIDEN KÄYTTÖOHJE Mallit KK 13, KK 15, KK 17 ja KK 19 Kiikostentie 7 FIN-38360 KIIKOINEN FINLAND Puh. 02 5286 500 Fax. 02 5531 385 POTILA NOSTOLAITEKULTIVAATTORIEN KÄYTTÖOHJE

Lisätiedot

KÄYTTÖOHJE TARKKUUSVANNAS KÄYTTÖ HUOLTO

KÄYTTÖOHJE TARKKUUSVANNAS KÄYTTÖ HUOLTO KÄYTTÖOHJE TARKKUUSVANNAS KÄYTTÖ HUOLTO Tarkkuusvantaan kylvösyvyyden säätö Tarkkuusvantaan (ks. Kuva 1) kylvösyvyys säädetään vannaskohtaisesti kylkipyörän (osa 1.1) korkeutta säätämällä. Kylkipyörän

Lisätiedot

Muokkaus ja kylvö. Löydät valikoimastamme maan parhaat kylvösiemenet aina viljanviljelystä nurmikasveihin sekä öljy- ja valkuaiskasveille.

Muokkaus ja kylvö. Löydät valikoimastamme maan parhaat kylvösiemenet aina viljanviljelystä nurmikasveihin sekä öljy- ja valkuaiskasveille. Rehuherneen viljely Kasvulohkon valinta Herneen viljely onnistuu parhaiten ilmavilla, hyvärakenteisilla hietasavilla, jäykillä savikoilla ja hienoilla hiedoilla. Runsasmultaisia maita tulee välttää johtuen

Lisätiedot

VOIT KYLVÄÄ AINA VALINTASI MUKAAN SÄNGELLE NURMELLE MUOKATULLE

VOIT KYLVÄÄ AINA VALINTASI MUKAAN SÄNGELLE NURMELLE MUOKATULLE VOIT KYLVÄÄ AINA VALINTASI MUKAAN SÄNGELLE NURMELLE MUOKATULLE Tavanomainen viljely Auraton viljely Suorakylvö Tavanomainen viljely Auraton viljely Suorakylvö Tavanomainen viljely Auraton viljely Suorakylvö

Lisätiedot

paras kylvölannoitin kaikkiin olosuhteisiin paras kylvötarkkuus paras kylvötalous Tuottavuutta tiloille! Euroja säästyy Pieni vetovastus, kaikki osat pyöriviä. Kevyt vetää, jopa alle 90 hv traktorilla

Lisätiedot

Siemenmäärän merkitys suorakylvetyn kuminan kasvulle

Siemenmäärän merkitys suorakylvetyn kuminan kasvulle Siemenmäärän merkitys suorakylvetyn kuminan kasvulle Hannu Känkänen MTT Kasvintuotannon tutkimus PAREMPAA SATOA KUMINASTA -seminaari 12.11.2012 Loimaa, 19.11.2012 Ilmajoki Kylvötiheyskoe muokatussa ja

Lisätiedot

Slootsmid veitsimultain

Slootsmid veitsimultain Slootsmid veitsimultain Slootsmid B.V. Hollantilainen yritys joka on perustettu v. 1960 Euroopan johtava multauslaitteiden valmistaja Erikoistunut ainoastaan lietteen multauslaitteiden valmistukseen Kultivaattorimultain

Lisätiedot

SPIRALAIR -KOMPRESSORIT K1-4 K6-8 COMBI KS1-4 KS6 5 MULTI PUHTAUS HILJAISUUS

SPIRALAIR -KOMPRESSORIT K1-4 K6-8 COMBI KS1-4 KS6 5 MULTI PUHTAUS HILJAISUUS SPIRALAIR -KOMPRESSORIT K1-4 K6-8 COMBI KS1-4 KS6 5 MULTI PUHTAUS HILJAISUUS KYLMÄ KS / T Integroitu kuivain PUHTAUS PUHDASTA ILMAA Ilmaa puhtaimmassa muodossaan Teollisen prosessin tehokkuus ja tuotteiden

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

S M D. Uuden sukupolven kylvökoneet

S M D. Uuden sukupolven kylvökoneet S M D Uuden sukupolven kylvökoneet Junkkarin uusi kylvökonemallisto on jaettu kolmeen eri sarjaan. Moduulirakenteisuuden ansiosta voit valita helposti oikeat työkalut eri tarpeisiin. Perinteiseen Junkkarityyliin

Lisätiedot

Maan tiivistymisen välttäminen. Tuomas Mattila Maaperäilta,

Maan tiivistymisen välttäminen. Tuomas Mattila Maaperäilta, Maan tiivistymisen välttäminen Tuomas Mattila Maaperäilta, 4.12.2018 Maan tiivistyminen Tiivistymisen haitat Aina tiivistyminen ei näy raitoina Koneketju: 1,6 m kyntö, 6 m lietevaunu, 3,8 m puimuri, 4

Lisätiedot

VAKOLAn tiedote no 38/86 ERIPAINOS KONEVIESTI n:o 12/86 VALTION MAATALOUSKONEIDEN TUTKIMUSLAITOS. j ikklaihijaijänniiiia JA POLTTOAINEEN KULUTUS

VAKOLAn tiedote no 38/86 ERIPAINOS KONEVIESTI n:o 12/86 VALTION MAATALOUSKONEIDEN TUTKIMUSLAITOS. j ikklaihijaijänniiiia JA POLTTOAINEEN KULUTUS 0340 OLKKALA 93-462 VALTON MAATALOUSKONEDEN TUTKMUSLATOS STATE RESEARCH NSTTUTE OF ENGNEERNG N AGRCULTURE AND FORESTRY j ikklaihijaijänniiiia JA POLTTOANEEN KULUTUS VAKOLAn tiedote no 38/86 ERPANOS KONEVEST

Lisätiedot

Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä

Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä Yleista Sorptioroottorin jäähdytyskoneiston jäähdytystehontarvetta alentava vaikutus on erittän merkittävää

Lisätiedot

PÖTTINGER TERRADISC. Lautasmuokkaimet 97+237.15.0113. Kaikki tiedot verkosta

PÖTTINGER TERRADISC. Lautasmuokkaimet 97+237.15.0113. Kaikki tiedot verkosta PÖTTINGER TERRADISC Lautasmuokkaimet Kaikki tiedot verkosta 97+237.15.0113 1 TERRADISC 3001 / 3501 / 4001 / 5001 / 6001 Muokkauksen yleiskone Lautasmuokkaimet, työleveydet 3,0 6,0 m Sadonkorjuun jälkeen

Lisätiedot