How to handle uncertainty in future projections?
|
|
- Timo-Pekka Seppälä
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 How to handle uncertainty in future projections? Samu Mäntyniemi, Fisheries and Environmental Management group (FEM), University of Helsinki Biotieteellinen tiedekunta / Henkilön nimi /
2 My background PhD in biometry Bayesian inference in fisheries science Dynamic models Alternative model structures Lots of uncertain parameters Interest in latent variables: the true stock size has never been observed Role in the FEM group Supervising the use of statistical methods Biotieteellinen tiedekunta / Henkilön nimi /
3 Purpose and outline of the talk Food for thought Basic principles illustrated with simple examples Three parts Part I: There is no uncertainty Part II: Correlation is good for you Part III: Weight the average Biotieteellinen tiedekunta / Henkilön nimi /
4 Part I: There is no uncertainty Uncertainty does not physically exist Uncertainty exists in mind Uncertainty only exists in the context of a person Subjective object by definition Uncertainty of a collective mind Scientific community Panel of experts Biotieteellinen tiedekunta / Henkilön nimi /
5 Uncertainty about the future When future becomes observed, it is not the future anymore We can only have beliefs about the future The belief can be well documented, consistently updated and scientifically sound But it is still a (scientific) belief Varies between scientists Biotieteellinen tiedekunta / Henkilön nimi /
6 Is my uncertainty more correct than yours? Uncertainty is what it is: everyone is right Being wise afterwards: a reality check? Predict the future Observe what really happened Compare and learn : calibration Some statements of uncertainty fit to observations better than others How to take this into account? Biotieteellinen tiedekunta / Henkilön nimi /
7 Sources of uncertainty: Why I am uncertain? Unpredictable natural variability Can be reduced by better modeling Uncertainty about causalities Alternative models Uncertainty about model parameters More data -> less uncertainty Uncertainty about implementation of management actions How will governments, industry and consumers react? Biotieteellinen tiedekunta / Henkilön nimi /
8 How to handle uncertainty systematically? Probability: measure of uncertainty Interpretation of probability: Relative frequency Or degree of belief? RF is not defined for unique events can not be repeated Biotieteellinen tiedekunta / Henkilön nimi /
9 Handling uncertainty : statistical inference Classical (frequentist) statistics Uncertainty about potential data sets under a fixed hypothesis: long run relative frequencies Assumes a repeatable experiment to define the concept of probability Bayesian statistics Uncertainty about hypotheses given a fixed set of data Probability : personal degree of belief Data consists of facts, everything else is a matter of believing Mathematical logic for handling beliefs Transparent and consistent framework Biotieteellinen tiedekunta / Henkilön nimi /
10 Learning from experience : location of a fish school 1 1. Prior knowledge Probability Estuary Offshore 2. New observation 3. Learning Posterior knowledge Biotiete ellinen tiedekun ta / Henkilö n nimi / Esitykse n nimi
11 The Bayes rule: Artificial intelligence h : hypothesis x : observed data Likelihood: interpretation of observed data P ( h x) = P( x h) P( h) P( x) Prior: initial knowledge Posterior: updated knowledge Normalizing constant: predictive probability of data Learning: use posterior as prior for the next case
12 Part I : Summary I Everyone is right about their own uncertainty/beliefs Best we can do: Systematic approach to our own uncertainty Honest account of uncertainty Emphasize clear communication of uncertainty But some people s beliefs are more consistent with data than others : higher expertise Biotieteellinen tiedekunta / Henkilön nimi /
13 Part I : Summary II Classical statistics : No direct statements of uncertainty about past and future states of nature, no parameter/structural uncertainty Bayesian statistics: Consistent framework for handling beliefs Probability as measure of uncertainty Baye s rule for learning from data Biotieteellinen tiedekunta / Henkilön nimi /
14 Part II: Correlation is good for you Correlation of parameter estimates is a problem, as it indicates that the parameters are difficult to identify On the other hand: Higher correlation = more information Less correlation = less information Example from linear regression Biotieteellinen tiedekunta / Henkilön nimi /
15 Bayesian linear regression: predicting surface runoff using precipitation Priors Intercept : between -50 and 0 Slope: betweem 0 and 1 Add one data point at a time Show predictions with and without correlation of parameters Biotieteellinen tiedekunta / Henkilön nimi /
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 Part II: Summary Correlation is information Include correlation when predicting, not just the marginal distributions Report the correlation of your parameter estimates, so that others can use it When using expert knowledge to formulate priors for prediction, try to assess the combinations of variables. Biotieteellinen tiedekunta / Henkilön nimi /
35 Part III: model averaging Multiple models Each model gives different prediction Not sure which model is true How to take this uncertainty into account? Biotieteellinen tiedekunta / Henkilön nimi /
36 Bayesian Model Averaging Each model represents a hypothesis Baye s rule: probability of a hypothesis data Just use it! 1. Give prior weights to models before seeing the data 2. Predict the next time step 3. Update the weights based on observed data 4. Go to (2) Biotieteellinen tiedekunta / Henkilön nimi /
37 Example: three models for an environmental Index Biotieteellinen tiedekunta / Henkilön nimi /
38 Uncertainty: which model is true? Bayesian approach: assing prior probability for each model before seeing the data In this example: pretend that nothing is know a priori P(model=white noise) = 1/3 P(model=white noise data) =? Demonstration 1. Predict upcoming data 2. Observe data 3. Update P( model data), use as prior for next case 4. Go to (1) Biotieteellinen tiedekunta / Henkilön nimi /
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80 How it works? ility a b b ro P Model P(data)=ΣP(data model)p(model) In other words: Predictive distribution of data is weighted average of model specific predictive distributions sity n e d 0.08 ility 0.06 a b b ro P Model 1 Model 2 Model 3 Average Weights are updated based on the predictive performance of individual models Just using the Bayes rule Next observation Biotieteellinen tiedekunta / Henkilön nimi /
81 The next step ility ility 0.6 a b b ro ro 0.2 P Model Prediction using updated weights P(model data) Update the weights again using a new observation 0.1 sity n e d 0.08 ility 0.06 a b b ro P Model 1 Model 2 Model 3 Average Next observation Biotieteellinen tiedekunta / Henkilön nimi /
82 And so on 1 ility a b 0.5 b ro P Model sity n e d 0.08 ility 0.06 a b b ro P Model 1 Model 2 Model 3 Average Next observation Biotieteellinen tiedekunta / Henkilön nimi /
83 Part III: summary Bayesian Model Averaging : consistent way of accounting for model uncertainty Theory is very simple Practice can be difficult Typically analytically intractable Approximations needed Ideal: parameters of each model should be updated after each new data point : Correlation is information Biotieteellinen tiedekunta / Henkilön nimi /
84 Methods to estimate uncertainties of scenario simulations Bayesian framework Structural & parameter uncertainty Expert knowledge and data Fit all models to all data using Baye s rule : full uncertainty accounted for, including the effect of correlations of parameter estimates Computational tools Monte Carlo methods: parameter estimation & model uncertainty Bayesian networks : Decision anlysis, integration of simulation output, interactive format Biotieteellinen tiedekunta / Henkilön nimi /
85 Possibilities to combine Bayesian risk analysis and climate change ensemble modelling? If the models in the ensemble provide probabilistic prediction: Should be straightforward, in theory Computational problems may arise If the models are deterministic Not possible without changes to models Predict a data set, learn residual variation -> use as uncertainty in further predictions And/or use expert judegement to estimate the uncertainty Biotieteellinen tiedekunta / Henkilön nimi /
86
87 Monthly Weather Review, 133, Biotieteellinen tiedekunta / Henkilön nimi /
88 Thank you! Biotieteellinen tiedekunta / Henkilön nimi /
Capacity Utilization
Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
Efficiency change over time
Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel
Information on preparing Presentation
Information on preparing Presentation Seminar on big data management Lecturer: Spring 2017 20.1.2017 1 Agenda Hints and tips on giving a good presentation Watch two videos and discussion 22.1.2017 2 Goals
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)
Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
anna minun kertoa let me tell you
anna minun kertoa let me tell you anna minun kertoa I OSA 1. Anna minun kertoa sinulle mitä oli. Tiedän että osaan. Kykenen siihen. Teen nyt niin. Minulla on oikeus. Sanani voivat olla puutteellisia mutta
Gap-filling methods for CH 4 data
Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling
The CCR Model and Production Correspondence
The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls
Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland
Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland Anne Mari Juppo, Nina Katajavuori University of Helsinki Faculty of Pharmacy 23.7.2012 1 Background Pedagogic research
16. Allocation Models
16. Allocation Models Juha Saloheimo 17.1.27 S steemianalsin Optimointiopin seminaari - Sks 27 Content Introduction Overall Efficienc with common prices and costs Cost Efficienc S steemianalsin Revenue
Results on the new polydrug use questions in the Finnish TDI data
Results on the new polydrug use questions in the Finnish TDI data Multi-drug use, polydrug use and problematic polydrug use Martta Forsell, Finnish Focal Point 28/09/2015 Martta Forsell 1 28/09/2015 Esityksen
7. Product-line architectures
7. Product-line architectures 7.1 Introduction 7.2 Product-line basics 7.3 Layered style for product-lines 7.4 Variability management 7.5 Benefits and problems with product-lines 1 Short history of software
Other approaches to restrict multipliers
Other approaches to restrict multipliers Heikki Tikanmäki Optimointiopin seminaari 10.10.2007 Contents Short revision (6.2) Another Assurance Region Model (6.3) Cone-Ratio Method (6.4) An Application of
Hankkeiden vaikuttavuus: Työkaluja hankesuunnittelun tueksi
Ideasta projektiksi - kumppanuushankkeen suunnittelun lähtökohdat Hankkeiden vaikuttavuus: Työkaluja hankesuunnittelun tueksi Erasmus+ -ohjelman hakuneuvonta ammatillisen koulutuksen kumppanuushanketta
Choose Finland-Helsinki Valitse Finland-Helsinki
Write down the Temporary Application ID. If you do not manage to complete the form you can continue where you stopped with this ID no. Muista Temporary Application ID. Jos et onnistu täyttää lomake loppuun
Data protection template
Data protection template Aihe: rekisteriseloste ja informointipohja Topic: information about the register and information to users (related to General Data Protection Regulation (GDPR) (EU) 2016/679) Mallina
National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007
National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 Chapter 2.4 Jukka Räisä 1 WATER PIPES PLACEMENT 2.4.1 Regulation Water pipe and its
1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.
START START SIT 1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. This is a static exercise. SIT STAND 2. SIT STAND. The
Valuation of Asian Quanto- Basket Options
Valuation of Asian Quanto- Basket Options (Final Presentation) 21.11.2011 Thesis Instructor and Supervisor: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta
MEETING PEOPLE COMMUNICATIVE QUESTIONS
Tiistilän koulu English Grades 7-9 Heikki Raevaara MEETING PEOPLE COMMUNICATIVE QUESTIONS Meeting People Hello! Hi! Good morning! Good afternoon! How do you do? Nice to meet you. / Pleased to meet you.
Oma sininen meresi (Finnish Edition)
Oma sininen meresi (Finnish Edition) Hannu Pirilä Click here if your download doesn"t start automatically Oma sininen meresi (Finnish Edition) Hannu Pirilä Oma sininen meresi (Finnish Edition) Hannu Pirilä
The role of 3dr sector in rural -community based- tourism - potentials, challenges
The role of 3dr sector in rural -community based- tourism - potentials, challenges Lappeenranta, 5th September 2014 Contents of the presentation 1. SEPRA what is it and why does it exist? 2. Experiences
Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu
Returns to Scale II Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be
Skene. Games Refueled. Muokkaa perustyyl. napsautt. @Games for Health, Kuopio. 2013 kari.korhonen@tekes.fi. www.tekes.fi/skene
Skene Muokkaa perustyyl. Games Refueled napsautt. @Games for Health, Kuopio Muokkaa alaotsikon perustyyliä napsautt. 2013 kari.korhonen@tekes.fi www.tekes.fi/skene 10.9.201 3 Muokkaa Skene boosts perustyyl.
FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL
FinFamily PostgreSQL 1 Sisällys / Contents FinFamily PostgreSQL... 1 1. Asenna PostgreSQL tietokanta / Install PostgreSQL database... 3 1.1. PostgreSQL tietokannasta / About the PostgreSQL database...
Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi
Network to Get Work Tehtäviä opiskelijoille Assignments for students www.laurea.fi Ohje henkilöstölle Instructions for Staff Seuraavassa on esitetty joukko tehtäviä, joista voit valita opiskelijaryhmällesi
TIETEEN PÄIVÄT OULUSSA 1.-2.9.2015
1 TIETEEN PÄIVÄT OULUSSA 1.-2.9.2015 Oulun Yliopisto / Tieteen päivät 2015 2 TIETEEN PÄIVÄT Järjestetään Oulussa osana yliopiston avajaisviikon ohjelmaa Tieteen päivät järjestetään saman konseptin mukaisesti
T Statistical Natural Language Processing Answers 6 Collocations Version 1.0
T-61.5020 Statistical Natural Language Processing Answers 6 Collocations Version 1.0 1. Let s start by calculating the results for pair valkoinen, talo manually: Frequency: Bigrams valkoinen, talo occurred
Miksi Suomi on Suomi (Finnish Edition)
Miksi Suomi on Suomi (Finnish Edition) Tommi Uschanov Click here if your download doesn"t start automatically Miksi Suomi on Suomi (Finnish Edition) Tommi Uschanov Miksi Suomi on Suomi (Finnish Edition)
Guidebook for Multicultural TUT Users
1 Guidebook for Multicultural TUT Users WORKPLACE PIRKANMAA-hankkeen KESKUSTELUTILAISUUS 16.12.2010 Hyvää käytäntöä kehittämässä - vuorovaikutusopas kansainvälisille opiskelijoille TTY Teknis-taloudellinen
Co-Design Yhteissuunnittelu
Co-Design Yhteissuunnittelu Tuuli Mattelmäki DA, associate professor Aalto University School of Arts, Design and Architecture School of Arts, Design and Architecture design with and for people Codesign
Alternative DEA Models
Mat-2.4142 Alternative DEA Models 19.9.2007 Table of Contents Banker-Charnes-Cooper Model Additive Model Example Data Home assignment BCC Model (Banker-Charnes-Cooper) production frontiers spanned by convex
1. Liikkuvat määreet
1. Liikkuvat määreet Väitelauseen perussanajärjestys: SPOTPA (subj. + pred. + obj. + tapa + paikka + aika) Suora sanajärjestys = subjekti on ennen predikaattia tekijä tekeminen Alasääntö 1: Liikkuvat määreet
Uusia kokeellisia töitä opiskelijoiden tutkimustaitojen kehittämiseen
The acquisition of science competencies using ICT real time experiments COMBLAB Uusia kokeellisia töitä opiskelijoiden tutkimustaitojen kehittämiseen Project N. 517587-LLP-2011-ES-COMENIUS-CMP This project
Innovative and responsible public procurement Urban Agenda kumppanuusryhmä. public-procurement
Innovative and responsible public procurement Urban Agenda kumppanuusryhmä https://ec.europa.eu/futurium/en/ public-procurement Julkiset hankinnat liittyvät moneen Konsortio Lähtökohdat ja tavoitteet Every
Työsuojelurahaston Tutkimus tutuksi - PalveluPulssi 11.3.2016. Peter Michelsson Wallstreet Asset Management Oy
Työsuojelurahaston Tutkimus tutuksi - PalveluPulssi 11.3.2016 Peter Michelsson Wallstreet Asset Management Oy Wallstreet lyhyesti Perustettu vuonna 2006, SiPa toimilupa myönnetty 3/2014 Täysin kotimainen,
Karkaavatko ylläpitokustannukset miten kustannukset ja tuotot johdetaan hallitusti?
For professional use only Not for public distribution Karkaavatko ylläpitokustannukset miten kustannukset ja tuotot johdetaan hallitusti? 08.02.2012 Jyrki Merjamaa, Head of Asset Management Aberdeen Asset
Nuku hyvin, pieni susi -????????????,?????????????????. Kaksikielinen satukirja (suomi - venäjä) (www.childrens-books-bilingual.com) (Finnish Edition)
Nuku hyvin, pieni susi -????????????,?????????????????. Kaksikielinen satukirja (suomi - venäjä) (www.childrens-books-bilingual.com) (Finnish Edition) Click here if your download doesn"t start automatically
C++11 seminaari, kevät Johannes Koskinen
C++11 seminaari, kevät 2012 Johannes Koskinen Sisältö Mikä onkaan ongelma? Standardidraftin luku 29: Atomiset tyypit Muistimalli Rinnakkaisuus On multicore systems, when a thread writes a value to memory,
1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä
OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 81122P (4 ov.) 30.5.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan
ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin. Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana
ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana Taustaa KAO mukana FINECVET-hankeessa, jossa pilotoimme ECVETiä
make and make and make ThinkMath 2017
Adding quantities Lukumäärienup yhdistäminen. Laske yhteensä?. Countkuinka howmonta manypalloja ballson there are altogether. and ja make and make and ja make on and ja make ThinkMath 7 on ja on on Vaihdannaisuus
Metal 3D. manufacturing. Kimmo K. Mäkelä Post doctoral researcher
Metal 3D manufacturing Kimmo K. Mäkelä Post doctoral researcher 02.11.2016 Collaboration! 2 Oulun yliopisto Definition - What does Additive Manufacturing mean? Additive manufacturing is a manufacturing
7.4 Variability management
7.4 Variability management time... space software product-line should support variability in space (different products) support variability in time (maintenance, evolution) 1 Product variation Product
Vertaispalaute. Vertaispalaute, /9
Vertaispalaute Vertaispalaute, 18.3.2014 1/9 Mistä on kyse? opiskelijat antavat palautetta toistensa töistä palaute ei vaikuta arvosanaan (palautteen antaminen voi vaikuttaa) opiskelija on työskennellyt
Statistical design. Tuomas Selander
Statistical design Tuomas Selander 28.8.2014 Introduction Biostatistician Work area KYS-erva KYS, Jyväskylä, Joensuu, Mikkeli, Savonlinna Work tasks Statistical methods, selection and quiding Data analysis
Opiskelijat valtaan! TOPIC MASTER menetelmä lukion englannin opetuksessa. Tuija Kae, englannin kielen lehtori Sotungin lukio ja etälukio
Opiskelijat valtaan! TOPIC MASTER menetelmä lukion englannin opetuksessa Tuija Kae, englannin kielen lehtori Sotungin lukio ja etälukio Päättääkö opettaja ohjelmasta? Vai voisivatko opiskelijat itse suunnitella
Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL
Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL Ville Liljeström, Micha Matusewicz, Kari Pirkkalainen, Jussi-Petteri Suuronen and Ritva Serimaa 13.3.2012
HARJOITUS- PAKETTI A
Logistiikka A35A00310 Tuotantotalouden perusteet HARJOITUS- PAKETTI A (6 pistettä) TUTA 19 Luento 3.Ennustaminen County General 1 piste The number of heart surgeries performed at County General Hospital
Capacity utilization
Mat-2.4142 Seminar on optimization Capacity utilization 12.12.2007 Contents Summary of chapter 14 Related DEA-solver models Illustrative examples Measure of technical capacity utilization Price-based measure
Expression of interest
Expression of interest Avoin hakemus tohtorikoulutettavaksi käytäntö Miksi? Dear Ms. Terhi virkki-hatakka I am writing to introduce myself as a volunteer who have the eagerness to study in your university.
LYTH-CONS CONSISTENCY TRANSMITTER
LYTH-CONS CONSISTENCY TRANSMITTER LYTH-INSTRUMENT OY has generate new consistency transmitter with blade-system to meet high technical requirements in Pulp&Paper industries. Insurmountable advantages are
TIEKE Verkottaja Service Tools for electronic data interchange utilizers. Heikki Laaksamo
TIEKE Verkottaja Service Tools for electronic data interchange utilizers Heikki Laaksamo TIEKE Finnish Information Society Development Centre (TIEKE Tietoyhteiskunnan kehittämiskeskus ry) TIEKE is a neutral,
812336A C++ -kielen perusteet, 21.8.2010
812336A C++ -kielen perusteet, 21.8.2010 1. Vastaa lyhyesti seuraaviin kysymyksiin (1p kaikista): a) Mitä tarkoittaa funktion ylikuormittaminen (overloading)? b) Mitä tarkoittaa jäsenfunktion ylimääritys
Toimintamallit happamuuden ennakoimiseksi ja riskien hallitsemiseksi turvetuotantoalueilla (Sulfa II)
Toimintamallit happamuuden ennakoimiseksi ja riskien hallitsemiseksi turvetuotantoalueilla (Sulfa II) Happamuuskuormituksen ennustaminen valuma-aluetasolla Marie Korppoo ja Markus Huttunen 13.5.2019 Päämäärä
KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ
KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ https://community.plm.automation.siemens.com/t5/tech-tips- Knowledge-Base-NX/How-to-simulate-any-G-code-file-in-NX- CAM/ta-p/3340 Koneistusympäristön määrittely
EUROOPAN PARLAMENTTI
EUROOPAN PARLAMENTTI 2004 2009 Kansalaisvapauksien sekä oikeus- ja sisäasioiden valiokunta 2008/0101(CNS) 2.9.2008 TARKISTUKSET 9-12 Mietintöluonnos Luca Romagnoli (PE409.790v01-00) ehdotuksesta neuvoston
Master's Programme in Life Science Technologies (LifeTech) Prof. Juho Rousu Director of the Life Science Technologies programme 3.1.
Master's Programme in Life Science Technologies (LifeTech) Prof. Juho Rousu Director of the Life Science Technologies programme 3.1.2017 Life Science Technologies Where Life Sciences meet with Technology
Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition)
Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition) Esko Jalkanen Uusi Ajatus Löytyy
1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä
OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 811122P (5 op.) 12.12.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan
Salasanan vaihto uuteen / How to change password
Salasanan vaihto uuteen / How to change password Sisällys Salasanakäytäntö / Password policy... 2 Salasanan vaihto verkkosivulla / Change password on website... 3 Salasanan vaihto matkapuhelimella / Change
EVALUATION FOR THE ERASMUS+-PROJECT, STUDENTSE
#1 Aloitettu: 6. marraskuuta 2015 9:03:38 Muokattu viimeksi: 6. marraskuuta 2015 9:05:26 Käytetty aika: 00:01:47 IP-osoite: 83.245.241.86 K1: Nationality Finnish K2: The program of the week has been very
RANTALA SARI: Sairaanhoitajan eettisten ohjeiden tunnettavuus ja niiden käyttö hoitotyön tukena sisätautien vuodeosastolla
TURUN YLIOPISTO Hoitotieteen laitos RANTALA SARI: Sairaanhoitajan eettisten ohjeiden tunnettavuus ja niiden käyttö hoitotyön tukena sisätautien vuodeosastolla Pro gradu -tutkielma, 34 sivua, 10 liitesivua
AYYE 9/ HOUSING POLICY
AYYE 9/12 2.10.2012 HOUSING POLICY Mission for AYY Housing? What do we want to achieve by renting apartments? 1) How many apartments do we need? 2) What kind of apartments do we need? 3) To whom do we
Land-Use Model for the Helsinki Metropolitan Area
Land-Use Model for the Helsinki Metropolitan Area Paavo Moilanen Introduction & Background Metropolitan Area Council asked 2005: What is good land use for the transport systems plan? At first a literature
Keskeisiä näkökulmia RCE-verkoston rakentamisessa Central viewpoints to consider when constructing RCE
Keskeisiä näkökulmia RCE-verkoston rakentamisessa Central viewpoints to consider when constructing RCE Koordinaattorin valinta ja rooli Selection and role of the coordinator Painopiste: tiede hallinto
Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies
Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine 4.1.2018 Centre for Language and Communication Studies Puhutko suomea? -Hei! -Hei hei! -Moi! -Moi moi! -Terve! -Terve
Bounds on non-surjective cellular automata
Bounds on non-surjective cellular automata Jarkko Kari Pascal Vanier Thomas Zeume University of Turku LIF Marseille Universität Hannover 27 august 2009 J. Kari, P. Vanier, T. Zeume (UTU) Bounds on non-surjective
Security server v6 installation requirements
CSC Security server v6 installation requirements Security server version 6.4-0-201505291153 Pekka Muhonen 8/12/2015 Date Version Description 18.12.2014 0.1 Initial version 10.02.2015 0.2 Major changes
EARLY LEARNING PLAN / ENGLANTI VARHAISKASVATUSSUUNNITELMA
EARLY LEARNING PLAN / ENGLANTI VARHAISKASVATUSSUUNNITELMA JYVÄSKYLÄN KAUPUNKI Dear Family, Home and the family are the most important growth environment and community for the child. Alongside with home,
ProAgria. Opportunities For Success
ProAgria Opportunities For Success Association of ProAgria Centres and ProAgria Centres 11 regional Finnish ProAgria Centres offer their members Leadership-, planning-, monitoring-, development- and consulting
LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet
LX 70 % Läpäisy 36 32 % Absorptio 30 40 % Heijastus 34 28 % Läpäisy 72 65 % Heijastus ulkopuoli 9 16 % Heijastus sisäpuoli 9 13 Emissiivisyys.77.77 Auringonsuojakerroin.54.58 Auringonsäteilyn lämmönsiirtokerroin.47.50
Hankkeen toiminnot työsuunnitelman laatiminen
Hankkeen toiminnot työsuunnitelman laatiminen Hanketyöpaja LLP-ohjelman keskitettyjä hankkeita (Leonardo & Poikittaisohjelma) valmisteleville11.11.2011 Työsuunnitelma Vastaa kysymykseen mitä projektissa
Increase of opioid use in Finland when is there enough key indicator data to state a trend?
Increase of opioid use in Finland when is there enough key indicator data to state a trend? Martta Forsell, Finnish Focal Point 28.9.2015 Esityksen nimi / Tekijä 1 Martta Forsell Master of Social Sciences
Arkkitehtuuritietoisku. eli mitä aina olet halunnut tietää arkkitehtuureista, muttet ole uskaltanut kysyä
Arkkitehtuuritietoisku eli mitä aina olet halunnut tietää arkkitehtuureista, muttet ole uskaltanut kysyä Esikysymys Kuinka moni aikoo suunnitella projektityönsä arkkitehtuurin? Onko tämä arkkitehtuuria?
Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija
Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija 1 Asemoitumisen kuvaus Hakemukset parantuneet viime vuodesta, mutta paneeli toivoi edelleen asemoitumisen
Academic Opening. Opening - Introduction. In this essay/paper/thesis I shall examine/investigate/evaluate/analyze General opening for an essay/thesis
- Introduction In this essay/paper/thesis I shall examine/investigate/evaluate/analyze General opening for an essay/thesis Tässä esseessä / tutkielmassa / opinnäytetyössä tutkin / tarkastelen / arvioin/
VAASAN YLIOPISTO Humanististen tieteiden kandidaatin tutkinto / Filosofian maisterin tutkinto
VAASAN YLIOPISTO Humanististen tieteiden kandidaatin tutkinto / Filosofian maisterin tutkinto Tämän viestinnän, nykysuomen ja englannin kandidaattiohjelman valintakokeen avulla Arvioidaan viestintävalmiuksia,
Tracking and Filtering. Petteri Nurmi
Tracking and Filtering Petteri Nurmi 4.4.2014 1 Questions What are state space models? Why are they relevant in position tracking? What is a Bayesian optimal filter? Which two steps form the filter? What
Information on Finnish Language Courses Spring Semester 2017 Jenni Laine
Information on Finnish Language Courses Spring Semester 2017 Jenni Laine 4.1.2017 KIELIKESKUS LANGUAGE CENTRE Puhutko suomea? Do you speak Finnish? -Hei! -Moi! -Mitä kuuluu? -Kiitos, hyvää. -Entä sinulle?
BDD (behavior-driven development) suunnittelumenetelmän käyttö open source projektissa, case: SpecFlow/.NET.
BDD (behavior-driven development) suunnittelumenetelmän käyttö open source projektissa, case: SpecFlow/.NET. Pekka Ollikainen Open Source Microsoft CodePlex bio Verkkosivustovastaava Suomen Sarjakuvaseura
Riitta Kilpeläinen Elia Liitiäinen Belle Selene Xia University of Eastern Finland Department of Forest Sciences Department of Economics and HECER
Riitta Kilpeläinen Elia Liitiäinen Belle Selene Xia University of Eastern Finland Department of Forest Sciences Department of Economics and HECER Suorat oppimistulosten mittaamistavat Suorat mittaamistavat
ELEMET- MOCASTRO. Effect of grain size on A 3 temperatures in C-Mn and low alloyed steels - Gleeble tests and predictions. Period
1 ELEMET- MOCASTRO Effect of grain size on A 3 temperatures in C-Mn and low alloyed steels - Gleeble tests and predictions Period 20.02-25.05.2012 Diaarinumero Rahoituspäätöksen numero 1114/31/2010 502/10
Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto
Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto If you are searched for a book by Miikka Poikselkä;Harri Holma;Jukka Hongisto Voice over LTE (VoLTE) in pdf form, then you have come
Norpe Winning Culture
Norpe Winning Culture TEKES Ideat vaihtoon 2.4.2014 Mona Hokkanen Smarter retailing Elämykselliset ostokokemukset Yksilölliset myymäläkonseptit Alhaisimmat kokonaiselinkaarikustannukset Seite 2 Miksi?
Fighting diffuse nutrient load: Multifunctional water management concept in natural reed beds
PhD Anne Hemmi 14.2.2013 RRR 2013 Conference in Greifswald, Germany Fighting diffuse nutrient load: Multifunctional water management concept in natural reed beds Eutrophication in surface waters High nutrient
BLOCKCHAINS AND ODR: SMART CONTRACTS AS AN ALTERNATIVE TO ENFORCEMENT
UNCITRAL EMERGENCE CONFERENCE 13.12.2016 Session I: Emerging Legal Issues in the Commercial Exploitation of Deep Seabed, Space and AI BLOCKCHAINS AND ODR: SMART CONTRACTS AS AN ALTERNATIVE TO ENFORCEMENT
Security server v6 installation requirements
CSC Security server v6 installation requirements Security server version 6.x. Version 0.2 Pekka Muhonen 2/10/2015 Date Version Description 18.12.2014 0.1 Initial version 10.02.2015 0.2 Major changes Contents
A new model of regional development work in habilitation of children - Good habilitation in functional networks
A new model of regional development work in habilitation of children - Good habilitation in functional networks Salla Sipari, PhD, Principal Lecturer Helena Launiainen, M.Ed, Manager Helsinki Metropolia
HOITAJAN ROOLI TEKNOLOGIAVÄLITTEISESSÄ POTILASOHJAUKSESSA VÄITÖSKIRJATUTKIJA JENNI HUHTASALO
HOITAJAN ROOLI TEKNOLOGIAVÄLITTEISESSÄ POTILASOHJAUKSESSA VÄITÖSKIRJATUTKIJA JENNI HUHTASALO Tutkimusintressit Asiantuntijuus ja teknologia: Hoitajan rooli teknologiavälitteisessä potilasohjauksessa Opettajan
Erasmus Intensive Language Course KV kevätpäivät Kuopio 9.5.2011 Päivi Martin, Lapin yliopisto
Erasmus Intensive Language Course KV kevätpäivät Kuopio 9.5.2011 Päivi Martin, Lapin yliopisto EILC KOKEMUKSIA LAPISTA HAKEMUS BUDJETTI JÄRJESTÄVÄTAHO & VASTUU TYÖNJAKO KIELENOPETUS OHJELMA JA PALJON KOKEMUKSIA
E80. Data Uncertainty, Data Fitting, Error Propagation. Jan. 23, 2014 Jon Roberts. Experimental Engineering
Lecture 2 Data Uncertainty, Data Fitting, Error Propagation Jan. 23, 2014 Jon Roberts Purpose & Outline Data Uncertainty & Confidence in Measurements Data Fitting - Linear Regression Error Propagation
FinFamily Installation and importing data (11.1.2016) FinFamily Asennus / Installation
FinFamily Asennus / Installation 1 Sisällys / Contents FinFamily Asennus / Installation... 1 1. Asennus ja tietojen tuonti / Installation and importing data... 4 1.1. Asenna Java / Install Java... 4 1.2.
JA CHALLENGE 18.-19.4.2013. Anna-Mari Sopenlehto Central Administration The City Development Group Business Developement and Competence
JA CHALLENGE 18.-19.4.2013 Anna-Mari Sopenlehto Central Administration The City Development Group Business Developement and Competence 12.11.2014 Challenges of the City of Turku What kind of city you would
Kuvankäsi/ely. Vieraana Jorma Laaksonen Tietotekniikan laitos. Viikko Luento Ope-ajat Harjoitus 7: Tietoliikenteen signaalinkäsi/ely
Kuvankäsi/ely Vieraana Jorma Laaksonen Tietotekniikan laitos Aikataulu Viikko Luento Ope-ajat Harjoitus 7: 26.10- Tietoliikenteen Prof. Risto Wichman Tietoliikenteen 8:2.11- Kuvankäsi/ely Jorma Laaksonen
Tietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Taulukon edut Taulukon haitat Taulukon haittojen välttäminen Dynaamisesti linkattu lista Linkatun listan solmun määrittelytavat Lineaarisen listan toteutus dynaamisesti linkattuna
Siirtymä maisteriohjelmiin tekniikan korkeakoulujen välillä Transfer to MSc programmes between engineering schools
Siirtymä maisteriohjelmiin tekniikan korkeakoulujen välillä Transfer to MSc programmes between engineering schools Akateemisten asioiden komitea Academic Affairs Committee 11 October 2016 Eija Zitting
Kaivostoiminnan eri vaiheiden kumulatiivisten vaikutusten huomioimisen kehittäminen suomalaisessa luonnonsuojelulainsäädännössä
M a t t i K a t t a i n e n O T M 1 1. 0 9. 2 0 1 9 Kaivostoiminnan eri vaiheiden kumulatiivisten vaikutusten huomioimisen kehittäminen suomalaisessa luonnonsuojelulainsäädännössä Ympäristöoikeustieteen