Regressioanalyysi. Kuusinen/Heliövaara 1

Samankaltaiset tiedostot
Regressioanalyysi. Vilkkumaa / Kuusinen 1

Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia. Heliövaara 1

Johdatus regressioanalyysiin. Heliövaara 1

ABHELSINKI UNIVERSITY OF TECHNOLOGY

Harjoitus 9: Excel - Tilastollinen analyysi

Mat Tilastollisen analyysin perusteet, kevät 2007

Johdatus tilastotieteeseen Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2004) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio

Mat Tilastollisen analyysin perusteet, kevät 2007

Erityiskysymyksiä yleisen lineaarisen mallin soveltamisessa

Yleinen lineaarinen malli

Johdatus tilastotieteeseen Regressiomallin valinta. TKK (c) Ilkka Mellin (2004) 1

Sovellettu todennäköisyyslaskenta B

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Regressiomallin valinta. TKK (c) Ilkka Mellin (2007) 1

Korrelaatiokertoinen määrittely 165

Kaksisuuntainen varianssianalyysi. Heliövaara 1

Johdatus tilastotieteeseen Regressiodiagnostiikka. TKK (c) Ilkka Mellin (2004) 1

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Sovellettu todennäköisyyslaskenta B

2. Teoriaharjoitukset

Johdatus regressioanalyysiin

Johdatus tilastotieteeseen Johdatus regressioanalyysiin. TKK (c) Ilkka Mellin (2005) 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Yhden selittäjän lineaarinen regressiomalli

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Harjoitus 3: Regressiomallit (Matlab)

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Regressiodiagnostiikka. TKK (c) Ilkka Mellin (2007) 1

Lohkoasetelmat. Vilkkumaa / Kuusinen 1

Lohkoasetelmat. Kuusinen/Heliövaara 1

Osa 2: Otokset, otosjakaumat ja estimointi

Mat Tilastollisen analyysin perusteet, kevät 2007

Harjoitus 3: Regressiomallit (Matlab)

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Dynaamiset regressiomallit

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Mat Tilastollisen analyysin perusteet, kevät 2007

Lohkoasetelmat. Heliövaara 1

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

1. Tutkitaan regressiomallia Y i = β 0 + β 1 X i + u i ja oletetaan, että tavanomaiset

TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET

Regressiodiagnostiikka ja regressiomallin valinta

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Regressiodiagnostiikka ja regressiomallin valinta

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Estimointi. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Vastepintamenetelmä. Heliövaara 1

Yleistetyistä lineaarisista malleista

Moniulotteisia todennäköisyysjakaumia

Vastepintamenetelmä. Vilkkumaa / Kuusinen 1

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =

Väliestimointi (jatkoa) Heliövaara 1

031021P Tilastomatematiikka (5 op) viikko 6

Sovellettu todennäköisyyslaskenta B

031021P Tilastomatematiikka (5 op) viikko 6

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

2.1. Parametrien estimointi 2.2. Regressiokertoimien estimointi kovariansseista ja korrelaatioista

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Mat Tilastollisen analyysin perusteet, kevät 2007

Harha mallin arvioinnissa

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO

805306A Johdatus monimuuttujamenetelmiin, 5 op

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Johdatus tilastotieteeseen Tilastollinen riippuvuus ja korrelaatio. TKK (c) Ilkka Mellin (2005) 1

Todennäköisyyden ominaisuuksia

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

Simuloinnin strategisia kysymyksiä

tilastotieteen kertaus

Testejä suhdeasteikollisille muuttujille

Koesuunnittelu 2 k -faktorikokeet. TKK (c) Ilkka Mellin (2005) 1

Mat Tilastollisen analyysin perusteet, kevät 2007

Kertausluento. Vilkkumaa / Kuusinen 1

Koesuunnittelu Vastepintamenetelmä. TKK (c) Ilkka Mellin (2005) 1

Tilastollinen aineisto Luottamusväli

Harjoitus 2: Matlab - Statistical Toolbox

Simuloinnin strategisia kysymyksiä

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

Testit järjestysasteikollisille muuttujille

4.0.2 Kuinka hyvä ennuste on?

Sovellettu todennäköisyyslaskenta B

MTTTP1, luento KERTAUSTA

Testit laatueroasteikollisille muuttujille

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

Transkriptio:

Regressioanalyysi Kuusinen/Heliövaara 1

Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin selittävien muuttujien havaittujen arvojen vaihtelun avulla. Regressioanalyysissa selitettävän muuttujan tilastolliselle riippuvuudelle selittävistä muuttujista pyritään rakentamaan tilastollinen malli, jota kutsutaan regressiomalliksi. Regressioanalyysin mahdollisia tavoitteita: (i) Selitettävän muuttujan ja selittävien muuttujien tilastollisen riippuvuuden luonteen kuvaaminen. (ii) Selitettävän muuttujan arvojen ennustaminen. Kuusinen/Heliövaara 2

Regressiomalli Regressiomallin yleisessä muodossa on seuraavat osat: y = f(x; β) + ε y f(x; β) ε = selitettävä muuttuja = mallin systemaattinen eli rakenneosa = mallin satunnainen osa Mallin systemaattinen osa f(x; β) kuvaa selitettävän muuttujan y riippuvuutta selittävästä muuttujasta x. Systemaattisen osan muoto riippuu parametrista β. Kuusinen/Heliövaara 3

Regressio-ongelma Regressioanalyysissä pyritään valitsemaan parametrin β arvo siten, että kaikkiin havaintoihin j, j = 1, 2,..., n, liittyvistä jäännöstermeistä ε j tulee samanaikaisesti mahdollisimman pieniä. Pyritään siis valitsemaan parametrin β arvo siten, että käyrä y = f(x; β) kulkisi jossakin mielessä mahdollisimman läheltä jokaista havaintopistettä (x j, y j ), j = 1, 2,..., n. Kuusinen/Heliövaara 4

Yhden selittäjän lineaarinen regressiomalli Kuusinen/Heliövaara 5

Malli ja sen osat Yhden selittäjän lineaarinen regressiomalli on muotoa y j = β 0 + β 1 x j + ε j, j = 1, 2,..., n, jossa y j = Selitettävän muuttujan satunnainen havaittu arvo havaintoyksikössä j. x j = Selittävän muuttujan ei-satunnainen havaittu arvo havaintoyksikössä j. β 0 = Vakioselittäjän regressiokerroin, joka on tuntematon vakio. β 1 = Selittäjän x regressiokerroin, joka on tuntematon vakio. ε j = Satunnainen jäännöstermi havaintoyksikössä j. Kuusinen/Heliövaara 6

Standardioletukset jäännöstermeistä Regressiomallin jäännöstermit ε j ovat satunnaismuuttujia, joiden ns. standardioletukset ovat: (i) E(ε j ) = 0, j = 1, 2,..., n. (ii) Var(ε j ) = σ 2, j = 1, 2,..., n. (iii) Cor(ε j, ε l ) = 0, j l. Tavallisesti tehdään myös normaalisuusoletus (iv) ε j N(0, σ 2 ), j = 1, 2,..., n. Kuusinen/Heliövaara 7

Selitettävän muuttujan ominaisuudet Jos regressiomallin jäännöstermejä ε j koskevat standardioletukset (i)-(iii) pätevät, on selitettävän muuttujan y havaituilla arvoilla y j seuraavat stokastiset ominaisuudet: (i) E(y j ) = β 0 + β 1 x j, j = 1, 2,..., n. (ii) Var(y j ) = σ 2, j = 1, 2,..., n. (iii) Cor(y j, y l ) = 0, j l. Jos myös normaalisuusoletus (iv) pätee, niin (iv) y j N(β 0 + β 1 x j, σ 2 ), j = 1, 2,..., n. Kuusinen/Heliövaara 8

Mallin parametrit Yhden selittäjän lineaarisen regressiomallin parametreja ovat regressiokertoimet β 0 ja β 1 sekä jäännöstermien ε j yhteinen varianssi Var(ε j ) = σ 2, j = 1, 2..., n, jota kutsutaan jäännösvarianssiksi. Koska regressiokertoimet β 0 ja β 1 sekä jäännösvarianssi σ 2 ovat tavallisesti tuntemattomia, ne on estimoitavat muuttujien x ja y havaituista arvoista x j ja y j, j = 1, 2,..., n. Regressiokertoimien β 0 ja β 1 estimointiin on tarjolla useita erilaisia menetelmiä, joista tavallisesti käytetään pienimmän neliösumman menetelmää. Kuusinen/Heliövaara 9

Pienimmän neliösumman menetelmä Pienimmän neliösumman menetelmässä yhden selittäjän lineaarisen regressiomallin y j = β 0 + β 1 x j + ε j, j = 1, 2,..., n, regressiokertoimien β 0 ja β 1 estimaattorit määrätään minimoimalla jäännöstermien ε j neliösummaa min β n j=1 ε 2 j min β n (y j β 0 β 1 x j ) 2 j=1 regressiokertoimien β 0 ja β 1 suhteen. Kuusinen/Heliövaara 10

Tunnuslukuja 1/2 Aritmeettiset keskiarvot: x = 1 n n x j, ȳ = 1 n n y j j=1 j=1 Otosvarianssit: s 2 x = 1 n 1 s 2 y = 1 n 1 n j=1 n j=1 (x j x) 2 = 1 n 1 (y j ȳ) 2 = 1 n 1 ( n ) x 2 j n x 2 j=1 ( n ) yj 2 nȳ 2 j=1 Kuusinen/Heliövaara 11

Tunnuslukuja 2/2 Otoskovarianssi s xy = 1 n 1 n j=1 (y j ȳ)(x j x) = 1 n 1 ( n j=1 ) y j x j nȳ x Otoskorrelaatiokerroin r xy = s xy s x s y Kuusinen/Heliövaara 12

Regressiokertoimien PNS-estimaattorit Yhden selittäjän lineaarisen regressiomallin y j = β 0 + β 1 x j + ε j, j = 1, 2,..., n regressiokertoimien β 0 ja β 1 PNS-estimaattorit ovat b 0 = ȳ b 1 x b 1 = s xy s 2 x = r xy s y s x Kuusinen/Heliövaara 13

Estimoitu regressiosuora Yhden selittäjän lineaarisen regressiomallin y j = β 0 + β 1 x j + ε j, j = 1, 2,..., n regressiokertoimien β 0 ja β 1 PNS-estimaattorit b 0 ja b 1 määrittävät suoran avaruudessa R 2 : y = b 0 + b 1 x = ȳ + r xy s y s x (x x) Yhtälöstä nähdään, että estimoitu regressiosuora kulkee havaintopisteiden (x j, y j ), j = 1, 2,..., n, painopisteen ( x, ȳ) kautta. Kuusinen/Heliövaara 14

Estimoidun regressiosuoran ominaisuudet Estimoidulla regressiosuoralla on seuraavat ominaisuudet: (i) Jos r xy > 0, suora on nouseva. (ii) Jos r xy < 0, suora on laskeva. (iii) Jos r xy = 0, suora on vaakasuorassa. (iv) Suora jyrkkenee (loivenee), jos: - korrelaation itseisarvo r xy kasvaa (pienenee). - keskihajonta s y kasvaa (pienenee). - keskihajonta s x pienenee (kasvaa). Kuusinen/Heliövaara 15

Sovitteet ja residuaalit Olkoot b 0 ja b 1 yhden selittäjän lineaarisen regressiomallin y j = β 0 + β 1 x j + ε j, j = 1, 2,..., n regressiokertoimien β 0 ja β 1 PNS-estimaattorit. Estimoidun mallin sovite ŷ j = b 0 + b 1 x j, j = 1, 2,..., n on estimoidun regressiosuoran arvo havaintopisteessä x j. Estimoidun mallin residuaali e j = y j ŷ j = y j b 0 b 1 x j, j = 1, 2,..., n on selitettävän muuttujan y havaitun arvon y j ja sovitteen ŷ j arvon erotus. Kuusinen/Heliövaara 16

Neliösummia Kokonaisneliösumma: SST = n (y j ȳ) 2 j=1 Jäännösneliösumma: SSE = n e 2 j j=1 Mallineliösumma: SSM = n (ŷ j ȳ) 2 j=1 Näille neliösummille pätee varianssianalyysihajotelma SST = SSM + SSE Kuusinen/Heliövaara 17

Selitysaste Tunnuslukua R 2 = 1 SSE SST = SSM SST käytetään regressiomallin hyvyyden mittarina. Tunnuslukua R 2 kutsutaan selityasteeksi ja se mittaa regressiomallin selittämää osuutta selitettävän muuttujan y havaittujen arvojen kokonaisvaihtelusta. Yhden selittäjän lineaarisessa regressiomallissa pätee: R 2 = r 2 xy Selitysasteelle pätee aina 0 R 2 1 Kuusinen/Heliövaara 18

Jäännösvarianssi Jos yhden selittäjän lineaarisen regressiomallin jäännöstermejä ε j koskevat standardioletukset (i)-(iii) pätevät, jäännösvarianssin Var(ε j ) = σ 2 harhaton estimaattori on jossa e j s 2 = 1 n 2 n e 2 j, j=1 = y j ŷ j = y j b 0 b 1 x j, j = 1, 2,..., n n = estimoidun mallin residuaali = havaintojen lukumäärä Kuusinen/Heliövaara 19

Regressiokerrointen PNS-estimaattoreiden jakaumat Yhden selittäjän lineaarisen regressiomallin regressiokertoimien β 0 ja β 1 PNS-estimaattoreiden b 0 ja b 1 otosjakaumat ovat standardioletusten (i)-(iv) pätiessä missä ( b 1 N β 1, σ 2 nˆσ 2 x σ 2 = Var(ε j ) on jäännösvarianssi. ), b 0 N (β 0, σ2 n i=1 x2 i n 2ˆσ x 2 ˆσ 2 x = 1 n n j=1 (x j x) 2 on x:n harhainen otosvarianssi. ), Kuusinen/Heliövaara 20

Regressiokertoimia koskevat testit Ilkka Mellinin kaavakokoelmasta Sovellettu todennäköisyyslasku: Kaavat ja taulukot löytyy tietoa regressiokertoimia koskevista testeistä. Kuusinen/Heliövaara 21

Yleinen lineaarinen malli Kuusinen/Heliövaara 22

Usean selittäjän lineaarinen regressiomalli Usean selittäjän lineaarisessa regressiomallissa selitettävän muuttujan y havaittujen arvojen vaihtelu halutaan selittää selittävien muuttujien x 1, x 2,..., x k havaittujen arvojen vaihtelun avulla. Usean selittäjän lineaarista regressiomallia kutsutaan tavallisesti yleiseksi lineaariseksi malliksi. Kuusinen/Heliövaara 23

Havainnot Selitettävää muuttujaa y ja selittäjiä x 1, x 2,..., x k koskevat havaintoarvot voidaan järjestää havaintoyksiköittäin seuraavasti: Havaintoyksikkö 1: x 11, x 12,..., x 1k, y 1 Havaintoyksikkö 2: x 21, x 22,..., x 2k, y 2. missä. Havaintoyksikkö n: x n1, x n2,..., x nk, y n, k = selittäjien x i lukumäärä. n = havaintojen lukumäärä. Kuusinen/Heliövaara 24

Yleinen lineaarinen malli 1/2 Yhtälö y j = β 0 + β 1 x j1 + β 2 x j2 + + β k x jk + ε j, j = 1, 2,..., n määrittelee yleisen lineaarisen mallin, jossa: y j = selitettävän muuttujan y satunnainen ja havaittu arvo havaintoyksikössä j x ji = selittävän muuttujan x i ei-satunnainen ja havaittu arvo havaintoyksikössä j, i = 1, 2,..., k ε j = jäännöstermin ε satunnainen ja ei-havaittu arvo havaintoyksikössä j Kuusinen/Heliövaara 25

Yleinen lineaarinen malli 2/2 Yhtälö y j = β 0 + β 1 x j1 + β 2 x j2 + + β k x jk + ε j, j = 1, 2,..., n määrittelee yleisen lineaarisen mallin, jossa on seuraavat kertoimet: β 0 = vakioselittäjän regressiokerroin, ei-satunnainen ja tuntematon vakio β i = selittäjän x i regressiokerroin, i = 1, 2,..., k, ei-satunnainen ja tuntematon vakio Kuusinen/Heliövaara 26

Standardioletukset Yleisen lineaarisen mallin standardioletukset ovat: (i) Selittäjien x i arvot x ji ovat ei-satunnaisia vakioita, j = 1, 2,..., n, i = 1, 2,..., k (ii) Selittäjien välillä ei ole lineaarisia riippuvuuksia. (iii) E(ε j ) = 0, j = 1, 2,..., n (iv) Var(ε j ) = σ 2, j = 1, 2,..., n (v) Cor(ε j, ε l ) = 0, j l (vi) ε j N(0, σ 2 ), j = 1, 2,..., n Standardioletusten voimassaolo takaa, että ns. tavanomaisia estimointi- ja testausmenetelmiä saa käyttää mallin analysoinnissa. Kuusinen/Heliövaara 27

Regressiotaso Standardioletusten pätiessä selitettävän muuttujan odotusarvo, jota kutsutaan mallin systemaattiseksi osaksi, on muotoa E(y j ) = β 0 + β 1 x j1 + β 2 x j2 + + β k x jk, j = 1, 2,..., n Systemaattisen osan avaruudessa R k+1 määrittelemää tasoa y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k kutsutaan regressiotasoksi. Jäännöstermien ε j varianssi σ 2 kuvaa havaintopisteiden (x j1, x j2,..., x jk, y j ) R k+1, j = 1, 2,..., n vaihtelua regressiotason ympärillä. Kuusinen/Heliövaara 28

Yleisen lineaarisen mallin matriisiesitys 1/2 Olkoon y = [y 1 y 2 y n ] selitettävän muuttujan y havaittujen arvojen muodostama n-vektori. Olkoon X = 1 x 11 x 12 x 1k 1 x 21 x 22 x 2k......... 1 x n1 x n2 x nk selittävien muuuttujien x 1, x 2,..., x k havaittujen arvojen ja vakioselittäjää vastaavien ykkösten muodostama n (k + 1)-matriisi. Kuusinen/Heliövaara 29

Yleisen lineaarisen mallin matriisiesitys 2/2 Olkoon β = [β 0 β 1 β k ] regressiokertoimien β 0, β 1,..., β k muodostama (k + 1)-vektori. Olkoon ε = [ε 1 ε 2 ε n ] jäännöstermien ε 1, ε 2,..., ε n muodostama n-vektori. Yleinen lineaarinen malli voidaan esittää matriisein muodossa y = Xβ + ε Kuusinen/Heliövaara 30

Yleisen lineaarisen mallin parametrien estimointi Yleisen lineaarisen mallin y j = β 0 + β 1 x j1 + β 2 x j2 + + β k x jk + ε j, j = 1, 2,..., n regressiokertoimet β 0, β 1,..., β k estimoidaan tavallisesti pienimmän neliösumman menetelmällä. PNS-menetelmässä regressiokertoimien estimaattorit määrätään minimoimalla jäännöstermien ε j neliösummaa n j=1 ε 2 j = n (y j β 0 β 1 x j1 β 2 x j2 β k x jk ) 2 j=1 regressiokertoimien β 0, β 1,..., β k suhteen. Kuusinen/Heliövaara 31

Regressiokertoimien PNS-estimaattorit Olkoon y = Xβ + ε standardioletuksen (ii) r(x) = k + 1 toteuttava yleinen lineaarinen malli. Tällöin regressiokertoimien vektorin β PNS-estimaattori on b = (X X) 1 X y Kuusinen/Heliövaara 32

Estimoitu regressiotaso Regressiokertoimien β 0, β 1,..., β k PNS-estimaattorit b 0, b 1,..., b k määrittelevät tason y = b 0 + b 1 x 1 + b 2 x 2 + + b k x k avaruudessa R k+1. Tasoa kutsutaan estimoiduksi regressiotasoksi. Jäännösvarianssin σ 2 estimaattori s 2 kuvaa havaintopisteiden (x j1, x j2,..., x jk, y j ) R k+1, j = 1, 2,..., n vaihtelua estimoidun regressiotason ympärillä. Kuusinen/Heliövaara 33