MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Samankaltaiset tiedostot
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Väliestimointi (jatkoa) Heliövaara 1

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

10. laskuharjoituskierros, vko 14, ratkaisut

Sovellettu todennäköisyyslaskenta B

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

ABHELSINKI UNIVERSITY OF TECHNOLOGY

Harjoitus 7: NCSS - Tilastollinen analyysi

Testit laatueroasteikollisille muuttujille

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Sovellettu todennäköisyyslaskenta B

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 5

Testejä suhdeasteikollisille muuttujille

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Mat Sovellettu todennäköisyyslasku A

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1

Sovellettu todennäköisyyslaskenta B

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Mat Tilastollisen analyysin perusteet, kevät 2007

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Sovellettu todennäköisyyslaskenta B

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Tilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5

Tilastollinen aineisto Luottamusväli

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle

Sovellettu todennäköisyyslaskenta B

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.

Tilastollisia peruskäsitteitä ja Monte Carlo

Estimointi. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu

9. laskuharjoituskierros, vko 12-13, ratkaisut

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

tilastotieteen kertaus

Sovellettu todennäköisyyslaskenta B

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

riippumattomia ja noudattavat samaa jakaumaa.

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

Osa 2: Otokset, otosjakaumat ja estimointi

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1

Sovellettu todennäköisyyslaskenta B

Valitaan testisuure, jonka jakauma tunnetaan H 0 :n ollessa tosi.

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II

031021P Tilastomatematiikka (5 op) viikko 5

5.7 Uskottavuusfunktioon perustuvia testejä II

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Mat Tilastollisen analyysin perusteet, kevät 2007

Teema 8: Parametrien estimointi ja luottamusvälit

Todennäköisyyden ominaisuuksia

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Sovellettu todennäköisyyslaskenta B

Luottamusvälit. Normaalijakauma johnkin kohtaan

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

Harjoitus 2: Matlab - Statistical Toolbox

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

1. Nollahypoteesi on, että teksti on kirjoitettu lyhyemmällä murteella. Mahdollisiavaihtoehtojaonvainyksieliettäteksti

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Tutkimustiedonhallinnan peruskurssi

dx=5&uilang=fi&lang=fi&lvv=2014

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:

Transkriptio:

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Kalle Kytölä, Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015

Sisältö Tilastollisen hypoteesin testaamisen periaatteet Hypoteesi määrällisen muuttujan odotusarvosta Kahden odotusarvon yhtäsuuruuden testaaminen Binaariarvoisen laadullisen muuttujan testaus

Sisältö Tilastollisen hypoteesin testaamisen periaatteet Hypoteesi määrällisen muuttujan odotusarvosta Kahden odotusarvon yhtäsuuruuden testaaminen Binaariarvoisen laadullisen muuttujan testaus

Esimerkkikysymyksiä hypoteesin testaamiseen Kehitettävän uuden lääkkeen vaikutus Onko uusi lääke tehokkaampi kuin aiempi vakiintunut hoitomenetelmä? (Tai: onko uusi lääke edes lumelääkettä tehokkaampi?) Paviaaniurosten omien ja muiden poikasten auttaminen Auttavatko urokset omia poikasiaan herkemmin kuin muiden poikasia? Erityisesti, tietävätkö urokset ketkä ovat heidän omia jälkeläisiään? Väitetty selvännäkijä Pystyykö selvännäkijä ennustamaan kolikonheiton tuloksia pelkkää arvaamista osuvammin?

Nollahypoteesi ja vaihtoehtoinen hypoteesi Testaamista varten muotoillaan: Nollahypoteesi H 0 Varovainen ja konservatiivinen hypoteesi ilmiöstä (sisältö tyypillisesti: mitään uutta tai yllättävää ei tarvita havaintojen selittämiseen ) Vaihtoehtoinen hypoteesi H 1 Vaihtoehto konservatiiviselle hypoteesille (sisältönä tyypillisesti uusi ja kiinnostava selitys ilmiölle) Kehitettävän uuden lääkkeen vaikutus H 0 Uusi lääke ja lumelääke ovat yhtä tehokkaita. H 1 Uusi lääke on lumelääkettä tehokkaampi. Paviaaniurosten omien ja muiden poikasten auttaminen H 0 Urokset auttavat kaikkia lauman poikaisia yhtä todennäköisesti. H 1 Urokset auttavat omia poikaisiaan muita todennäköisemmin. Väitetty selvännäkijä H 0 Ennustukset ovat yhtä hyviä kuin arvaukset. Ennustukset ovat osuvampia kuin arvaukset. H 1

Tilastollisen hypoteesin testaamisen vaiheet 1. Muotoillaan nollahypoteesi H 0 ja vaihtoehtoinen hypoteesi H 1 ja muodostetaan nollahypoteesia vastaava tilastokokeen stokastinen malli. 2. Valitaan testisuure, jonka jakauman voidaan olettaa olevan riittävän erilainen riippuen siitä päteekö nollahypoteesi H 0 vai vaihtoehtoinen hypoteesi H 1. 3. Johdetaan testisuureen jakauma (tai sen approksimaatio) olettaen että nollahypoteesi H 0 pätee. 4. Tarkastellaan, olisivatko havainnot poikkeuksellisia, jos nollahypoteesi olisi tosi. - ei kovin poikkeuksellisia ei hylätä nollahypoteesia - poikkeuksellisia hylätään nollahypoteesi Miten poikkeuksellisuutta arvoidaan? * p-arvo: p = Pr(havainnot vähintään näin poikkeuksellisia H 0 ) * hylätään tai ei hylätä ennalta määrätyn merkitsevyystason α mukaan (p α tai p > α)

Sisältö Tilastollisen hypoteesin testaamisen periaatteet Hypoteesi määrällisen muuttujan odotusarvosta Kahden odotusarvon yhtäsuuruuden testaaminen Binaariarvoisen laadullisen muuttujan testaus

Esim. Kahviautomaatti Kahviautomaatin on tarkoitus laskea jokaiseen kuppiin keskimäärin 10.0 cl kahvia. Kahviautomaatin toimintaa testattiin valuttamalla automaatista 30 kupillista ja mittamalla kahvin määrät kupeissa. Mittauksessa havaittiin arvot (cl): 11.05 9.65 10.93 9.46 10.27 10.02 10.07 10.74 11.15 10.40 10.12 11.20 10.07 10.27 9.99 9.80 10.83 10.21 11.26 10.11 10.49 10.10 10.15 11.02 10.00 11.68 10.51 11.20 11.29 10.15 Onko kahviautomaatti oikein kalibroitu? Havaitun aineiston x keskiarvo on m(x) = 10.473, joka poikkeaa tavoitearvosta µ 0 = 10.0. Onko poikkeama tilastollisesti merkitsevä?

Tilastokokeen stokastinen malli Analyysiä helpottava (tai sen mahdollistava) yleinen hypoteesi H: Havaitut arvot ovat realisaatioita riippumattomista N(µ, σ 2 )-jakaumaa noudattavista satunnaismuuttujista. Normaalijakauman parametreja µ ja σ 2 ei tunneta. Yleisen hypoteesin pätiessä tilastokokeen tulos (ennen sen havaitsemista) on satunnaisvektori X = (X 1,..., X n ), jonka komponentit ovat riippumattomat ja N(µ, σ 2 )-jakautuneet. Huom Normaalijakaumaoletus on erittäin rajoittava ja ennen testaamista on syytä pohtia (tai testata) onko normaalijakaumaoletus perusteltu. Jos ei, niin suurelle aineistolle voidaan silti toisinaan käyttää normaaliarviota. On myös olemassa muita testejä, jotka soveltuvat pienemmillekin otoksille. Näitä käsitellään kurssilla Tilastollisen analyysin perusteet.

Tilastokokeen stokastisen mallin tunnusluvut Tilastokokeen stokastinen malli on X = (X 1,..., X n ), jonka komponentit ovat riippumattomat ja N(µ, σ 2 )-jakautuneet. Stokastisesta mallista laskettu keskiarvo on satunnaisluku m(x ) = 1 n n X i, i=1 jonka odotusarvo on µ ja keskihajonta σ/ n. Jos hypoteesi µ = µ 0 pätee, niin suure noudattaa N(0, 1)-jakaumaa. m(x ) µ 0 σ/ n

Esim. Kahviautomaatti: aineiston jakauma 11.05 9.65 10.93 9.46 10.27 10.02 10.07 10.74 11.15 10.40 10.12 11.20 10.07 10.27 9.99 9.80 10.83 10.21 11.26 10.11 10.49 10.10 10.15 11.02 10.00 11.68 10.51 11.20 11.29 10.15 Havaitun aineiston x keskiarvo on m(x) = 10.473. Onko aineisto normaalijakautunut? Kahvimäärien histogrammi frekvenssi 0 2 4 6 8 10 12 9.0 9.5 10.0 10.5 11.0 11.5 12.0 Määrä(cl)

Esim. Kahviautomaatti: Normalisoitu keskiarvo Jos aineisto on normaalijakautunut, niin poikkeaman tilastollista merkitsevyyttä voidaan verrata N(0, 1)-jakaumaan, kunhan m(x) normalisoidaan muotoon m(x) µ 0 σ/ n = 10.473 10.0 σ/ 30 =? Ongelma: Parametri σ on tuntematon. Ratkaisu: Korvataan σ estimaatilla s(x) = 0.563. Aineistosta saadaan tunnusluku t(x) = m(x) µ 0 s(x)/ n = 10.473 10.0 0.563/ 30 = 4.60.

Keskihajonnan korvaaminen otoskeskihajonnalla Yleisen hypoteesin (normaalijakautuma) ja nollahypoteesin (µ = µ 0 ) pätiessä normalisoitu tunnusluku m(x ) µ 0 σ/ n N(0, 1) Entä t(x ) := m(x ) µ 0 s(x )/ n? Fakta Yleisen hypoteesin ja nollahypoteesin pätiessä tunnusluku t(x ) noudattaa Studentin t(n 1)-jakaumaa vapausastein n 1.

Studentin t-testi 11.05 9.65 10.93 9.46 10.27 10.02 10.07 10.74 11.15 10.40 10.12 11.20 10.07 10.27 9.99 9.80 10.83 10.21 11.26 10.11 10.49 10.10 10.15 11.02 10.00 11.68 10.51 11.20 11.29 10.15 Aineistolle m(x) = 10.473, s(x) = 0.563, t(x) = 4.60. Yleisen hypoteesin (normaalijakauma) ja nollahypoteesin (µ = µ 0 ) pätiessä stokastista mallia vastaava (satunnainen) tunnusluku on t(x ) := m(x ) µ 0 s(x )/ n t(29). Jos hypoteesit ok, niin tyypillisesti t(x ) 0. Studentin t-testin p-arvo on poikkeaman t(x ) 4.60 tn: Pr( t(x ) 4.60) = 2*(1-pt(4.60,29)) = 0.000077.

Studentin t-testin tulkinta 11.05 9.65 10.93 9.46 10.27 10.02 10.07 10.74 11.15 10.40 10.12 11.20 10.07 10.27 9.99 9.80 10.83 10.21 11.26 10.11 10.49 10.10 10.15 11.02 10.00 11.68 10.51 11.20 11.29 10.15 Aineistolle m(x) = 10.473, s(x) = 0.563, t(x) = 4.60. Yleisen hypoteesin ja nollahypoteesin pätiessä stokastista mallia vastaava tunnusluku toteuttaa t(x ) 4.60 todennäköisyydellä Pr( t(x ) 4.60) = 0.000077. Näin pieni p-arvo tarkoittaa, että testisuureen havaittu poikkeama nollasta johtuu hyvin epätodennäköisesti satunnaisvaihtelusta. Havaittu poikkeama on siis tilastollisesti merkitsevä ja antaa aiheen hylätä nollahypoteesi µ = 10.0. Johtopäätös: Kahviautomaatti on virheellisesti kalibroitu.

Studentin t-testin suorittaminen p-arvolla: Yhteenveto Lähtökohdat Määrällisen muuttujan aineisto x = (x 1,..., x n ). Yleinen hypoteesi H: Havaittu aineisto koostuu riippumattomien N(µ, σ 2 )-jakautuneiden satunnaismuttujien realisaatioista Nollahypoteesi H 0 : µ = µ 0 (Vaihtoehtoinen hypoteesi H 1 : µ µ 0 ) Testaus Lasketaan aineistosta testisuure t(x) = m(x) µ 0 s(x)/ n Lasketaan t(n 1)-jakaumasta p-arvo Pr( t(x ) t(x) ). Johtopäätös Jos p-arvo on lähellä nollaa = Hylätään nollahypoteesi H 0 Muussa tapauksessa nollahypoteesi jää voimaan. R: t.test(x,mu=10.0)

Studentin t-testi ennalta määrätyllä merkitsevyystasolla Lähtökohdat: Samat Valitaan testin merkitsevyystaso α (esim. α = 1%) ja määritetään t(n 1)-jakaumasta kriittiset arvot a ja b, joille Pr(t(X ) a) = α/2 ja Pr(t(X ) b) = α/2. R:llä b = qt(1-α/2, n-1) ja a = qt(α/2, n-1) = b. Testaus Lasketaan aineistosta testisuure t(x) = m(x) µ 0 s(x)/ n Katsotaan kuuluuko t(x) välille (a, b). Johtopäätös Jos t(x) / (a, b) = Hylätään nollahypoteesi H 0 Muussa tapauksessa nollahypoteesi jää voimaan.

Esim. Kahviautomaatti 11.05 9.65 10.93 9.46 10.27 10.02 10.07 10.74 11.15 10.40 10.12 11.20 10.07 10.27 9.99 9.80 10.83 10.21 11.26 10.11 10.49 10.10 10.15 11.02 10.00 11.68 10.51 11.20 11.29 10.15 Aineistolle m(x) = 10.473, s(x) = 0.563, t(x) = 4.60. Merkitsevyystasoa α = 0.01 vastaavat kriittiset arvot ovat a = qt(0.005,29) = 2.76 b = qt(0.995,29) = +2.76 Testisuure t(x) ( 2.76, 2.76) = Nollahypoteesi µ = 10.0 hylätään 1 % merkitsevyystasolla. Johtopäätös: Kahviautomaatti ei valuta keskimäärin 10.0 cl kokoisia kupillisia.

Yleisen hypoteesin merkitys Yleinen hypoteesi H: Tehdyt havainnot ovat riippumattomien N(µ, σ 2 )-jakautuneiden satunnaismuuttujien realisaatioita. Yleistä hypoteesia ei t-testin yhteydessä testata, vaan sen ajatellaan olevan vahvistettu muilla tavoin. Jos yleinen hypoteesi ei päde, on t-testin tulos merkityksetön. Aineiston normaalisuuden testaamiseksi on olemassa omia testejä (ei käsitellä tällä kurssilla)

Oikea vai väärä johtopäätös? Testin tulos Nollahypoteesi jää voimaan Nollahypoteesi hylätään Maailman tila Nollahypoteesi Nollahypoteesi pätee ei päde Oikea Hyväskymisvirhe johtopäätös Hylkäysvirhe Oikea johtopäätos Testin merkitsevyystaso α kertoo hylkäysvirheen todennäköisyyden (ennen aineiston havaitsemista) Nollahypoteesi hylätään merkitsevyystasolla α täsmälleen silloin, kun testin p-arvo on pienempi kuin α. Testin hyväksymisvirhe ei ole 1 α. (Hyväksymisvirheen analysoimista ei käsitellä tällä kurssilla.)

Sisältö Tilastollisen hypoteesin testaamisen periaatteet Hypoteesi määrällisen muuttujan odotusarvosta Kahden odotusarvon yhtäsuuruuden testaaminen Binaariarvoisen laadullisen muuttujan testaus

Esim. Verenpainelääke Samojen potilaiden (8 kpl) verenpaine mitattiin ennen ja jälkeen testattavan lääkkeen nauttimisen. Koetulokset (mmhg) ovat: 1 2 3 4 5 6 7 8 Ennen 134 174 118 152 187 136 125 168 Jälkeen 128 176 110 149 183 136 118 158 Onko lääkkeellä keskimäärin verenpainetta alentava vaikutus? Verenpaineiden keskiarvo ennen: m(x (e) ) = 149.25 Verenpaineiden keskiarvo ennen: m(x (j) ) = 144.75 Potilaiden keskimääräinen verenpaine lääkkeen nauttimisen jälkeen on siis 4.5 yksikköä alempi Onko tämä muutos tilastollisesti merkitsevä?

Parivertailun stokastinen malli Erotukset verenpaine ennen - verenpaine jälkeen : 1 2 3 4 5 6 7 8 Ennen 134 174 118 152 187 136 125 168 Jälkeen 128 176 110 149 183 136 118 158 Erotus 6-2 8 3 4 0 7 10 Yleinen hypoteesi H: Havaitut erotukset d i ovat riippumattomien N(µ, σ 2 )-jakautuneiden satunnaismuuttujien realisaatioita. Nollahypoteesi H 0 : µ = 0 Vaihtoehtoinen hypoteesi H 1 : µ 0.

Odotusarvon parivertailun t-testi Tilastokokeen stokastinen malli on satunnaisvektori D = (D 1,..., D n ), jonka komponentit ovat riippumattomat ja N(µ, σ 2 )-jakautuneet. Yleisen hypoteesin ja nollahypoteesin pätiessä stokastisen mallin testisuure t(d) = m(d) 0 s(d)/ t(n 1). n Vastaava aineistosta laskettu testisuure on t(d) = m(d) 0 s(d)/ n = 4.5 4.07/ 8 = 3.13. Kun vaihtoehtoinen hypoteesi on (H 1 : µ 0), saadaan p-arvoksi p = Pr( t(d) 3.13) = 2*(1-pt(3.13,7)) = 0.017. R: t.test(x (e),x (j),paired=true,alternative="two.sided")

Odotusarvon parivertailun t-testin tulkinta Onko lääkkeellä keskimäärin verenpainetta alentava vaikutus? 1 2 3 4 5 6 7 8 Ennen 134 174 118 152 187 136 125 168 Jälkeen 128 176 110 149 183 136 118 158 Erotus 6-2 8 3 4 0 7 10 Potilaiden keskimääräinen verenpaine lääkkeen nauttimisen jälkeen on 4.5 yksikköä alempi Erotuksista laskettu t(d) = 3.13; testin p-arvo on 0.017 Onko tämä muutos tilastollisesti merkitsevä? Nollahypoteesi (lääkkellä ei vaikutusta, µ = 0): Hylätään 2 % merkitsevyystasolla Jää voimaan 1 % merkitsevyystasolla Lääkäri, joka hylkää nollahypoteesit 2 % merkitsevyystasolla, tekee pitkällä aikavälillä virheellisiä johtopäätöksiä 2 % tapauksista, joissa H 0 olisi ollut tosi.

Parivertailun yksisuuntainen t-testi Tilastokokeen stokastinen malli on D = (D 1,..., D n ), jonka komponentit ovat riippumattomat ja N(µ, σ 2 )-jakautuneet. Yleisen hypoteesin ja nollahypoteesin pätiessä t(d) = m(d) 0 s(d)/ n t(n 1). Vastaava aineistosta laskettu testisuure on t(d) = 3.13. Kun vaihtoehtoinen hypoteesi on (H 1 : µ > 0), saadaan p-arvoksi p = Pr(t(D) 3.13) = 1-pt(3.13,7) = 0.0083. Tällöin nollahypoteesi H 0 : µ = 0 (lääke ei alenna verenpainetta) voidaan hylätä vaihtoehtoisen hypoteesin H 1 : µ > 0 tukemana merkitsevyystasolla 1 %. R: t.test(x (e),x (j),paired=true,alternative="greater")

Odotusarvojen vertailu eri kokoisille otoksille Potilaat on jaettu kahteen ryhmään, joista toisen ryhmän potilaille on annettu lumelääkettä (10 kpl) ja toisen ryhmän potilaille (8 kpl) testattavaa lääkettä. Molempien ryhmien potilailta mitattiin eräs antigeeniarvo lääkekuurien jälkeen. Koetulokset (U/ml) ovat: 1 2 3 4 5 6 7 8 9 10 Lume 102 88 69 102 83 88 93 109 61 70 Testattava 111 84 60 80 83 71 54 59 Onko lääkkeellä keskimäärin antigeenipitoisuutta alentava vaikutus? Lumelääkettä saaneiden keskiarvo: m(x (l) ) = 86.5 Testattavaa lääkettä saaneiden keskiarvo ennen: m(x (t) ) = 75.25 Potilaiden keskimääräinen antigeeniarvo lääkkeen nauttimisen jälkeen on siis 11.25 yksikköä alempi Onko tämä muutos tilastollisesti merkitsevä?

Ryhmien odotusarvojen vertailun stokastinen malli Ryhmät G 1 ja G 2, joiden otoskoot ovat n 1 = 10 ja n 2 = 8 Yleinen hypoteesi H: Ryhmän G 1 havainnot ovat riippumattomien N(µ 1, σ1 2 )-jakautuneiden satunnaismuuttujien X 1,..., X n1 realisaatioita. Ryhmän G 2 havainnot ovat riippumattomien N(µ 2, σ2 2 )-jakautuneiden satunnaismuuttujien Y 1,..., Y n2 realisaatioita. Otokset ovat riippumattomat Nollahypoteesi H 0 : µ 1 = µ 2 Vaihtoehtoinen hypoteesi H 1 : µ 1 µ 2.

Ryhmien odotusarvojen vertailun t-testi Otoskeskiarvot noudattavat normaalijakaumia, m(x ) N ( ) µ 1, σ2 1 n 1 ja m(y ) N ( ) µ 2, σ2 2 n 2, joten riippumattomuuden perusteella niiden erotus noudattaa normaalijakaumaa, m(x ) m(y ) N ( µ 1 µ 2, σ2 1 n 1 + σ2 2 n 2 Testisuure on m(x ) m(y ) t(x, Y ) = s 2 (X ) n 1 + s2 (Y ) n 2 ja sen jakaumaa voidaan arvoida 1. N(0, 1)-jakaumalla, jos n 1 ja n 2 ovat suuria 2. t(ν)-jakaumalla, missä ν = jos n 1 tai n 2 on pieni. [ s 2 (X ) ] 2 n 1 + s2 (Y ) n 2 ( ) 1 s 2 2 (X ) n 1 1 n 1 + 1 n 2 1 ( s 2 (Y ) ). n 2 ) 2,

Ryhmien odotusarvojen vertailun t-testi Onko lääkkeellä keskimäärin antigeenipitoisuutta alentava vaikutus? 1 2 3 4 5 6 7 8 9 10 Lume 102 88 69 102 83 88 93 109 61 70 Testattava 111 84 60 80 83 71 54 59 Potilaiden keskimääräinen verenpaine lääkkeen nauttimisen jälkeen on 11.25 yksikköä alempi, n 1 = 10 ja n 2 = 8, s 2 (x) = 252.7 ja s 2 (y) = 343.4. Vapausasteet (pyöristetään alaspäin kokonaisluvuksi): ν = [ s 2 (x) n 1 + s2 (y) n 2 ] 2 ( ) 2 1 s2 (x) n 1 1 n 1 + 1 n 2 1 ( s2 (y) ) 2 13.92, ν = 13. n 2 Testisuureen arvo t(x, y) = 1.362; testin p-arvo on p = Pr( t(d) 1.362) 2*(1-pt(1.362,13)) 0.196. Onko tämä muutos tilastollisesti merkitsevä? Nollahypoteesia ei hylätä.

Sisältö Tilastollisen hypoteesin testaamisen periaatteet Hypoteesi määrällisen muuttujan odotusarvosta Kahden odotusarvon yhtäsuuruuden testaaminen Binaariarvoisen laadullisen muuttujan testaus

Laadun testaaminen Valmistaja väittää, että sen tuotteista korkeintaan 5 % on viallisia. Asiakas poimii tilaamiensa tuotteiden joukosta 200 tuotteen otoksen ja löytää 19 viallista tuotetta. Onko valmistajan väite oikeutettu? Otoksessa havaittu viallisten osuus on 19 200 = 9.5%. Voidaanko tämä tulkita satunnaisvaihtelun aiheuttamaksi? Testataan väitettä 1 % merkitsevyystasolla.

Satunnaisotannan stokastinen malli Poimitaan n = 200 tuotetta suuresta perusjoukosta. Merkitään X i = { 1, jos i:s tarkastettava tuote on on viallinen, 0, muuten. Tällöin X i = 1 tn:llä p ja X i = 0 tn:llä 1 p, missä (tuntematon) parametri p on viallisten tuotteiden suhteellinen osuus Näin ollen X i Ber(p) Kun perusjoukko on suuri, ovat X 1,..., X n likimain riippumattomat. Viallisten tuotteiden lkm otoksessa on fr(x ) = n i=1 X i, ja se noudattaa binomijakaumaa parametrein n = 200 ja p. Viallisten tuotteiden suhteellinen osuus otoksessa on ˆp(X ) = 1 n n i=1 X i. Luvut X i ovat satunnaisia (ennen tuotteiden havaitsemista) Normaaliapproksimaatio: (kts. keskeinen raja-arvolause) ˆp(X ) noudattaa likimain jakaumaa N ( p/n, (1 p)p/n )

Hypoteesin p 5% testaaminen Valmistajan väittämä yläraja virheellisten osuudelle on p 0 = 0.05. Testataan nollahypoteesia H 0 : p p 0 kun vaihtoehtoisena hypoteesina on H 1 : p > p 0. Testin p-arvo on todennäköisyys (olettaen nollahypoteesi) vähintään näin poikkeuksellisille havainnoille, eli todennäköisyys vähintään 19 virheelliselle tuotteelle. Se lasketaan binomijakaumalla ( n ) ( n Pr X i 19 p = p 0 = 1 Pr i=1 v=0 i=1 X i 18 p = p 0 ) 18 ( ) 200 = 1 p0 v (1 p 0 ) 200 v v = 1 pbinom(18, 200, 0.05) 0.00266. Koska p-arvo alittaa valitun merkitsevyystason 0.01, nollahypoteesi p p 0 hylätään 1 % merkitsevyystasolla. Johtopäätös: Valmistajan väite (max 5 % tuotteista viallisia) on tilastollisesti merkitsevästi virheellinen.

Hypoteesin p 5% testaaminen normaaliapproksimaatiolla Merkitään p 0 = 0.05 ja määritellään testisuure z(x) = ˆp(x) p 0 p 0 (1 p 0 ) n Kun ˆp(x) = 9.5%, saadaan testisuureen arvoksi z(x) = 2.91. Suuret testisuuren arvot puoltavat nollahypoteesin H 0 : p p 0 hylkäämistä. Normaaliapproksimaatiolla saadaan p-arvoksi Pr(z(X ) 2.91) Pr(Z 2.91) = 1-pnorm(2.91) = 0.0018. Koska p-arvo alittaa luvun 0.01, nollahypoteesi p p 0 hylätään 1 % merkitsevyystasolla. Johtopäätös: Valmistajan väite (max 5 % tuotteista viallisia) on tilastollisesti merkitsevästi virheellinen.

Laadun testaaminen, vaihtoehtoinen lähestymistapa Valmistaja väittää, että sen tuotteista korkeintaan 5 % on viallisia. Asiakas poimii tilaamiensa tuotteiden joukosta 200 tuotteen otoksen ja löytää 19 viallista tuotetta. Onko valmistajan väite oikeutettu? Otoksessa havaittu viallisten osuus on 19 200 = 9.5%. Voidaanko tämä tulkita satunnaisvaihtelun aiheuttamaksi? Lähestytään väitettä vaihtoehtoisella tavalla: estimoimalla havainnoista virheellisten tuotteiden todellista osuutta p.

Suurimman uskottavuuden estimaattori osuudelle p Kun tuotteet tarkastetaan, havaitaan aineisto x = (x 1,..., x n ). Viallisten lukumäärä otoksessä on fr(x) = n i=1 x i. Tapahtuman (X 1,..., X n ) = (x 1,..., x n ) tn on L(p; x 1,..., x n ) = Pr(X 1 = x 1,..., X n = x n ) = p fr(x) (1 p) n fr(x). Parametrin p suurimman uskottavuuden estimaattori on se p:n arvo ˆp, joka maksimoi uskottavuusfunktion L(p; x 1,..., x n ) arvon: ( ) ˆp = argmax p L(p; x 1,..., x n ).

Uskottavuusfunktion maksimointi Logaritminen uskottavuusfunktio on l(p; x 1,..., x n ) = log L(p; x 1,..., x n ) = fr(x) log p+(n fr(x)) log(1 p). Derivaatta p:n suhteen l (p) = fr(x) 1 p + (n fr(x)) ( 1) 1 p. Maksimi löydetään pisteestä p = ˆp, jossa l (ˆp) = 0, eli fr(x) 1ˆp = (n fr(x)) 1 1 ˆp. Tästä ratkaistaan suurimman uskottavuuden estimaatti ˆp = fr(x) n.

Viallisten osuuden SU-estimaattori Fakta Viallisten osuuden p SU-estimaatti aineistosta x = (x 1,..., x n ) on ˆp(x) = fr(x) n = 1 n n i=1 x i eli viallisten tuotteiden suhteellinen osuus otoksessa. Kun estimaattia katsotaan lukuna ennen aineiston havaitsemista, saadaan satunnaisluku ˆp(X ) = fr(x ) n = 1 n n i=1 X i ˆp(X ) on viallisten tuotteiden osuuden p SU-estimaattori. ˆp(X ) on Ber(p)-jakauman parametrin p SU-estimaattori.

Suhteeellisen osuuden estimointi SU-estimaattori viallisten tuotteiden (tuntemattomalle) osuudelle p koko perusjoukossa on ˆp(X ) = 1 n Tämä estimaattori on harhaton: Lisäksi E(ˆp(X )) = 1 n Var(ˆp(X )) = 1 n 2 n X i. i=1 n E(X i ) = p. i=1 n Var(X i ) = i=1 Normalisoidun satunnaismuuttujan ˆp(X ) p p(1 p) n odotusarvo on nolla ja varianssi yksi. p(1 p). n

Normaalijakaumalla approksimointi Kun n on suuri, ˆp(X ) p p(1 p) n N(0, 1). (approksimatiivisesti) Voidaan myös edelleen approksimoida seuraavasti ˆp(X ) p ˆp(X )(1 ˆp(X )) n N(0, 1). (approksimatiivisesti) Jos Z N(0, 1), niin ylläolevasta huomaamme, että satunnaismuuttujalle ˆp = ˆp(X ) pätee approksimatiivisesti Pr z 0.005 < ˆp p < z 0.995 Pr(z 0.005 < Z < z 0.995 ) = 99%, ˆp(1 ˆp) n missä z 0.995 = qnorm(0.995) 2.58 ja z 0.005 = qnorm(0.005) 2.58.

99 % luottamusväli Satunnaismuuttujalle ˆp = ˆp(X ) pätee Pr 2.58 < ˆp p < 2.58 99%, ˆp(1 ˆp) n eli ( ) ˆp(X )(1 ˆp(X )) Pr p ˆp(X ) ± 2.58 99%, n Kun havaitaan 19 viallista tuotetta 200:n otoksessa, ˆp(x) = 9.5% ja satunnainen (approksimatiivinen) luottamustason 99% luottamusväli realisoituu väliksi ( ) ˆp(x)(1 ˆp(x)) ˆp(x) ± 2.58 = (0.042, 0.148). n Johtopäätös: Väitetty arvo p 0 = 0.05 kuuluu y.o. luottamusvälille, joten yllä tehdyillä approksimaatiolla valmistajan väitettä ei hylättäisi merkitsevyystasolla 1%.

Ensi viikolla aiheena lineaarinen regressio...

Aineistolähteet Luentokalvot pohjautuvat osittain kurssin edellisten vuosien (Ilkka Mellin, Milla Kibble, Juuso Liesiö) luentokalvoihin.