2.11 Väliaineen vastus



Samankaltaiset tiedostot
TEHTÄVIEN RATKAISUT N = 1,40 N -- 0,84 N = 0,56 N. F 1 = p 1 A = ρgh 1 A. F 2 = p 2 A = ρgh 2 A

Fysiikka 1. Dynamiikka. Voima tunnus = Liike ja sen muutosten selittäminen Physics. [F] = 1N (newton)

VUOROVAIKUTUS JA VOIMA

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Kpl 2: Vuorovaikutus ja voima

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKAN HARJOITUSKOE I Mekaniikka, 8. luokka

Kitka ja Newtonin lakien sovellukset

Muunnokset ja mittayksiköt

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen

g-kentät ja voimat Haarto & Karhunen

2.3 Voiman jakaminen komponentteihin

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen

Harjoitellaan voimakuvion piirtämistä

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Mekaniikan jatkokurssi Fys102

Luvun 12 laskuesimerkit

5.3 Ensimmäisen asteen polynomifunktio

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Massakeskipiste Kosketusvoimat

FYSIIKAN HARJOITUSTEHTÄVIÄ

Luvun 5 laskuesimerkit

3.4 Liike-energiasta ja potentiaalienergiasta

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET

2.5 Liikeyhtälö F 3 F 1 F 2

v = Δs 12,5 km 5,0 km Δt 1,0 h 0,2 h 0,8 h = 9,375 km h 9 km h kaava 1p, matkanmuutos 1p, ajanmuutos 1p, sijoitus 1p, vastaus ja tarkkuus 1p

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =

1.4 Suhteellinen liike

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

:37:37 1/50 luentokalvot_05_combined.pdf (#38)

Luento 7: Voima ja Liikemäärä

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)

Luvun 5 laskuesimerkit

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE

yyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat!

Mekaniikan jatkokurssi Fys102

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen)

3 Määrätty integraali

Luento 5: Voima ja Liikemäärä

Luku 13. Kertausta Hydrostaattinen paine Noste

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike

Fysiikan perusteet ja pedagogiikka (kertaus)

Harjoitustehtävä 1. Kiviä ja muita

C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %

MATEMATIIKKA PAOJ2 Harjoitustehtävät

Kertauskysymyksiä. KPL1 Suureita ja mittauksia. KPL2 Vuorovaikutus ja voima. Avain Fysiikka KPL 1-4

Luku 13. Kertausta Hydrostaattinen paine Noste

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

Luku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia

Kun voima F on painovoimasta eli, missä m on massa ja g on putoamiskiihtyvyys 9.81 m/s 2, voidaan paineelle p kirjoittaa:

C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:

Luento 16: Fluidien mekaniikka

1. Tasainen liike. Kappale liikkuu vakionopeudella niin, että suunta ei muutu

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

MEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko

Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1

HARJOITUS 4 1. (E 5.29):

Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin.

Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan

MAA03.3 Geometria Annu

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

1 Tieteellinen esitystapa, yksiköt ja dimensiot

Pietarsaaren lukio Vesa Maanselkä

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Kappaleiden tilavuus. Suorakulmainensärmiö.

Numeeriset menetelmät Pekka Vienonen

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää

6. helmikuuta Syventävien opintojen seminaari Joulupukin fysiikka. Juho Arjoranta

XXIII Keski-Suomen lukiolaisten matematiikkakilpailu , tehtävien ratkaisut

Harjoitustehtävä 1. Kiviä ja muita

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.

PULLEAT JA VALTAVAT VAAHTOKARKIT

Vektorilla on suunta ja suuruus. Suunta kertoo minne päin ja suuruus kuinka paljon. Se on siinä.

1 Laske ympyrän kehän pituus, kun

B. 2 E. en tiedä C ovat luonnollisia lukuja?

Tutkimusmateriaalit -ja välineet: kaarnan palaset, hiekan murut, pihlajanmarjat, juuripalat, pakasterasioita, vettä, suolaa ja porkkananpaloja.

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE

1 Tieteellinen esitystapa, yksiköt ja dimensiot

Magneettikentät. Haarto & Karhunen.

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

Vektorit. Kertausta Seppo Lustig (Lähde: avoinoppikirja.fi)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia

Voiman ja liikemäärän yhteys: Tämä pätee kun voima F on vakio hetken

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?

Sähköstatiikka ja magnetismi

Transkriptio:

Jokainen, joka on taistellut eteenpäin kohti kovaa vastatuulta tai yrittänyt juosta vedessä, tietää omasta kokemuksestaan, että väliaineella todellakin on vastus. Jos seisoo vain hiljaa paikoillaan vaikkapa vedessä, mikään voima ei tunnu, mutta mitä isompi vauhti sitä isompi vastus. No jaa, onhan noste. Siitä myöhemmin lisää. Väliaineen vastuksen kasvaminen vauhdin mukana merkitsee eroa kahden kiinteän pinnan väliseen kitkaan. Kitkahan oletettiin vakioksi vauhdista riippumatta kunhan yleensä oltiin liikkeellä. Eräs väliaineen vastustavan voiman suuruuteen vaikuttava seikka on liikkuvan esineen koko. Toinen tekijä on sen muoto, mutta myös vauhti, jolla väliaineessa liikutaan. Väliaineen vastus kasvaa nopeammin kuin vauhti väliaineen suhteen. Jos liikutaan nopeuksilla, jotka ovat pienemmät kuin äänen nopeus kyseessä olevassa väliaineessa, väliaineesta johtuva vastustava voima on suuruusluokkaa missä 2 c w A v2, c w on tarkasteltavan esineen muotokerroin ρ on kyseisen väliaineen tiheys A on tarkasteltavan esineen niin sanottu efektiivinen eli tehollinen pinta-ala v on esineen vauhti väliaineen suhteen. Muotokerroin viittaa siihen tosiseikkaan, että esineen poikkileikkauksen muodon ja koon lisäksi myös sen ääriviivan muoto vaikuttaa väliaineen vastukseen. Kaikkein edullisin muoto puheena olevalta kannalta on pisara. Se on puolestaan aika tutun tuntuinen havainto: juuri siksi vesi sataa taivaalta juuri sen muotoisina pisaroina kuin se tekee ja juuri siksi autot näyttävät aina vaan enemmän toistensa kaltaisilta. Vesipisaran muotoilee ilmanvastus eli tuuli ja autot muotoillaan tuulitunnelissa. Ja huomaa! pisaran on edullisinta lentää paksumpi pää edellä ja häntä perässä. Epäedullisimpia muotoja on puolestaan muun muassa esine, joka on kuin kantapuoli edellä lentävä mustikka, mutta ilman kantaa! Ihmisen muodosta puolestaan johtuu, että hän ei putoa kuinka suurella nopeudella tahansa: jos käy niin huonosti, että tipahtaa lentokoneesta ilman laskuvarjoa, nopeus rajoittuu 200 kilometriin tunnissa putoaa sitten viidestä kilometristä tai 500 metristä. (5)

Mieti, miksi lentokoneen siiven poikkileikkaus on se mikä se on. Ilmanvastus vie esineeltä liike-eneriaa varsinkin, jos esineen ääriviivat saavat ilman pyörteilemään tai jos esine pitää ilman läpi lentäessään ääntä. Esimerkiksi taivaanvuohi ei saa väpättävää ääntään ilmaiseksi ja jokainen lumenpöllähdys, jonka syöksylaskija saa aikaan, on pois hänen vauhdistaan. Esimerkki 37 Auton vauhti kasvaa 80 kilometristä tunnissa 30 kilometriin tunnissa. Kuinka paljon kasvaa ilmanvastus? Ilmanvastusten suhde on 2 c w A 30 km 2 h 2 c w A 80 km =2,6 2. h Vastaus: Ilmanvastus kasvaa noin 2,5 kertaiseksi. Noste (buoyant force, buoyancy) Olet autossa, jossa on myös heliumilla täytetty ilmapallo. Mihin suuntaan pallo liikkuu, kun auto jarruttaa? Kuten tiedät ja vappuna voit tarkistaa, helium ilmapallo nousee ylöspäin. Mikä sitten on helium -ilmapallon mielestä ylöspäin jarruttavassa autossa? Kun auto jarruttaa, kaikki autossa olevat massat, myös ilma ja siinä kelluva ilmapallo, pyrkivät jatkamaan matkaansa. Koska ilma siis puristuu kohti tuulilasia, se työntää itseään kevyemmän helium pallon tieltään. Heliumilla täytetty ilmapallo liikkuu siis taaksepäin, kun auto jarruttaa. Vastaavasti helium pallo pyrkii kaarteessa sisäkaarteeseen päin. Aina, kun esine upotetaan väliaineeseen, se menettää painostaan sen määrän, jonka esineen tilavuus väliainetta painaa. Tätä ilmiötä kutsutaan Arkhimedeen laiksi (Archimedes' Principle). Huomaa, että Arkhimedeen lain väite esine menettää painostaan sen määrän... tarkoittaa painoa ja se ei tarkoita massaa. Eihän sukellusveneen miehistökään leijaile ympäriinsä sukellusveneessään. No, entä Maata kiertävän sukkulan astronautti? Hän on puolestaan vapaassa putoamisliikkeessä ja hänen painonsa ei massansa kumoutuu sukkulan kiertoratanopeuden takia. Tarkastellaan suorakulmaisen särmiön eli tiiliskiven muotoista esinettä, joka on upotettu johonkin väliaineeseen, tällä kertaa vaikkapa veteen. Jos sen yläpinnan pinta-ala on A ja sen yläpinta on syvyydellä r, niin yläpintaa painaa vesimäärä, jonka massa on ja ρ A r ja sen vetovoima eli voima, 2(5)

jolla tämä vesimassa painaa kappaletta, on siis F = ρ A r. Vastaavasti alapinnan kohdalla väliaineen voima on F 2 = ρ A (r + h), jos esineen korkeus on h. Lasketaan näitten kahden voiman erotus F 2 F = ρ A h = ρ V, missä V on kappaleen tilavuus. Merkitään tätä nettovoimaa F:llä. Sitä sanotaan nosteeksi. Arkhimedeen laki Esineen paino vähenee väliaineessa määrän, jonka esineen tilavuus väliainetta painaa eli esine kokee nosteen F = ρ V kun V on esineen tilavuus, ρ on väliaineen tiheys ja on vetovoiman kiihtyvyys. Nosteen suunta on aina ylöspäin tämä edellä helium -pallon tarinassa kuvatuin varauksin. Esimerkki 38 Graniitin tiheys on 2,7. Tarkastellaan 3 kilon painoista raniittikappaletta, joka on vesialtaan pohjalla. a) Millä voimalla Maa vetää raniittikappaletta puoleensa? b) Laske kiveen kohdistuva veden noste c) Kuinka suurella voimalla pohja kannattaa raniittikappaletta? a) Se tosiseikka, että kivenmurikkamme on vedessä ei vaikuta voimaan, jolla Maa vetää sitä puoleensa. Kysytty voima on siis m = 27,5 N. Vastaus: 27,5 newtonin voimalla. b) Koska kivi painaa 3 kiloa ja sen tiheys on 2,7, niin sen tilavuus on noin 4,8 litraa. Tämä määrä vettä painaa noin 4,8 kiloa, joten nosteen F suuruus on 4,8 k = 47 N. 3(5)

Vastaus: Noste on 47 N. c) Σ F = F kannatus = G F = 80 N. Vastaus: Pohja kannattaa kiveä noin 80 newtonin voimalla. 47 N + 80 N = 27 N < 27,5 N. Ero johtuu pyöristämisistä. Esimerkki 39 Graniitin tiheys on 2,7 joutunut veteen ja sen alkunopeus vedessä on nolla?. Millä kiihtyvyydellä raniittilohkare aloittaa vajoamisen, kun se on Lohkareen liikeyhtälö on Σ F = ma, missä a on kysytty kiihtyvyys, m on lohkareen massa ja Σ F on lohkareeseen vaikuttavien voimien resultantti. Tässä tilanteessa kun josta Σ F = m F noste = m ρ V =m m, m on raniittilohkareen tilavuus. Koska Σ F = ma, niin m m =ma, a= = =6,2 m. raniitti s 2 Vastaus: Kysytty kiihtyvyys on 6,2 m s 2. Esimerkki 40 Kotivalo on löytänyt Atlantiksen valtakunnan perustajan, Atlantiksen kuninkaan Atlaksen palatsin alueen ja sieltä hänen kuninattarensa vaatimattoman kylpyammeen. Kotivalo ei tiedä, onko kylpyammeen nostaminen mahdollista. Siksi hän päättää tutkia asiaa rakentamalla siitä pienoismallin. Kotivalo tekee pienoismallin mittakaavassa :0 melkoinen urakka jo sekin. Lisäksi hän konstruoi ison orren, jonka toisessa päässä on elohopea-astia vastapainona ja toisessa iso, vahva lavetti pienoismallia varten. Elohopea-astian sisällön määrää voidaan säätää. Aluksi orsi 4(5)

asetetaan vaakasuoraan ilman pienoismallia eli pelkän lavetin kanssa. Sitten pienoismalli hilataan lavetille ja taas vaaka tasapainotetaan eli taarataan. Seuraavaksi pienoismalli lasketaan orren avulla veteen, jonka allas ei vuoda yli. Kun pienoismalli on vedessä ja vaaka tasapainotetaan vielä kerran päästämällä elohopeaa astiasta, huomataan, että elohopea-astia kevenee 486,850 k. a) Kuinka suuri on pienoismallin materiaalin tilavuus? b) Kuinka suuri on oikean kylpyammeen materiaalin tilavuus? c) Laske alkuperäisen kylpyammeen massa, kun amme on marmoria, jonka tiheys on 2563 k/m 3. a) Arkhimedeen lain nojalla pienoismalliin vaikuttavan nosteen suuruus on sama kuin sen syrjäyttämän vesimäärän tilavuus. Pienoismallin materiaalin tilavuus on siis 486,850 k = vesi V V =0,486 850 m 3. Vastaus: Pienoismallin materiaalin tilavuus on 486,850l. b) Koska mittakaava on :0, niin täysikokoisen ammeen materiaalin tilavuus on 0 3 = 000 kertaa pienoismallin vastaava tilavuus eli 486,850m 3. c) Täysikokoisen rakennelman massa on marmori 486,850 m 3 =2563 k m 3 486,850 m3 =248 t Vastaus: Ammerakennuksen massa on 248 tonnia. 5(5)