Tutorial on Assignment 3 in Data Mining 2008 Association Rule Mining. Gyozo Gidofalvi Uppsala Database Laboratory
|
|
- Riitta Heikkilä
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tutorial on Assignment 3 in Data Mining 2008 Association Rule Mining Gyozo Gidofalvi Uppsala Database Laboratory
2 Announcements Monday the 15 th of December, has been added as a possible date for examination of assignment 3 and/or 4. Updated course home page with assignment 3 material. 11/26/2008 Gyozo Gidofalvi 2
3 Outline Association rules and Apriori-based frequent itemset mining Frequent pattern growth based frequent itemset mining Amos II / AmosQL crash course Frequent itemset mining - elements of a DB implementation using Amos II / AmosQL The assignment 11/26/2008 Gyozo Gidofalvi 3
4 Association Rules and Apriori-Based Frequent Itemset Mining
5 Association Rules The Basic Idea By examining transactions, or shop carts, we can find which items are commonly purchased together. This knowledge can be used in advertising or in goods placement in stores. Association rules have the general form: I 1 I 2 where I 1 and I 2 are disjoint sets of items that for example can be purchased in a store. The rule should be read as: Given that someone has bought the items in the set I 1 they are likely to also buy the items in the set I 2. 11/26/2008 Gyozo Gidofalvi 5
6 Large Itemsets An itemset is a set of single items from the database of transactions. If some items often occur together they can form an association rule. The support of an itemset expresses how often the itemset appears in a single transaction in the database, i.e., the support of an itemset I is the ratio of transactions in which the itemset is a subset. Supp I = Number of transactions containing I Total number of transactions An itemset is considered to be a large itemset if its support is above some threshold. 11/26/2008 Gyozo Gidofalvi 6
7 Finding the Large Itemsets The Brute Force Approach Just take all items and form all possible combinations of them and count away. Unfortunately, this will take some time... A better approach: The Apriori Algorithm Basic idea: An itemset can only be a large itemset if all its subsets are large itemsets 11/26/2008 Gyozo Gidofalvi 7
8 Example Assume that we have a transaction database with 100 transactions and we have the items a, b and c. Assume that the minimum support is set to 0.60, which gives us a minimum support count of 60. Itemset Count {a} 65 {b} 50 {c} 80 Since the count of {b} is below the minimum support count no itemset containing b can be a large itemset. This means that when we look for itemsets of size 2 we do not have to look for any sets containing b, which in turn leaves us with the only possible candidate {a,c}. 11/26/2008 Gyozo Gidofalvi 8
9 The Apriori Algorithm A general outline of the algorithm is the following: 1. Count all itemsets of size K. 2. Prune the unsupported itemsets of size K. 3. Generate new candidates of size K Prune the new candidates based on supported subsets. 5. Repeat from 1 until no more candidates or large itemsets are found. 6. When all supported itemsets have been found, generate the rules. 11/26/2008 Gyozo Gidofalvi 9
10 Candidate Generation Assume that we have the large itemsets of size 2 {a,b}, {b,c}, {a,c} and {c,d} From these sets we can form the candidates of size 3 {a,b,c}, {a,c,d} and {b,c,d} But... Why not {a,b,d}? Answer: 11/26/2008 Gyozo Gidofalvi 10
11 Candidate Pruning Again, assume that we have the large 2-itemsets {a,b}, {b,c}, {a,c} and {c,d} And the 3-candidates {a,b,c}, {a,c,d} and {b,c,d} Can all of these 3-candidates be large itemsets? Answer: 11/26/2008 Gyozo Gidofalvi 11
12 Find Out if the Itemset is Large When we have found our final candidates we can simply count all occurrences of the itemset in the transaction database and then remove those that have too low support count. If at least one of the candidates have enough support count we loop again until we can find no more candidates or large itemsets. 11/26/2008 Gyozo Gidofalvi 12
13 Rule Metrics When we have our large itemsets we want to form association rules from them. As we said earlier the association rule has the form I 1 I 2 The support, Supp tot, of the rule is the support of the itemset I tot where I tot = I 1 U I 2 The confidence, C, of the rule is C = Supp tot Supp I1 11/26/2008 Gyozo Gidofalvi 13
14 Rule Metrics (cont.) How can we interpret the support and the confidence of a rule? The support is how common the rule is in the transaction database. The confidence is how often the left hand side of the rule is associated with the right hand side. In what situations can we have a rule with: High support and low confidence? Low support and high confidence? High support and high confidence? 11/26/2008 Gyozo Gidofalvi 14
15 Frequent Pattern Growth Based Frequent Itemset Mining
16 The Frequent Pattern Growth Approach to FIM The bottleneck of Apriori is candidate generation and testing. High cost of mining long itemsets! Idea: Instead of bottom up, in a top-down fashion extend frequent patterns by adding a single locally frequent item to it Question: What does locally mean? Answer: To find the frequent itemsets that contain an item i, the only transactions that need to be considered are transactions that contain i. Definition: A frequent item i-related projected transaction table, is denoted as PT_i, that collects all frequent items (larger than i) in the transactions containing i. Let s look at an example! 11/26/2008 Gyozo Gidofalvi 16
17 Example Transactions Relational format Frequent items Filtered transactions Items co-occuring with item 1 Frequent items Projected table on item 1 Frequent items Items co-occuring with item 3 (and 1) Projected table on item 3 (and 1) 11/26/2008 Gyozo Gidofalvi 17
18 Frequent itemset tree depth-first Discover all frequent itemsets by recursively filtering and projecting transactions in a depth-first-search manner until there are frequent items in the filtered/projected table. 11/26/2008 Gyozo Gidofalvi 18
19 Amos II / AmosQL Crash Course
20 Amos II / AmosQL Resources Amos II: extensible, main-memory Object-Relational Database Management System (ORDBMS) Runs on PCs on Windows and Linux AmosQL: object-relational and functional query language Homepage: Tutorial: 11/26/2008 Gyozo Gidofalvi 20
21 Basic Amos II Data Model 11/26/2008 Gyozo Gidofalvi 21
22 Objects Regard database as set of objects Built-in atomic types, literals: String, Integer, Real, Boolean Collection types: bags, e.g., bag( Tore ) and vectors, e.g., {1,2,3} Surrogate types: Objects have unique object identifiers (OIDs), e.g. OID[45] Explicit creation and deletion AmosQL Example: Amos> create type Person; Amos> create Person instances :tore; creates new object, say OID[45], and binds environment variable :tore to it. 11/26/2008 Gyozo Gidofalvi 22
23 Types Classification of objects Objects are grouped by the types to which they belong (are instances of) Organized in type/subtype Directed Acyclic Graph Defines that OIDs of one type is subset of OIDs of other types 11/26/2008 Gyozo Gidofalvi 23
24 Functions Define semantics of objects: Properties of objects Relationships among objects (mappings between arguments and results) Views on objects Stored procedures for objects More than one argument allowed Bag valued results allowed, e.g, FrequentItems Tuple valued results allowed 11/26/2008 Gyozo Gidofalvi 24
25 Vectors Constructor: {} Amos> set :v = {1,2,3}; Indexing: Amos> :v[1]; Conversion between vectors and bags: Amos> in(:v); Amos> vectorof(in(:v)); Useful vector operators: dim, concat 11/26/2008 Gyozo Gidofalvi 25
26 Defining Set Operations On Vectors Amos> create function vintersect(vector v1, vector v2) -> vector as sort(select i from object i where i in v1 and i in v2); Amos> create function vdiff(vector v1, vector v2) -> vector as sort(select i from object i where i in v1 and notany (select where i in v2)); Amos> create function vunion(vector v1, vector v2) -> vector as sort(select distinct i from object i where i in v1 or i in v2); Amos> create function vcontain (vector v1, vector v2) -> boolean as select true where dim(v2) = dim(vintersect(v1, v2)); 11/26/2008 Gyozo Gidofalvi 26
27 Example: Association Rule DB Amos> create function FIS(vector) -> integer as stored; Amos> add FIS({'beer'})=5; Amos> add FIS({'other'})=2; Amos> add FIS({'diapers'})=3; Amos> add FIS({'beer','diapers'})=2; Amos> add FIS({'beer','other'})=1; Amos> add FIS({'beer','diapers','other'})=1; Amos> add FIS({'diapers','other'})=1; Amos> create function showfis() -> bag of <vector, integer> as select is, supp from vector is, integer supp where FIS(is)=supp; Amos> create function ARconf(vector prec, vector cons) -> real as FIS(vunion(prec,cons))/FIS(prec); Amos> ARconf({'beer'},{'diapers'}); Amos> ARconf({ diapers'},{'beer'}); 11/26/2008 Gyozo Gidofalvi 27
28 Frequent Itemset Mining Elements of a DB Implementation Using Amos II / AmosQL
29 Transactions Function (table) to store transactions: Amos> create function transact(integer tid)->bag of integer as stored; Population of the transaction table: Amos> add transact(1)=in({1,2,3}); remove transact(1)=2; Selection of a transaction: Amos> transact(1); Transactions as a bag of tuples: Amos> create function transact_bt()->bag of <integer, integer> as select tid, item from integer tid, integer item where transact(tid)=item; Materialized transaction table as a vector: Amos> create function transact_vt()->vector of <integer, integer> as vectorof(transact_bt()); 11/26/2008 Gyozo Gidofalvi 29
30 Support Counting Function to calculate the supports of items in vt: Amos> create function itemsupps_vt(vector of <integer, integer> vt) as groupby ((select i,t from integer i, integer t where <t,i> in vt), #'count'); ->bag of <integer, integer> 11/26/2008 Gyozo Gidofalvi 30
31 Item-Related Projection Function to calculate the pitem-related projected minsuppfiltered materialized transaction table Amos> create function irpft(vector of <integer, integer> vt, integer minsupp, integer pitem) as vselect tid, item ->vector of <integer, integer> from integer tid, integer item, integer i, integer s where <tid, item> in vt and freqitems_vt(vt, minsupp)=<i,s> and item = i and tid = itemsuppby_vt(vt, pitem) and item > pitem; 11/26/2008 Gyozo Gidofalvi 31
32 Subset Generation Function to filter a vector v to contain only elements that are larger than p Amos> create function vlarger(vector of integer v, integer p) ->vector of integer as vselect c from integer c where c in v and c>p; Recursive function to calculate all subsets of the set of elements in a vector c (to be called with empty vector p) Amos> create function subsets_rec(vector of integer p, vector of integer c) ->vector of integer as begin result (select res from vector of integer res, vector of integer newp, integer i where res = p or (res = subsets_rec(newp, vlarger(c,i)) and newp = concat(p,{i}) and i in c)); end; 11/26/2008 Gyozo Gidofalvi 32
33 The Assignment
34 The Assignment You can choose your favorite programming language, but NOT MATLAB since it is not suitable for this assignment. Since you can choose your own language you cannot expect help in language issues. You are going to run the solution on UNIX so please make sure that your solution is runnable on the University's UNIX system. The program must run in a few minutes since we are going to run it during the examination. Too slow programs will be rejected. 11/26/2008 Gyozo Gidofalvi 34
35 The Assignment (cont.) The algorithm is easy to get wrong and then you will get a superexponential behaviour that causes the execution time to blow up! Please make sure you understand the algorithm before you start programming. There are example runs on the course's home page. Your solution must be able to get these results before the examination. (Oh, and we will make other trial runs ;-) Finally, please read the instructions carefully, especially the parts about the command line interface and the rule sorting. 11/26/2008 Gyozo Gidofalvi 35
36 Exercise Find the rules with support 0.5 and confidence 0.75 in the following database: TID Transaction 1 {a b c d} 2 {a c d} 3 {a b c} 4 {b c d} 5 {a b c} 6 {a b c} 7 {c d e} 8 {a c} 11/26/2008 Gyozo Gidofalvi 36
37 Reference and Further Reading Mining Associations between Sets of Items in Large Databases. R. Agrawal, T. Imielinski, and A. Swami. In Proceedings of the ACM SIGMOD International Conference on the Management of Data, pp , May Fast Algorithms for Mining Association Rules. R. Agrawal and R. Srikant. In Proceedings of the 20th International Conference on Very Large Databases, pp , September An Effective Hash Based Algorithm for Mining Association Rules. J. S. Park, M.-S. Chen, and P. S. Yu. In Proceedings of the ACM SIGMOD International Conference on the Management of Data, pp , May Mining Frequent Patterns without Candidate Generation. J. Han, H. Pei, and Y. Yin. In Proceedings of the ACM-SIGMOD International Conference on Management of Data (SIGMOD'00), pp. 1-12, May Efficient Frequent Pattern Mining in Relational Databases. X. Shang, K.-U. Sattler, and I. Geist. 5. Workshop des GI-Arbeitskreis Knowledge Discovery (AK KD) im Rahmen der LWA /26/2008 Gyozo Gidofalvi 37
Capacity Utilization
Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run
The CCR Model and Production Correspondence
The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)
Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu
Returns to Scale II Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be
Efficiency change over time
Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel
FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL
FinFamily PostgreSQL 1 Sisällys / Contents FinFamily PostgreSQL... 1 1. Asenna PostgreSQL tietokanta / Install PostgreSQL database... 3 1.1. PostgreSQL tietokannasta / About the PostgreSQL database...
anna minun kertoa let me tell you
anna minun kertoa let me tell you anna minun kertoa I OSA 1. Anna minun kertoa sinulle mitä oli. Tiedän että osaan. Kykenen siihen. Teen nyt niin. Minulla on oikeus. Sanani voivat olla puutteellisia mutta
Alternative DEA Models
Mat-2.4142 Alternative DEA Models 19.9.2007 Table of Contents Banker-Charnes-Cooper Model Additive Model Example Data Home assignment BCC Model (Banker-Charnes-Cooper) production frontiers spanned by convex
The Viking Battle - Part Version: Finnish
The Viking Battle - Part 1 015 Version: Finnish Tehtävä 1 Olkoon kokonaisluku, ja olkoon A n joukko A n = { n k k Z, 0 k < n}. Selvitä suurin kokonaisluku M n, jota ei voi kirjoittaa yhden tai useamman
1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.
START START SIT 1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. This is a static exercise. SIT STAND 2. SIT STAND. The
Information on preparing Presentation
Information on preparing Presentation Seminar on big data management Lecturer: Spring 2017 20.1.2017 1 Agenda Hints and tips on giving a good presentation Watch two videos and discussion 22.1.2017 2 Goals
Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi
Network to Get Work Tehtäviä opiskelijoille Assignments for students www.laurea.fi Ohje henkilöstölle Instructions for Staff Seuraavassa on esitetty joukko tehtäviä, joista voit valita opiskelijaryhmällesi
Choose Finland-Helsinki Valitse Finland-Helsinki
Write down the Temporary Application ID. If you do not manage to complete the form you can continue where you stopped with this ID no. Muista Temporary Application ID. Jos et onnistu täyttää lomake loppuun
FinFamily Installation and importing data (11.1.2016) FinFamily Asennus / Installation
FinFamily Asennus / Installation 1 Sisällys / Contents FinFamily Asennus / Installation... 1 1. Asennus ja tietojen tuonti / Installation and importing data... 4 1.1. Asenna Java / Install Java... 4 1.2.
812336A C++ -kielen perusteet, 21.8.2010
812336A C++ -kielen perusteet, 21.8.2010 1. Vastaa lyhyesti seuraaviin kysymyksiin (1p kaikista): a) Mitä tarkoittaa funktion ylikuormittaminen (overloading)? b) Mitä tarkoittaa jäsenfunktion ylimääritys
LYTH-CONS CONSISTENCY TRANSMITTER
LYTH-CONS CONSISTENCY TRANSMITTER LYTH-INSTRUMENT OY has generate new consistency transmitter with blade-system to meet high technical requirements in Pulp&Paper industries. Insurmountable advantages are
Bounds on non-surjective cellular automata
Bounds on non-surjective cellular automata Jarkko Kari Pascal Vanier Thomas Zeume University of Turku LIF Marseille Universität Hannover 27 august 2009 J. Kari, P. Vanier, T. Zeume (UTU) Bounds on non-surjective
16. Allocation Models
16. Allocation Models Juha Saloheimo 17.1.27 S steemianalsin Optimointiopin seminaari - Sks 27 Content Introduction Overall Efficienc with common prices and costs Cost Efficienc S steemianalsin Revenue
Tietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Taulukon edut Taulukon haitat Taulukon haittojen välttäminen Dynaamisesti linkattu lista Linkatun listan solmun määrittelytavat Lineaarisen listan toteutus dynaamisesti linkattuna
make and make and make ThinkMath 2017
Adding quantities Lukumäärienup yhdistäminen. Laske yhteensä?. Countkuinka howmonta manypalloja ballson there are altogether. and ja make and make and ja make on and ja make ThinkMath 7 on ja on on Vaihdannaisuus
Data Mining - The Diary
Data Mining - The Diary Rodion rodde Efremov March 31, 2015 Introduction This document is my learning diary written on behalf of Data Mining course led at spring term 2015 at University of Helsinki. 1
Salasanan vaihto uuteen / How to change password
Salasanan vaihto uuteen / How to change password Sisällys Salasanakäytäntö / Password policy... 2 Salasanan vaihto verkkosivulla / Change password on website... 3 Salasanan vaihto matkapuhelimella / Change
Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies
Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine 4.1.2018 Centre for Language and Communication Studies Puhutko suomea? -Hei! -Hei hei! -Moi! -Moi moi! -Terve! -Terve
National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007
National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 Chapter 2.4 Jukka Räisä 1 WATER PIPES PLACEMENT 2.4.1 Regulation Water pipe and its
Other approaches to restrict multipliers
Other approaches to restrict multipliers Heikki Tikanmäki Optimointiopin seminaari 10.10.2007 Contents Short revision (6.2) Another Assurance Region Model (6.3) Cone-Ratio Method (6.4) An Application of
Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition)
Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition) Esko Jalkanen Uusi Ajatus Löytyy
1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä
OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 81122P (4 ov.) 30.5.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan
Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)
Tilasto T1106120-s2012palaute Kyselyn T1106120+T1106120-s2012palaute yhteenveto: vastauksia (4) Kysymys 1 Degree programme: (4) TIK: TIK 1 25% ************** INF: INF 0 0% EST: EST 0 0% TLT: TLT 0 0% BIO:
Information on Finnish Language Courses Spring Semester 2017 Jenni Laine
Information on Finnish Language Courses Spring Semester 2017 Jenni Laine 4.1.2017 KIELIKESKUS LANGUAGE CENTRE Puhutko suomea? Do you speak Finnish? -Hei! -Moi! -Mitä kuuluu? -Kiitos, hyvää. -Entä sinulle?
ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin. Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana
ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana Taustaa KAO mukana FINECVET-hankeessa, jossa pilotoimme ECVETiä
Miksi Suomi on Suomi (Finnish Edition)
Miksi Suomi on Suomi (Finnish Edition) Tommi Uschanov Click here if your download doesn"t start automatically Miksi Suomi on Suomi (Finnish Edition) Tommi Uschanov Miksi Suomi on Suomi (Finnish Edition)
KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ
KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ https://community.plm.automation.siemens.com/t5/tech-tips- Knowledge-Base-NX/How-to-simulate-any-G-code-file-in-NX- CAM/ta-p/3340 Koneistusympäristön määrittely
1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä
OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 811122P (5 op.) 12.12.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan
Information on Finnish Courses Autumn Semester 2017 Jenni Laine & Päivi Paukku Centre for Language and Communication Studies
Information on Finnish Courses Autumn Semester 2017 Jenni Laine & Päivi Paukku 24.8.2017 Centre for Language and Communication Studies Puhutko suomea? -Hei! -Hei hei! -Moi! -Moi moi! -Terve! -Terve terve!
Uusia kokeellisia töitä opiskelijoiden tutkimustaitojen kehittämiseen
The acquisition of science competencies using ICT real time experiments COMBLAB Uusia kokeellisia töitä opiskelijoiden tutkimustaitojen kehittämiseen Project N. 517587-LLP-2011-ES-COMENIUS-CMP This project
Gap-filling methods for CH 4 data
Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling
21~--~--~r--1~~--~--~~r--1~
- K.Loberg FYSE420 DIGITAL ELECTRONICS 13.05.2011 1. Toteuta alla esitetyn sekvenssin tuottava asynkroninen pun. Anna heratefunktiot, siirtotaulukko ja kokonaistilataulukko ( exitation functions, transition
AYYE 9/ HOUSING POLICY
AYYE 9/12 2.10.2012 HOUSING POLICY Mission for AYY Housing? What do we want to achieve by renting apartments? 1) How many apartments do we need? 2) What kind of apartments do we need? 3) To whom do we
RINNAKKAINEN OHJELMOINTI A,
RINNAKKAINEN OHJELMOINTI 815301A, 18.6.2005 1. Vastaa lyhyesti (2p kustakin): a) Mitkä ovat rinnakkaisen ohjelman oikeellisuuskriteerit? b) Mitä tarkoittaa laiska säikeen luominen? c) Mitä ovat kohtaaminen
Curriculum. Gym card
A new school year Curriculum Fast Track Final Grading Gym card TET A new school year Work Ethic Detention Own work Organisation and independence Wilma TMU Support Services Well-Being CURRICULUM FAST TRACK
Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto
Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto If you are searched for a book by Miikka Poikselkä;Harri Holma;Jukka Hongisto Voice over LTE (VoLTE) in pdf form, then you have come
Small Number Counts to 100. Story transcript: English and Blackfoot
Small Number Counts to 100. Story transcript: English and Blackfoot Small Number is a 5 year-old boy who gets into a lot of mischief. He lives with his Grandma and Grandpa, who patiently put up with his
1. Liikkuvat määreet
1. Liikkuvat määreet Väitelauseen perussanajärjestys: SPOTPA (subj. + pred. + obj. + tapa + paikka + aika) Suora sanajärjestys = subjekti on ennen predikaattia tekijä tekeminen Alasääntö 1: Liikkuvat määreet
Use of spatial data in the new production environment and in a data warehouse
Use of spatial data in the new production environment and in a data warehouse Nordic Forum for Geostatistics 2007 Session 3, GI infrastructure and use of spatial database Statistics Finland, Population
A DEA Game II. Juha Saloheimo S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
A DEA Game II Juha Salohemo 12.12.2007 Content Recap of the Example The Shapley Value Margnal Contrbuton, Ordered Coaltons, Soluton to the Example DEA Mn Game Summary Home Assgnment Recap of the Example
MEETING PEOPLE COMMUNICATIVE QUESTIONS
Tiistilän koulu English Grades 7-9 Heikki Raevaara MEETING PEOPLE COMMUNICATIVE QUESTIONS Meeting People Hello! Hi! Good morning! Good afternoon! How do you do? Nice to meet you. / Pleased to meet you.
Hankkeen toiminnot työsuunnitelman laatiminen
Hankkeen toiminnot työsuunnitelman laatiminen Hanketyöpaja LLP-ohjelman keskitettyjä hankkeita (Leonardo & Poikittaisohjelma) valmisteleville11.11.2011 Työsuunnitelma Vastaa kysymykseen mitä projektissa
Capacity utilization
Mat-2.4142 Seminar on optimization Capacity utilization 12.12.2007 Contents Summary of chapter 14 Related DEA-solver models Illustrative examples Measure of technical capacity utilization Price-based measure
MUSEOT KULTTUURIPALVELUINA
Elina Arola MUSEOT KULTTUURIPALVELUINA Tutkimuskohteena Mikkelin museot Opinnäytetyö Kulttuuripalvelujen koulutusohjelma Marraskuu 2005 KUVAILULEHTI Opinnäytetyön päivämäärä 25.11.2005 Tekijä(t) Elina
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
PAINEILMALETKUKELA-AUTOMAATTI AUTOMATIC AIR HOSE REEL
MAV4 MAV5 MAV6 PAINEILMALETKUKELA-AUTOMAATTI AUTOMATIC AIR HOSE REEL Käyttöohje Instruction manual HUOMIO! Lue käyttöohjeet huolellisesti ennen laitteen käyttöä ja noudata kaikkia annettuja ohjeita. Säilytä
Oma sininen meresi (Finnish Edition)
Oma sininen meresi (Finnish Edition) Hannu Pirilä Click here if your download doesn"t start automatically Oma sininen meresi (Finnish Edition) Hannu Pirilä Oma sininen meresi (Finnish Edition) Hannu Pirilä
Operatioanalyysi 2011, Harjoitus 4, viikko 40
Operatioanalyysi 2011, Harjoitus 4, viikko 40 H4t1, Exercise 4.2. H4t2, Exercise 4.3. H4t3, Exercise 4.4. H4t4, Exercise 4.5. H4t5, Exercise 4.6. (Exercise 4.2.) 1 4.2. Solve the LP max z = x 1 + 2x 2
T Statistical Natural Language Processing Answers 6 Collocations Version 1.0
T-61.5020 Statistical Natural Language Processing Answers 6 Collocations Version 1.0 1. Let s start by calculating the results for pair valkoinen, talo manually: Frequency: Bigrams valkoinen, talo occurred
LANSEERAUS LÄHESTYY AIKATAULU OMINAISUUDET. Sähköinen jäsenkortti. Yksinkertainen tapa lähettää viestejä jäsenille
tiedote 2 / 9.3.2017 LANSEERAUS LÄHESTYY AIKATAULU 4.3. ebirdie-jäsenkortti esiteltiin Golfliiton 60-vuotisjuhlaseminaarissa 17.3. ebirdie tulee kaikkien ladattavaksi Golfmessuilla 17.3. klo 12:00 alkaen
You can check above like this: Start->Control Panel->Programs->find if Microsoft Lync or Microsoft Lync Attendeed is listed
Online Meeting Guest Online Meeting for Guest Participant Lync Attendee Installation Online kokous vierailevalle osallistujalle Lync Attendee Asennus www.ruukki.com Overview Before you can join to Ruukki
VAASAN YLIOPISTO Humanististen tieteiden kandidaatin tutkinto / Filosofian maisterin tutkinto
VAASAN YLIOPISTO Humanististen tieteiden kandidaatin tutkinto / Filosofian maisterin tutkinto Tämän viestinnän, nykysuomen ja englannin kandidaattiohjelman valintakokeen avulla Arvioidaan viestintävalmiuksia,
Rekisteröiminen - FAQ
Rekisteröiminen - FAQ Miten Akun/laturin rekisteröiminen tehdään Akun/laturin rekisteröiminen tapahtuu samalla tavalla kuin nykyinen takuurekisteröityminen koneille. Nykyistä tietokantaa on muokattu niin,
Skene. Games Refueled. Muokkaa perustyyl. napsautt. @Games for Health, Kuopio. 2013 kari.korhonen@tekes.fi. www.tekes.fi/skene
Skene Muokkaa perustyyl. Games Refueled napsautt. @Games for Health, Kuopio Muokkaa alaotsikon perustyyliä napsautt. 2013 kari.korhonen@tekes.fi www.tekes.fi/skene 10.9.201 3 Muokkaa Skene boosts perustyyl.
Nuku hyvin, pieni susi -????????????,?????????????????. Kaksikielinen satukirja (suomi - venäjä) (www.childrens-books-bilingual.com) (Finnish Edition)
Nuku hyvin, pieni susi -????????????,?????????????????. Kaksikielinen satukirja (suomi - venäjä) (www.childrens-books-bilingual.com) (Finnish Edition) Click here if your download doesn"t start automatically
Sisällysluettelo Table of contents
Sisällysluettelo Table of contents OTC:n Moodlen käyttöohje suomeksi... 1 Kirjautuminen Moodleen... 2 Ensimmäinen kirjautuminen Moodleen... 2 Salasanan vaihto... 2 Oma käyttäjäprofiili... 3 Työskentely
FIS IMATRAN KYLPYLÄHIIHDOT Team captains meeting
FIS IMATRAN KYLPYLÄHIIHDOT 8.-9.12.2018 Team captains meeting 8.12.2018 Agenda 1 Opening of the meeting 2 Presence 3 Organizer s personell 4 Jury 5 Weather forecast 6 Composition of competitors startlists
Metsälamminkankaan tuulivoimapuiston osayleiskaava
VAALAN KUNTA TUULISAIMAA OY Metsälamminkankaan tuulivoimapuiston osayleiskaava Liite 3. Varjostusmallinnus FCG SUUNNITTELU JA TEKNIIKKA OY 12.5.2015 P25370 SHADOW - Main Result Assumptions for shadow calculations
Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a
, Tuulivoimahanke Layout 9 x N131 x HH145 Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 km 2 SHADOW - Main Result Assumptions for shadow calculations
7.4 Variability management
7.4 Variability management time... space software product-line should support variability in space (different products) support variability in time (maintenance, evolution) 1 Product variation Product
,0 Yes ,0 120, ,8
SHADOW - Main Result Calculation: Alue 2 ( x 9 x HH120) TuuliSaimaa kaavaluonnos Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered
Results on the new polydrug use questions in the Finnish TDI data
Results on the new polydrug use questions in the Finnish TDI data Multi-drug use, polydrug use and problematic polydrug use Martta Forsell, Finnish Focal Point 28/09/2015 Martta Forsell 1 28/09/2015 Esityksen
C++11 seminaari, kevät Johannes Koskinen
C++11 seminaari, kevät 2012 Johannes Koskinen Sisältö Mikä onkaan ongelma? Standardidraftin luku 29: Atomiset tyypit Muistimalli Rinnakkaisuus On multicore systems, when a thread writes a value to memory,
Travel Getting Around
- Location Olen eksyksissä. Not knowing where you are Voisitko näyttää kartalta missä sen on? Asking for a specific location on a map Mistä täällä on? Asking for a specific...wc?...pankki / rahanvaihtopiste?...hotelli?...huoltoasema?...sairaala?...apteekki?...tavaratalo?...ruokakauppa?...bussipysäkki?
Lab SBS3.FARM_Hyper-V - Navigating a SharePoint site
Lab SBS3.FARM_Hyper-V - Navigating a SharePoint site Note! Before starting download and install a fresh version of OfficeProfessionalPlus_x64_en-us. The instructions are in the beginning of the exercise.
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
Statistical design. Tuomas Selander
Statistical design Tuomas Selander 28.8.2014 Introduction Biostatistician Work area KYS-erva KYS, Jyväskylä, Joensuu, Mikkeli, Savonlinna Work tasks Statistical methods, selection and quiding Data analysis
4x4cup Rastikuvien tulkinta
4x4cup Rastikuvien tulkinta 4x4cup Control point picture guidelines Päivitetty kauden 2010 sääntöihin Updated for 2010 rules Säännöt rastikuvista Kilpailijoiden tulee kiinnittää erityistä huomiota siihen,
ALOITUSKESKUSTELU / FIRST CONVERSATION
ALOITUSKESKUSTELU / FIRST CONVERSATION Lapsen nimi / Name of the child Lapsen ikä / Age of the child yrs months HYVINKÄÄN KAUPUNKI Varhaiskasvatuspalvelut Lapsen päivähoito daycare center / esiopetusyksikkö
WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
Exercise 1. (session: )
EEN-E3001, FUNDAMENTALS IN INDUSTRIAL ENERGY ENGINEERING Exercise 1 (session: 24.1.2017) Problem 3 will be graded. The deadline for the return is on 31.1. at 12:00 am (before the exercise session). You
TIETEEN PÄIVÄT OULUSSA 1.-2.9.2015
1 TIETEEN PÄIVÄT OULUSSA 1.-2.9.2015 Oulun Yliopisto / Tieteen päivät 2015 2 TIETEEN PÄIVÄT Järjestetään Oulussa osana yliopiston avajaisviikon ohjelmaa Tieteen päivät järjestetään saman konseptin mukaisesti
WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 13.6.2013 19:42 / 1 Minimum
BDD (behavior-driven development) suunnittelumenetelmän käyttö open source projektissa, case: SpecFlow/.NET.
BDD (behavior-driven development) suunnittelumenetelmän käyttö open source projektissa, case: SpecFlow/.NET. Pekka Ollikainen Open Source Microsoft CodePlex bio Verkkosivustovastaava Suomen Sarjakuvaseura
Mat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
Mat-2.4142 Seminar on Optimization Data Envelopment Analysis Economies of Scope 21.11.2007 Economies of Scope Introduced 1982 by Panzar and Willing Support decisions like: Should a firm... Produce a variety
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.9.269
Käyttöliittymät II. Käyttöliittymät I Kertaus peruskurssilta. Keskeisin kälikurssilla opittu asia?
Käyttöliittymät II Sari A. Laakso Käyttöliittymät I Kertaus peruskurssilta Keskeisin kälikurssilla opittu asia? 1 Käyttöliittymät II Kurssin sisältö Käli I Käyttötilanteita Käli II Käyttötilanteet selvitetään
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
Tarua vai totta: sähkön vähittäismarkkina ei toimi? 11.2.2015 Satu Viljainen Professori, sähkömarkkinat
Tarua vai totta: sähkön vähittäismarkkina ei toimi? 11.2.2015 Satu Viljainen Professori, sähkömarkkinat Esityksen sisältö: 1. EU:n energiapolitiikka on se, joka ei toimi 2. Mihin perustuu väite, etteivät
KMTK lentoestetyöpaja - Osa 2
KMTK lentoestetyöpaja - Osa 2 Veijo Pätynen 18.10.2016 Pasila YHTEISTYÖSSÄ: Ilmailun paikkatiedon hallintamalli Ilmailun paikkatiedon hallintamalli (v0.9 4.3.2016) 4.4 Maanmittauslaitoksen rooli ja vastuut...
toukokuu 2011: Lukion kokeiden kehittämistyöryhmien suunnittelukokous
Tuula Sutela toukokuu 2011: Lukion kokeiden kehittämistyöryhmien suunnittelukokous äidinkieli ja kirjallisuus, modersmål och litteratur, kemia, maantiede, matematiikka, englanti käsikirjoitukset vuoden
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 5.11.2013 16:44 / 1 Minimum
LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet
LX 70 % Läpäisy 36 32 % Absorptio 30 40 % Heijastus 34 28 % Läpäisy 72 65 % Heijastus ulkopuoli 9 16 % Heijastus sisäpuoli 9 13 Emissiivisyys.77.77 Auringonsuojakerroin.54.58 Auringonsäteilyn lämmönsiirtokerroin.47.50
BLOCKCHAINS AND ODR: SMART CONTRACTS AS AN ALTERNATIVE TO ENFORCEMENT
UNCITRAL EMERGENCE CONFERENCE 13.12.2016 Session I: Emerging Legal Issues in the Commercial Exploitation of Deep Seabed, Space and AI BLOCKCHAINS AND ODR: SMART CONTRACTS AS AN ALTERNATIVE TO ENFORCEMENT
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Calculation: N117 x 9 x HH141 Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG
Ajettavat luokat: SM: S1 (25 aika-ajon nopeinta)
SUPERMOTO SM 2013 OULU Lisämääräys ja ohje Oulun Moottorikerho ry ja Oulun Formula K-125ry toivottaa SuperMoto kuljettajat osallistumaan SuperMoto SM 2013 Oulu osakilpailuun. Kilpailu ajetaan karting radalla
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 22.12.2014 11:33 / 1 Minimum
arvostelija Assosiaatiosäännöt sekvensseissä Jarmo Hakala Vantaa 20.10.2005 HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos
hyväksymispäivä arvosana arvostelija Assosiaatiosäännöt sekvensseissä Jarmo Hakala Vantaa 20.10.2005 HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Tiivistelmä Assosiaatiosäännöt sekvensseissä on
( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145
OX2 9 x N131 x HH145 Rakennuskanta Asuinrakennus Lomarakennus Liike- tai julkinen rakennus Teollinen rakennus Kirkko tai kirkollinen rak. Muu rakennus Allas Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 2 km
2_1----~--~r--1.~--~--~--,.~~
K.Loberg FYSE420 DIGITAL ELECTRONICS 3.06.2011 1. Toteuta alia esitetyn sekvenssin tuottava asynkroninen pun. Anna heditefunktiot, siirtotaulukko ja kokonaistilataulukko ( exitation functions, transition
Basic Flute Technique
Herbert Lindholm Basic Flute Technique Peruskuviot huilulle op. 26 Helin & Sons, Helsinki Basic Flute Technique Foreword This book has the same goal as a teacher should have; to make himself unnecessary.
Data Quality Master Data Management
Data Quality Master Data Management TDWI Finland, 28.1.2011 Johdanto: Petri Hakanen Agenda 08.30-09.00 Coffee 09.00-09.30 Welcome by IBM! Introduction by TDWI 09.30-10.30 Dario Bezzina: The Data Quality