26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen keskittymistä keskiarvon ympärille, sallittu kvantitatiivisen muuttujan yhteydessä.
26.9.2017/2 Esim. 5.1.30. Lisäaineen vaikutus teräksen kovuusindeksiin Erotuksen arvot -5, 1, -2, -5, 2, -7, -1, -7, 1, 0 = (-5+1-2-5+2-7-1-7+1+0)/10 = -2,3 Lisäaineiden vaikutuksessa teräksen kovuuteen ei eroja, jos erotuksen keskiarvo lähellä nollaa. s 2 = ((-5+2,3) 2 + (1+2,3) 2 + + (0+2,3) 2 )/(101) = 11,79 s = 3,4.
26.9.2017/3 Lineaarinen muunnos muuttujalle x = +, i = 1, 2,, n vaikutus keskiarvoon = + mittayksikkö vaikuttaa keskiarvon vaikutus keskihajontaan = mittayksikkö vaikuttaa keskihajontaan
26.9.2017/4 Kaksiulotteinen jakauma Pisteparvi, graafinen esitys
26.9.2017/5 Esim. Toyota Avensis farmariautoja
26.9.2017/6 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko)
Esim. Asunnon kunto sijainnin mukaan, aineistona Tre_myydyt_asunnot_2010 26.9.2017/7 On eroja, p = 0,002
Harjoitustyön riippuvuustarkastelut 26.9.2017/8 http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/htyop116.pdf#page=4 Riippuvuustarkastelu 1 y (selitettävä) on kvantitatiivinen ja x (selittäjä) kvalitatiivinen laatikko-jana-kuvio ryhmäkeskiarvot, muut tarvittavat tunnusluvut päättely riippumattomien otosten t-testi avulla Riippuvuustarkastelu 2 y ja x kvalitatiivisia (kvantitatiiviset voi luokitella), selitettävä muuttuja eri kuin riippuvuustarkastelussa 1 ristiintaulukko 2 riippumattomuustesti.
5.2.3 Kaksiulotteisen jakauman tunnuslukuja Mitataan kahden muuttujan välistä riippuvuuden voimakkuutta Ristiintaulukosta kontingenssikerroin 26.9.2017/9 Kvantitatiivisista muuttujista lineaarisen riippuvuuden voimakkuuden mittari korrelaatiokerroin (r) Järjestysasteikollisilla muuttujilla järjestyskorrelaatiokertoimet
26.9.2017/10 Korrelaatiokerroin r Mittaa kahden kvantitatiivisen muuttujan välistä lineaarista riippuvuutta, sen voimakkuutta. Mittaa sitä, miten tiiviisti pisteparven pisteet ovat sijoittuneet pisteparveen sovitettavan suoran ympärille. Ominaisuuksia -1 r 1 r = 1, jos kaikki pisteet samalla nousevalla suoralla r = -1, jos kaikki pisteet samalla laskevalla suoralla r 0, jos ei lineaarista riippuvuutta
26.9.2017/11 Esim. 5.2.8. 50 40 30 20 10 rasvaprosentti 0-10 60 70 80 90 100 110 120 130 vyötärön ympärys(cm) r = 0,825
26.9.2017/12 Esim. 5.2.10. 5000 4000 3000 y 2000 1000 0 0 100 300 500 700 900 x1 r = 0,9559
26.9.2017/13 Esim. 5.2.11. 8 7 logy 6 5 4 2 3 4 5 6 7 logx1 r = 0,9537
26.9.2017/14 Esim. 5.2.12. Riippuvuutta, joka ei lineaarista. 600 500 400 300 y 200 100 0-100 -3-2 -1 0 1 2 3 4 5 6 7 8 x1
Esim. Pisteparvia ja arviot korrelaatiokertoimista 26.9.2017/15
Esim. 5.2.13. Pisteparvia ja korrelaatiokertoimia 26.9.2017/16 http://www.sis.uta.fi/tilasto/tiltp7/moniste_8.pd f Esim. 5.2.17. Korrelaatiomatriisi, CTESTI-aineisto ika pituus paino cooper Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Correlations ika pituus paino cooper 1,807**,768**,399**,000,000,000 152 152 152 152,807** 1,892**,236**,000,000,003 152 153 153 153,768**,892** 1,102,000,000,210 152 153 153 153,399**,236**,102 1,000,003,210 **. Correlation is significant at the 0.01 level (2-tailed). 152 153 153 153
26.9.2017/17 Korrelaatiokertoimen laskukaava kaavakokoelman kaava (4) n i n i i i n i i i y y x x y y x x r 1 1 2 2 1 ) ( ) ( ) )( ( ks. myös http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/esimerkit_kaavoihin.pd f
26.9.2017/18 Esim. 5.2.14. Mittayksikön vaihto ei vaikuta korrelaatiokertoimeen, ks. lineaarisen muunnoksen vaikutus korrelaatiokertoimeen http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/luentorunko.pdf#page=48
Esim. 5.2.16. Korrelaatiokertoimet pelipaikoittain, ehdolliset korrelaatiot 26.9.2017/19 r= 0,84, n=42 r= 0,86, n=42
r= 0,62, n=42 r= 0,68, n=28 26.9.2017/20
26.9.2017/21 Esim. 5.2.17. Osittaiskorrelaatiokertoimet ikä vakioituna, CTESTI-aineisto Correlations Control Variables ika cooper paino pituus Correlation Significance (2-tailed) df Correlation Significance (2-tailed) df Correlation Significance (2-tailed) df cooper paino pituus 1,000 -,349 -,160.,000,050 0 149 149 -,349 1,000,719,000.,000 149 0 149 -,160,719 1,000,050,000. 149 149 0
26.9.2017/22 7 TILASTOLLISEN PÄÄTTELYN PERUSTEITA Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa? Ovatko kaupungissa eri alueilla myynnissä olevien asuntojen keskineliöhinnat samoja? Riippuuko myytävän asunnon kunto sijainnista? Miten päättely populaatiosta otoksen perusteella tehdään?
26.9.2017/23 Otos Populaatio otoskeskiarvo populaation keskiarvo, odotusarvo µ otosvarianssi s 2 populaation varianssi 2 otoshajonta s populaation hajonta %-osuus otoksessa p %-osuus populaatiossa Otoksesta määritellyt, s 2, s, p ovat otossuureita, joiden käyttäytymistä voidaan arvioida todennäköisyysjakaumien avulla. Näitä jakaumia käytetään hyväksi päättelyssä.