BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

Samankaltaiset tiedostot
läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

2 Osittaisderivaattojen sovelluksia

Matematiikkaa kauppatieteilijöille

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3

Mapu 1. Laskuharjoitus 3, Tehtävä 1

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

Juuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Derivaatan sovellukset (ääriarvotehtävät ym.)

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

Matematiikan tukikurssi

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

MAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x

Äänekosken lukio Mab4 Matemaattinen analyysi S2016

Matematiikan tukikurssi

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

Matematiikka B1 - avoin yliopisto

12. Hessen matriisi. Ääriarvoteoriaa

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea.

4. Kertausosa. 1. a) 12

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

Matematiikan tukikurssi: kurssikerta 10

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

Matematiikan peruskurssi (MATY020) Harjoitus 7 to

Matematiikka B1 - TUDI

Pisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta

3 TOISEN ASTEEN POLYNOMIFUNKTIO

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

Johdatus tekoälyn taustalla olevaan matematiikkaan

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.

4 Polynomifunktion kulku

Matematiikan tukikurssi

sin(x2 + y 2 ) x 2 + y 2

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

Matemaattisen analyysin tukikurssi

MATP153 Approbatur 1B Harjoitus 6 Maanantai

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

r > y x z x = z y + y x z y + y x = r y x + y x = r

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

Funktion suurin ja pienin arvo DERIVAATTA,

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Differentiaalilaskenta 1.

BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 2016

Matematiikan tukikurssi

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

Luento 8: Epälineaarinen optimointi

MAA2.3 Koontitehtävät 2/2, ratkaisut

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Huippu 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Viikon aiheet. Funktion lineaarinen approksimointi

lnx x 1 = = lim x = = lim lim 10 = x x0

Aloita Ratkaise Pisteytä se itse Merkitse pisteet saanut riittävästi pisteitä voit siirtyä seuraavaan osioon ei ole riittävästi

4 Yleinen potenssifunktio ja polynomifunktio

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13

x = 6 x = : x = KERTAUSHARJOITUKSIA Funktion nollakohdat ja merkki 229.a) Funktio f ( x) = 2x+ Nollakohta f x b) Funktio gx ( ) = x

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1

l 1 2l + 1, c) 100 l=0

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo Ratkaisut ja pisteytysohjeet

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

MATP153 Approbatur 1B Harjoitus 5 Maanantai

MATEMATIIKAN PERUSKURSSI II

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

3 Yleinen toisen asteen yhtälö ja epäyhtälö

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

Ratkaisuehdotus 2. kurssikokeeseen

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki = 16 3 =

y=-3x+2 y=2x-3 y=3x+2 x = = 6

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.

Luento 9: Newtonin iteraation sovellus: optimointiongelma

Ratkaisuehdotus 2. kurssikoe

MAT Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

4 FUNKTION ANALYSOINTIA

f (28) L(28) = f (27) + f (27)(28 27) = = (28 27) 2 = 1 2 f (x) = x 2

Derivaatta: funktion approksimaatio lineaarikuvauksella.

MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

Transkriptio:

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien pistetulo; (iii) vektorien välinen kulma. Tunnemme pisteet P : (1, 1, 0), Q : (0, 3, 3) ja R : (2, 0, 2). Laske (i) vektorien P Q ja P R pituudet; (ii) vektorien P Q ja P R pistetulo; (iii) vektorien P Q ja P R välinen kulma. 2. (a) Tunnemme funktion f(x) = ln x. Muodosta f:lle lineaarinen approksimaatio muodostettuna pisteen x = 5 läheisyydessä. Minkä arvon tämä approksimaatio antaa, kun x = 6? Tunnemme funktion g(x) = ln x + 1 x. Muodosta g:lle lineaarinen approksimaatio muodostettuna pisteen x = 5 läheisyydessä. Minkä arvon tämä approksimaatio antaa, kun x = 6? 3. (a) Muodosta funktiolle f(x, y) = y 3 + 5x 2 + 2 lineaarinen approksimaatio muodostettuna pisteessä ( 4, 3). Minkä arvon approksimaatio antaa, kun (x, y) = ( 3.5, 3.5)? Muodosta funktiolle g(x, y) = x 2 ln(y) lineaarinen approksimaatio muodostettuna pisteessä ( 3, 2). Minkä arvon approksimaatio antaa, kun (x, y) = ( 2.5, 2.5)? (c) Muodosta funktiolle h(x, y) = xy e x2 +y 2 5 lineaarinen approksimaatio muodostettuna pisteessä (2, 1). Minkä arvon approksimaatio antaa, kun (x, y) = (2.5, 0.5)? 4. Etsi seuraavien funktioiden lokaalit maksimit/minimit. Ovatko nämä globaaleja maksimeja/minimejä? (a) y(x) = 1 2 x2 + 4x 10 y(x) = ln(x) + x 2 (c) y(x) = e x x, 2 x 2. 5. Suorakulmaisen särmiön särmät ovat x-, y- ja z-akseleiden suuntaiset. Särmiön avaruuslävistäjän pituus on 1 metri. Kuinka suuri voi särmiön tilavuus suurimmillaan olla? 6. Tutkitaan kolmannen asteen polynomia f(x) = x 3 + 3x 2 bx, missä b on tunnettu vakio. (a) Olkoon nyt b = 0. Etsi f(x):n minimi- ja maksimipisteet. Olkoon nyt b = 4. Etsi f(x):n minimi- ja maksimipisteet. Mitä huomataan? (c) Selvästikin minimi- ja maksimipisteiden löytyminen on kiinni vakion b arvosta. Missä vakion b arvossa kulkee se haamuraja, jonka jälkeen tutkittavalla polynomilla ei enää olekaan ääriarvoja? 7. Selvitä, missä annettujen kahden muuttujan funktioiden kriittiset pisteet ovat (jos missään). Missä ovat maksimit/minimit (jos missään)? Piirrä tai selvitä itsellesi miltä nämä pinnat näyttävät. (a) f(x, y) = x + y f(x, y) = x 2 + y 2 1

(c) f(x, y) = x 2 y 2 (d) f(x, y) = x 2 (e) f(x, y) = x 2 + y 8. (a) Laske funktion f(x, y) = x cos(πy) + ye x kaikki ensimmäiset ja toiset osittaisderivaatat. Minkä arvon sekaderivaatta f xy saa, kun (x, y) = (1, 2)? Minkä arvon f yy saa näillä arvoilla? Laske funktion f(x, y) = 3x 2 y + x ln(y) kaikki ensimmäiset ja toiset osittaisderivaatat. Minkä arvon sekaderivaatta f xy saa, kun (x, y) = (3, 2)? Minkä arvon f yy saa näillä arvoilla? (c) Tunnemme funktion f(x, y) = xy + ey y 2 +1. Laske derivaatta 2 f x y. Huomaa, että tämän osittaisderivaatan laskemiseen on helpompi, ja vaikeampi tapa. 2

Vastaukset 1. (a) a 5.1962, b 2.2361, (a, b) 0.32787 rad P Q 3.7417, P R 2.4495, ( P Q, P R) 1.2373 rad 2. (a) L(6) = 1.8094 L(6) = 1.9694 3. (a) L(-3.5,-3.5) = 21.5 L(-2.5,2.5) = 6.4089 (c) L(2.5,-0.5) = -6.5 4. (a) Minimiarvoa ei ole. Maksimiarvo y = 2 Ei maksimi- eikä minimiarvoja (c) Pienin arvo y = 1. Suurin arvo y 5.3891. 5. x = y 0.577 6. Ääriarvoja löydämme vain silloin, kun b < 3. 7. Mieti itse. 8. (a) 2 f 2.72 (x,y)=(1,2) (c) x y 2 f x y 18.5 (x,y)=(3,2) 2 f y x = 1 2 f y y 2 f y y = 29.6088 (x,y)=(1,2) = 0.75 (x,y)=(3,2) 3

Malliratkaisut 1. 2. (a) f(x) = ln x f (x) = 1 x L(x) = f(5) + f (5) (x 5) = ln x + 1 5 L(6) = ln 5 + 1 5 (x 5) (6 5) 1.8094 g(x) = ln x + 1 x g (x) = x 1 + x 2 L(x) = g(5) + g (5) (x 5) ( = ln 5 + 1 ) + 4 (x 5) 1.9694 5 25 3. (a) f = y 3 + 5x 2 + 2 f (x,y)=( 4, 3) = 55 x = 10x x = 40 (x,y)=( 4, 3) y = 3y y = 9 (x,y)=( 4, 3) L(x, y) = f( 4, 3) + f 1 ( 4, 3) (x 2) + f 2 ( 4, 3) (y + 1) = 55 40 (x + 4) 9 (y + 3) L( 3.5, 3.5) = 55 40 ( 3.5 + 4) 9 ( 3.5 + 3) = 39.5 4

g = x 2 ln(y) g (x,y)=( 3,2) = 9 ln 2 g g = 2x ln(y) x x = 6 ln 2 (x,y)=( 3,2) g y = x2 y g y = 9 (x,y)=( 3,2) 2 L(x, y) = g( 3, 2) + g 1 ( 3, 2) (x + 3) + g 2 ( 3, 2) (y 2) = 9 ln 2 6 ln 2 (x + 3) + 9 2 (y 2) L( 2.5, 2.5) = 9 ln 2 6 ln 2 ( 2.5 + 3) + 9 2 (2.5 2) 6.4089 (c) h = xy e x2 +y 2 5 h x = (2x2 + 1) y e x2 +y 2 5 h y = (2y2 + 1) y e x2 +y 2 5 h (x,y)=(2, 1) = 2 h x = 9 (x,y)=(2, 1) h y = 6 (x,y)=(2, 1) L(x, y) = h(2, 1) + h 1 (2, 1) (x 2) + h 2 (2, 1) (y + 1) = 2 9 (x 2) + 6 (y + 1) L(2.5, 0.5) = 2 9 (2.5 2) + 6 ( 0.5 + 1) = 2.5 4. 5. Avaruuslävistäjän pituus d = 1 = x 2 + y 2 + z 2 = z = 1 x 2 y 2. Särmiön tilavuus V = xyz = xy 1 x 2 y 2. Juuren alle ei saa tulla negatiivista, joten voimme päätellä 1 x 2 y 2 0 = x 2 y 2 1. Tilavuus on nyt kahden muuttujan funktio, V = V (x, y), ja olemme etsimässä tämän kahden muuttujan funktion ääriarvoa. Äsken todettiin x 2 y 2 1, ja lisäksi rajoitamme tutkittavaa aluetta kiinnittämällä x 0 ja y 0 (jos särmiön sivun pituus on negatiivinen luku, sillä ei ole fysikaalista tulkintaa). Lasketaan osittaisderivaatat 5

V x = y 2yx2 y 3 1 x 2 y 2 V y = x 2xy2 x 3 1 x 2 y 2 Jotta molemmat osittaisderivaatat olisivat nollia, täytyy päteä { y 2yx 2 y 3 = 0 x 2xy 2 x 3 = 0 = { y(1 2x 2 y 2 ) = 0 x(1 2y 2 x 2 ) = 0 Selvästikin V x = V y = 0 jos x = 0 ja y = 0. Tämä yhdistelmä ei kuitenkaan maksimoi särmiön tilavuutta (toki tilavuus voi olla yli nollan). Lausekkeet näyttävät toinen toisiltaan, x:n ja y:n rooleja vaihtaen: ratkaisu voisi siis löytyä symmetriaa noudattaen, eli kun x = y. Nyt x 2x 3 x 3 = 0 x 3x 3 = 0 x(2 3x 2 ) = 0 1 3x 2 = 0 3x 2 = 1 x 2 = 1 3 x = 1 3 Kun x = 1 3, silloin itse asiassa x = y = z = 1 3. Havainto tuskin yllättää; usein tämän kaltaisten tilanteiden ratkaisu löytyy symmetrisimmästä pisteestä. 6. Lasketaan polynomin derivaatta, ja muodostetaan derivaatan nollakohtien paikan lauseke b- parametreineen kaikkineen (ei siis tehdä sijoituksia b = 0 tai b = 4 vielä). f(x) = x 3 + 3x 2 bx f (x) = 3x 2 + 6x b Missä f(x):n ääriarvot ovat? Ensin selvitämme, millä x:n arvoilla f (x) = 0. 6

3x 2 + 6x b = 0 x 2 6 3 x + b 3 = 0 x 2 2x + b 3 = 0 x = 2 2 ± 1 ( ) b 4 4 2 3 = 1 ± 1 2 4 4 3 b Selvästikin, jos 4 4 3 b < 0 4 3 b < 4 4 3 b > 4 b > 3 silloin derivaatan nollakohtia ei voida löytää. Jos b = 3, derivaatalla on yksi nollakohta, mutta kyseinen piste on kuitenkin vain polynomin satulapiste. Ääriarvoja löydämme siis vain silloin, kun b < 3. (a)- ja -kohtien ratkaisut sivuutetaan, ovathan kuitenkin yläastekamaa. 7. (a) x = 1 ja y = 1, eli funktio on tasaisesti nouseva suora levy. Suurinta arvoa ei siis ole, eikä pienintä myöskään. x = 2x ja y = 2x ; 2 f = 2 ja 2 f = 2. Pisteessä (x, y) = (0, 0) molemmat osittaisderivaatat x 2 y 2 ovat nollia, tässä on siis kriittinen piste. Molemmat osittaisderivaatat ovat positiivisia, eli selvästikin tässä on minimipiste. Funktio on muodoltaan pyörähdysparaboloidin muotoinen ylöspäin (kohti positiivista z-akselia) aukeava kuppi. (c) x = 2x ja y = 2x ; 2 f = 2 ja 2 f = 2. Pisteessä (x, y) = (0, 0) molemmat osittaisderivaatat ovat nollia, tässä on siis kriittinen piste. Osittaisderivaatat ovat kuitenkin eri merkki- x 2 y 2 siä, joten kyseessä on satulapiste. Tämän funktion kuvaaja näyttääkin pisteen (x, y) = (0, 0) ympäristössä hevosen satulalta; x-akselilla pinnan muoto mukaisee ylöspäin aukeavaa paraabelia z = x 2, ja y-akselilla pinnan muoto mukaisee alaspäin aukeavaa paraabelia z = y 2. (d) Huomataan, että x-akselilla pinnan muoto mukaisee alaspäin aukeavaa paraabelia z(x) = 7

x 2, kun taas y:llä ei ole funktion kuvaajan muotoon mitään vaikutusta. Funktion kuvaaja näyttää vuorenharjanteelta, joka jatkuu y-akselin suunnassa muuttumattomana kohti positiivista ja negatiivista ääretöntä. (e) Huomataan, että x-akselilla pinnan muoto mukaisee alaspäin aukeavaa paraabelia z(x) = x 2, kun taas y-akselilla kuvaaja näyttää suoralta y(y) = y. Funktion kuvaaja näyttää vuorenharjanteelta, näin ollen nousee lineaarisesti lähestyttäessä positiivista ääretöntä, ja laskee lineaarisesti lähestyttäessä negatiivista ääretöntä. 8. 8