Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 1 of 21
Kertausta Tunnettuja sarjakehitelmiä 1 1 x = 1+x +x2 +x 3 + +x n +, kun x < 1 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 2 of 21
Kertausta Tunnettuja sarjakehitelmiä 1 1 x = 1+x +x2 +x 3 + +x n +, kun x < 1 e x = 1+x + x2 2! + x3 xn 3! + + n! + M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 2 of 21
Kertausta Tunnettuja sarjakehitelmiä 1 1 x = 1+x +x2 +x 3 + +x n +, kun x < 1 e x = 1+x + x2 2! + x3 xn 3! + + n! + sinx = x x3 3! + x5 x2n+1 5! +( 1)n (2n+1)! + M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 2 of 21
Kertausta Tunnettuja sarjakehitelmiä 1 1 x = 1+x +x2 +x 3 + +x n +, kun x < 1 e x = 1+x + x2 2! + x3 xn 3! + + n! + sinx = x x3 3! + x5 x2n+1 5! +( 1)n (2n+1)! + cosx = 1 x2 2! + x4 x2n 4! +( 1)n (2n)! + M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 2 of 21
Sarjaratkaisut M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 3 of 21
Sarjaratkaisut Kertaus Toisen kertaluvun lineaarinen DY y +a(x)y +b(x)y = c(x) voidaan ratkaista täydellisesti jos homogeeniselle DY:lle löytyy yksikin ratkaisu. y +a(x)y +b(x)y = 0 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 3 of 21
Sarjaratkaisut Sarjaratkaisu Jos a(x) ja b(x) ovat riittävän säännöllisiä, voidaan DY:n y +a(x)y +b(x)y = 0 ratkaisu löytää Taylorin kehitelmän y = a 0 +a 1 x +a 2 x 2 +a 3 x 3 +... avulla. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 4 of 21
Sarjaratkaisut Astrofyysikko Robert Emden päätyi laskuissaan 1900-luvun alussa differentiaaliyhtälöön 1 d x 2 dx alkuehdoilla y(0) = 1 ja y (0) = 0. ( ) x 2dy +y n = 0. dx M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 5 of 21
Sarjaratkaisut Astrofyysikko Robert Emden päätyi laskuissaan 1900-luvun alussa differentiaaliyhtälöön 1 d x 2 dx ( ) x 2dy +y n = 0. dx alkuehdoilla y(0) = 1 ja y (0) = 0. Tapauksessa n = 1 tämä voidaan kirjoittaa muotoon xy +2y +xy = 0. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 5 of 21
Sarjaratkaisut (jatkoa) Fysikaalisen luonteensa perusteella DY:llä xy +2y +xy = 0. alkuehdoilla y(0) = 1 ja y (0) = 0 pitäisi olla kaunis ratkaisu. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 6 of 21
Sarjaratkaisut (jatkoa) Fysikaalisen luonteensa perusteella DY:llä xy +2y +xy = 0. alkuehdoilla y(0) = 1 ja y (0) = 0 pitäisi olla kaunis ratkaisu. Tehdään ratkaisusta sarjakehitelmäyrite y = a 0 +a 1 x +a 2 x 2 + = a n x n. n=0 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 6 of 21
Sarjaratkaisut (jatkoa) Fysikaalisen luonteensa perusteella DY:llä xy +2y +xy = 0. alkuehdoilla y(0) = 1 ja y (0) = 0 pitäisi olla kaunis ratkaisu. Tehdään ratkaisusta sarjakehitelmäyrite y = a 0 +a 1 x +a 2 x 2 + = a n x n. n=0 Alkuehdot huomioiden päädytään lopulta ratkaisuun y(x) = sinx x. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 6 of 21
Sarjaratkaisut 114 Tarkastellaan valon diffraktioon liittyvä Airyn differentiaaliyhtälöä y +xy = 0 alkuehdoilla y(0) = 0 ja y (0) = 1. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 7 of 21
Kertausta Vakiokertoiminen lineaarinen DY Vakiokertoimisen lineaarisen DY:n a n y (n) +a n 1 y (n 1) +...+a 2 y +a 1 y +a 0 y = b(x) ratkaiseminen: M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 8 of 21
Kertausta Vakiokertoiminen lineaarinen DY Vakiokertoimisen lineaarisen DY:n a n y (n) +a n 1 y (n 1) +...+a 2 y +a 1 y +a 0 y = b(x) ratkaiseminen: Etsitään homogenisoidun DY:n kaikki ratkaisut y 1,y 2,...,y n karakterisen polynomin nollakohtina. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 8 of 21
Kertausta Vakiokertoiminen lineaarinen DY Vakiokertoimisen lineaarisen DY:n a n y (n) +a n 1 y (n 1) +...+a 2 y +a 1 y +a 0 y = b(x) ratkaiseminen: Etsitään homogenisoidun DY:n kaikki ratkaisut y 1,y 2,...,y n karakterisen polynomin nollakohtina. Etsitään eräs alkuperäisen DY:n yksittäisratkaisu y 0. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 8 of 21
Kertausta Vakiokertoiminen lineaarinen DY Vakiokertoimisen lineaarisen DY:n a n y (n) +a n 1 y (n 1) +...+a 2 y +a 1 y +a 0 y = b(x) ratkaiseminen: Etsitään homogenisoidun DY:n kaikki ratkaisut y 1,y 2,...,y n karakterisen polynomin nollakohtina. Etsitään eräs alkuperäisen DY:n yksittäisratkaisu y 0. Yhdistettynä saadaan kaikki ratkaisut muodossa: C 1 y 1 +C 2 y 2 + C n y n +y 0. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 8 of 21
Kertausta Olkoon karakteristisella yhtälöllä erisuuret ratkaisut λ 1,...,λ k. Tällöin vakiokertoimisella homogeenisella DY:llä on lineaarisesti riippumattomat ratkaisut e λ 1t,...,e λ kt. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 9 of 21
Kertausta Olkoon karakteristisella yhtälöllä erisuuret ratkaisut λ 1,...,λ k. Tällöin vakiokertoimisella homogeenisella DY:llä on lineaarisesti riippumattomat ratkaisut e λ 1t,...,e λ kt. Jos karakteristisella yhtälöllä on j-kertainen juuri λ i, on vakiokertoimisella homogeenisella DY:llä lineaarisesti riippumattomat ratkaisut e λ it,te λ it,t 2 e λ it,...,t j 1 e λ it. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 9 of 21
Kertausta Olkoon karakteristisella yhtälöllä erisuuret ratkaisut λ 1,...,λ k. Tällöin vakiokertoimisella homogeenisella DY:llä on lineaarisesti riippumattomat ratkaisut e λ 1t,...,e λ kt. Jos karakteristisella yhtälöllä on j-kertainen juuri λ i, on vakiokertoimisella homogeenisella DY:llä lineaarisesti riippumattomat ratkaisut e λ it,te λ it,t 2 e λ it,...,t j 1 e λ it. Jos reaalikertoimisella karakteristisella polynomilla on kompleksinen juuri λ, on tämän liittoluku λ myös ratkaisu. Merkitään λ = α+iβ (λ = α iβ). Tällöin ratkaisut e λt ja e λt voidaan korvata reaalisilla ratkaisuilla e αt cos(βt) ja e αt sin(βt). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 9 of 21
Yksittäisratkaisun etsiminen Yksittäisratkaisu Laplace-muunnoksilla Menetelmä: Ottamalla alkuperäisestä DY:stä Laplace-muunnokset puolittain voidaan näin saadusta yhtälöstä ratkaista L[y] = Y(s). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 10 of 21
Yksittäisratkaisun etsiminen Yksittäisratkaisu Laplace-muunnoksilla Menetelmä: Ottamalla alkuperäisestä DY:stä Laplace-muunnokset puolittain voidaan näin saadusta yhtälöstä ratkaista L[y] = Y(s). Edelleen voidaan löytää Laplace-muunnosta vastaava originaalifunktio y(x), joka on siis eräs yksittäisratkaisu. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 10 of 21
Yksittäisratkaisun etsiminen Yksittäisratkaisu Laplace-muunnoksilla Menetelmä: Ottamalla alkuperäisestä DY:stä Laplace-muunnokset puolittain voidaan näin saadusta yhtälöstä ratkaista L[y] = Y(s). Edelleen voidaan löytää Laplace-muunnosta vastaava originaalifunktio y(x), joka on siis eräs yksittäisratkaisu. Yksittäisratkaisu määräämättömien kertoimien menetelmällä Tehdään DY:n oikean puolen funktion b(x) perusteella valistunut, määräämättömiä kertoimia sisältävä yrite (arvaus) yksittäisratkaisun muodosta. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 10 of 21
Yksittäisratkaisun etsiminen Yksittäisratkaisu Laplace-muunnoksilla Menetelmä: Ottamalla alkuperäisestä DY:stä Laplace-muunnokset puolittain voidaan näin saadusta yhtälöstä ratkaista L[y] = Y(s). Edelleen voidaan löytää Laplace-muunnosta vastaava originaalifunktio y(x), joka on siis eräs yksittäisratkaisu. Yksittäisratkaisu määräämättömien kertoimien menetelmällä Tehdään DY:n oikean puolen funktion b(x) perusteella valistunut, määräämättömiä kertoimia sisältävä yrite (arvaus) yksittäisratkaisun muodosta. Sijoittamalla yrite alkuperäiseen DY:hyn ratkaistaan määräämättömät kertoimet. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 10 of 21
Määräämättömien kertoimien menetelmä Ratkaistaan homogeeninen DY y 6y +8y = 0. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 11 of 21
Määräämättömien kertoimien menetelmä Ratkaistaan homogeeninen DY y 6y +8y = 0. Yritteen y = e λx ja karakterisen polynomin avulla saadaan yleinen ratkaisu: y = C 1 e 2x +C 2 e 4x. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 11 of 21
Määräämättömien kertoimien menetelmä Ratkaistaan homogeeninen DY y 6y +8y = 0. Yritteen y = e λx ja karakterisen polynomin avulla saadaan yleinen ratkaisu: y = C 1 e 2x +C 2 e 4x. Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 4. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 11 of 21
Määräämättömien kertoimien menetelmä Ratkaistaan homogeeninen DY y 6y +8y = 0. Yritteen y = e λx ja karakterisen polynomin avulla saadaan yleinen ratkaisu: y = C 1 e 2x +C 2 e 4x. Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 4. Tehdään yrite y = A ja sijoitetaan se DY:hyn. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 11 of 21
Määräämättömien kertoimien menetelmä Ratkaistaan homogeeninen DY y 6y +8y = 0. Yritteen y = e λx ja karakterisen polynomin avulla saadaan yleinen ratkaisu: y = C 1 e 2x +C 2 e 4x. Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 4. Tehdään yrite y = A ja sijoitetaan se DY:hyn. Saadaan yksittäisratkaisuksi y 0 = 1/2. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 11 of 21
Määräämättömien kertoimien menetelmä Ratkaistaan homogeeninen DY y 6y +8y = 0. Yritteen y = e λx ja karakterisen polynomin avulla saadaan yleinen ratkaisu: y = C 1 e 2x +C 2 e 4x. Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 4. Tehdään yrite y = A ja sijoitetaan se DY:hyn. Saadaan yksittäisratkaisuksi y 0 = 1/2. Kaikki ratkaisut ovat siis muotoa y = C 1 e 2x +C 2 e 4x 1/2. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 11 of 21
Määräämättömien kertoimien menetelmä Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 8x. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 12 of 21
Määräämättömien kertoimien menetelmä Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 8x. Tehdään yrite y = Ax +B ja sijoitetaan se DY:hyn. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 12 of 21
Määräämättömien kertoimien menetelmä Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 8x. Tehdään yrite y = Ax +B ja sijoitetaan se DY:hyn. Saadaan yksittäisratkaisuksi y 0 = x +3/4. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 12 of 21
Määräämättömien kertoimien menetelmä Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 8x. Tehdään yrite y = Ax +B ja sijoitetaan se DY:hyn. Saadaan yksittäisratkaisuksi y 0 = x +3/4. Kaikki ratkaisut ovat siis muotoa y = C 1 e 2x +C 2 e 4x +x +3/4. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 12 of 21
Määräämättömien kertoimien menetelmä Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 8x. Tehdään yrite y = Ax +B ja sijoitetaan se DY:hyn. Saadaan yksittäisratkaisuksi y 0 = x +3/4. Kaikki ratkaisut ovat siis muotoa y = C 1 e 2x +C 2 e 4x +x +3/4. Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 5cos2x. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 12 of 21
Määräämättömien kertoimien menetelmä Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 8x. Tehdään yrite y = Ax +B ja sijoitetaan se DY:hyn. Saadaan yksittäisratkaisuksi y 0 = x +3/4. Kaikki ratkaisut ovat siis muotoa y = C 1 e 2x +C 2 e 4x +x +3/4. Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 5cos2x. Tehdään yrite y = Acos2x +Bsin2x ja sijoitetaan se DY:hyn. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 12 of 21
Määräämättömien kertoimien menetelmä Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 8x. Tehdään yrite y = Ax +B ja sijoitetaan se DY:hyn. Saadaan yksittäisratkaisuksi y 0 = x +3/4. Kaikki ratkaisut ovat siis muotoa y = C 1 e 2x +C 2 e 4x +x +3/4. Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 5cos2x. Tehdään yrite y = Acos2x +Bsin2x ja sijoitetaan se DY:hyn. Saadaan yksittäisratkaisuksi y 0 = 1 8 (cos2x 3sin2x). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 12 of 21
Määräämättömien kertoimien menetelmä Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 8x. Tehdään yrite y = Ax +B ja sijoitetaan se DY:hyn. Saadaan yksittäisratkaisuksi y 0 = x +3/4. Kaikki ratkaisut ovat siis muotoa y = C 1 e 2x +C 2 e 4x +x +3/4. Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 5cos2x. Tehdään yrite y = Acos2x +Bsin2x ja sijoitetaan se DY:hyn. Saadaan yksittäisratkaisuksi y 0 = 1 8 (cos2x 3sin2x). Kaikki ratkaisut ovat muotoa y = C 1 e 2x +C 2 e 4x + 1 8 (cos2x 3sin2x). M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 12 of 21
Määräämättömien kertoimien menetelmä Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 4e 2x. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 13 of 21
Määräämättömien kertoimien menetelmä Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 4e 2x. Tehdään yrite y = Ae 2x ja sijoitetaan se DY:hyn. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 13 of 21
Määräämättömien kertoimien menetelmä Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 4e 2x. Tehdään yrite y = Ae 2x ja sijoitetaan se DY:hyn. Saadaan yksittäisratkaisuksi y 0 = 1 6 e 2x. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 13 of 21
Määräämättömien kertoimien menetelmä Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 4e 2x. Tehdään yrite y = Ae 2x ja sijoitetaan se DY:hyn. Saadaan yksittäisratkaisuksi y 0 = 1 6 e 2x. Kaikki ratkaisut ovat siis muotoa y = C 1 e 2x +C 2 e 4x 1 6 e 2x. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 13 of 21
Määräämättömien kertoimien menetelmä Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 2e 2x. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 14 of 21
Määräämättömien kertoimien menetelmä Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle Koetetaan yritettä y = Ae 2x. y 6y +8y = 2e 2x. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 14 of 21
Määräämättömien kertoimien menetelmä Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 2e 2x. Koetetaan yritettä y = Ae 2x. Huomataan, että yrite y = Ae 2x ei toimi, sillä e 2x on eräs homogeenisen DY:n ratkaisu. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 14 of 21
Määräämättömien kertoimien menetelmä Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 2e 2x. Koetetaan yritettä y = Ae 2x. Huomataan, että yrite y = Ae 2x ei toimi, sillä e 2x on eräs homogeenisen DY:n ratkaisu. Tehdään uusi yrite y = Axe 2x ja sijoitetaan se DY:hyn. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 14 of 21
Määräämättömien kertoimien menetelmä Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 2e 2x. Koetetaan yritettä y = Ae 2x. Huomataan, että yrite y = Ae 2x ei toimi, sillä e 2x on eräs homogeenisen DY:n ratkaisu. Tehdään uusi yrite y = Axe 2x ja sijoitetaan se DY:hyn. Saadaan yksittäisratkaisuksi y 0 = xe 2x. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 14 of 21
Määräämättömien kertoimien menetelmä Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 2e 2x. Koetetaan yritettä y = Ae 2x. Huomataan, että yrite y = Ae 2x ei toimi, sillä e 2x on eräs homogeenisen DY:n ratkaisu. Tehdään uusi yrite y = Axe 2x ja sijoitetaan se DY:hyn. Saadaan yksittäisratkaisuksi y 0 = xe 2x. Kaikki ratkaisut ovat muotoa y = C 1 e 2x +C 2 e 4x xe 2x. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 14 of 21
Määräämättömien kertoimien menetelmä Jos differentiaaliyhtälöllä on riippumattomat ratkaisut e λ it,te λ it,t 2 e λ it,...,t j 1 e λ it. ja tarvitaan yrite jollekin lineaarikombinaatiolle näistä, pitää yritteen sisältää termi t j e λ it. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 15 of 21
Määräämättömien kertoimien menetelmä Yksittäisratkaisujen yhdistäminen Yksittäisratkaisuja voidaan yhdistellä luonnollisella tavalla, kuten seuraavassa esimerkissä havainnollistetaan. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 16 of 21
Määräämättömien kertoimien menetelmä Yksittäisratkaisujen yhdistäminen Yksittäisratkaisuja voidaan yhdistellä luonnollisella tavalla, kuten seuraavassa esimerkissä havainnollistetaan. Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 8x +2e 2x. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 16 of 21
Määräämättömien kertoimien menetelmä Yksittäisratkaisujen yhdistäminen Yksittäisratkaisuja voidaan yhdistellä luonnollisella tavalla, kuten seuraavassa esimerkissä havainnollistetaan. Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 8x +2e 2x. Differentiaaliyhtälöiden y 6y +8y = 8x ja y 6y +8y = 2e 2x ratkaisut tunnetaan. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 16 of 21
Määräämättömien kertoimien menetelmä Yksittäisratkaisujen yhdistäminen Yksittäisratkaisuja voidaan yhdistellä luonnollisella tavalla, kuten seuraavassa esimerkissä havainnollistetaan. Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 8x +2e 2x. Differentiaaliyhtälöiden y 6y +8y = 8x ja y 6y +8y = 2e 2x ratkaisut tunnetaan. Yhdistämällä nämä saadaan alkuperäisen DY:n yksittäisratkaisu y 0 = x +3/4 xe 2x. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 16 of 21
Määräämättömien kertoimien menetelmä Yksittäisratkaisujen yhdistäminen Yksittäisratkaisuja voidaan yhdistellä luonnollisella tavalla, kuten seuraavassa esimerkissä havainnollistetaan. Etsitään jokin yksittäisratkaisu epähomogeeniselle DY:lle y 6y +8y = 8x +2e 2x. Differentiaaliyhtälöiden y 6y +8y = 8x ja y 6y +8y = 2e 2x ratkaisut tunnetaan. Yhdistämällä nämä saadaan alkuperäisen DY:n yksittäisratkaisu y 0 = x +3/4 xe 2x. Kaikki ratkaisut ovat muotoa y = C 1 e 2x +C 2 e 4x +x +3/4 xe 2x. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 16 of 21
Matriisit Määritelmä Matriisi A on kaavio A = A 11 A 12... A 1n A 21 A 22... A 2n...... A m1 A m2... A mn. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 17 of 21
Matriisit Määritelmä Matriisi A on kaavio A = A 11 A 12... A 1n A 21 A 22... A 2n...... A m1 A m2... A mn. Tyyppi m n: m riviä, n saraketta. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 17 of 21
Matriisit Määritelmä Matriisi A on kaavio A = A 11 A 12... A 1n A 21 A 22... A 2n...... A m1 A m2... A mn. Tyyppi m n: m riviä, n saraketta. A ij : matriisin alkiot M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 17 of 21
Matriisit Määritelmä Matriisi A on kaavio A = A 11 A 12... A 1n A 21 A 22... A 2n...... A m1 A m2... A mn. Tyyppi m n: m riviä, n saraketta. A ij : matriisin alkiot A ij R: reaalinen matriisi M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 17 of 21
Matriisit Määritelmä Matriisi A on kaavio A = A 11 A 12... A 1n A 21 A 22... A 2n...... A m1 A m2... A mn. Tyyppi m n: m riviä, n saraketta. A ij : matriisin alkiot A ij R: reaalinen matriisi A ij C: kompleksinen matriisi M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 17 of 21
Matriisit Matriisien alkeisoperaatiot Kahden rivin järjestyksen vaihtaminen Rivin kertominen nollasta eroavalla vakiolla Rivin lisääminen toiseen vakiolla kerrottuna M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 18 of 21
Matriisit Matriisien alkeisoperaatiot Kahden rivin järjestyksen vaihtaminen Rivin kertominen nollasta eroavalla vakiolla Rivin lisääminen toiseen vakiolla kerrottuna Määritelmä Jos matriisi B saadaan matriisista A alkeisoperaatioilla, sanotaan että matriisi A on riviekvivalentti B:n kanssa ja merkitään A B. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 18 of 21
Matriisit Matriisien alkeisoperaatiot Kahden rivin järjestyksen vaihtaminen Rivin kertominen nollasta eroavalla vakiolla Rivin lisääminen toiseen vakiolla kerrottuna Määritelmä Jos matriisi B saadaan matriisista A alkeisoperaatioilla, sanotaan että matriisi A on riviekvivalentti B:n kanssa ja merkitään A B. Huom.: A B on ekvivalenssirelaatio. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 18 of 21
Matriisit Määritelmä Matriisi A on porrasmuodossa, jos sen jokainen rivi alkaa nollilla, joita on enemmän kuin millään ylemmällä rivillä. Ensimmäisen rivin ei tarvitse alkaa nollalla ja jostain rivistä alkaen rivit voivat koostua kokonaan nollista. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 19 of 21
Matriisit Määritelmä Matriisi A on porrasmuodossa, jos sen jokainen rivi alkaa nollilla, joita on enemmän kuin millään ylemmällä rivillä. Ensimmäisen rivin ei tarvitse alkaa nollalla ja jostain rivistä alkaen rivit voivat koostua kokonaan nollista. Pisteet merkitsevät nollia. 2 4 0 3 2 1 5 2 2 0 0 1 2 3 2 M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 19 of 21
Matriisit Matriisi A on redusoidussa porrasmuodossa, jos A on porrasmuodossa A:n jokaisen rivin ensimmäinen nollasta poikkeava alkio on 1. A:n jokaisen rivin ensimmäisen nollasta poikkeavan alkion yläpuolella on vain nollia. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 20 of 21
Matriisit Matriisi A on redusoidussa porrasmuodossa, jos A on porrasmuodossa A:n jokaisen rivin ensimmäinen nollasta poikkeava alkio on 1. A:n jokaisen rivin ensimmäisen nollasta poikkeavan alkion yläpuolella on vain nollia. 1 1 1 1 1 1 Pisteet merkitsevät nollia ja asteriskit mitä tahansa lukuja. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 20 of 21
Matriisit Gaussin-Jordanin menetelmä Jokainen matriisi saadaan alkeisoperaatioilla redusoituun porrasmuotoon käyttämällä Gaussin-Jordanin menetelmää. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 21 of 21
Matriisit Gaussin-Jordanin menetelmä Jokainen matriisi saadaan alkeisoperaatioilla redusoituun porrasmuotoon käyttämällä Gaussin-Jordanin menetelmää. Määritelmä Matriisiin A aste (rank) r(a) on sen (redusoidun) porrasmatriisin porrasluku (nollarivistä eroavien rivien määrä), joka saadaan A:sta alkeisoperaatioilla. M. Hirvensalo V. Junnila A. Lepistö Luentokalvot 13 21 of 21