Vektoreiden virittämä aliavaruus

Samankaltaiset tiedostot
Vektorien virittämä aliavaruus

Esimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = r 1 + r r 3 4r 1. LM1, Kesä /68

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

5 Lineaariset yhtälöryhmät

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Lineaarialgebra ja matriisilaskenta I

7 Vapaus. 7.1 Vapauden määritelmä

Johdatus lineaarialgebraan

Lineaariset yhtälöryhmät ja matriisit

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

Gaussin ja Jordanin eliminointimenetelmä

Lineaarinen yhtälöryhmä

Johdatus lineaarialgebraan

Lineaarikuvauksen R n R m matriisi

Lineaarialgebra ja matriisilaskenta I

Johdatus lineaarialgebraan

JAKSO 2 KANTA JA KOORDINAATIT

10 Matriisit ja yhtälöryhmät

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Johdatus lineaarialgebraan

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta I

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.

Kertausta: avaruuden R n vektoreiden pistetulo

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

Ortogonaalisen kannan etsiminen

Lineaarialgebra ja matriisilaskenta I

Ominaisarvo ja ominaisvektori

2.5. Matriisin avaruudet ja tunnusluvut

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4

Ominaisvektoreiden lineaarinen riippumattomuus

Kuvaus. Määritelmä. LM2, Kesä /160

Ominaisarvo ja ominaisvektori

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

Lineaarialgebra ja matriisilaskenta I

802118P Lineaarialgebra I (4 op)

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Ennakkotehtävän ratkaisu

Avaruuden R n aliavaruus

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

Käänteismatriisin ominaisuuksia

Insinöörimatematiikka D

Insinöörimatematiikka D

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Similaarisuus. Määritelmä. Huom.

Lineaarialgebra ja matriisilaskenta I

Oppimistavoitematriisi

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Oppimistavoitematriisi

1 Matriisit ja lineaariset yhtälöryhmät

Insinöörimatematiikka D

Insinöörimatematiikka D

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Johdatus lineaarialgebraan

Ratkaisuehdotukset LH 3 / alkuvko 45

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Insinöörimatematiikka D

Insinöörimatematiikka D

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

1 Lineaariavaruus eli Vektoriavaruus

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24

Ortogonaalinen ja ortonormaali kanta

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

Johdatus lineaarialgebraan

MS-C1340 Lineaarialgebra ja

Insinöörimatematiikka D

Determinantti. Määritelmä

Matemaattinen Analyysi, s2016, L2

8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 5, Syksy 2015

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Kertausta: avaruuden R n vektoreiden pistetulo

802320A LINEAARIALGEBRA OSA I

9 Matriisit. 9.1 Matriisien laskutoimituksia

Kanta ja Kannan-vaihto

Käänteismatriisi 1 / 14

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti

Insinöörimatematiikka D

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

Matriisilaskenta Luento 8: LU-hajotelma

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Kanta ja dimensio 1 / 23

Transkriptio:

Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden joukkoa; ts. span( v 1, v 2,... v k ) = { a 1 v 1 + a 2 v 2 + + a k v k a 1,..., a k R }. LM1, Kesä 2012 64/169

Yhden vektorin virittämä aliavaruus Oletetaan, että n = 2 tai n = 3 ja v R n. Jos v = 0, niin vektorin v virittämä aliavaruus on span( 0) = { t 0 t R } = { 0} eli joukko, johon kuuluu ainoastaan nollavektori (origo). span( 0) LM1, Kesä 2012 65/169

Yhden vektorin virittämä aliavaruus Jos v 0, niin vektorin v virittämä aliavaruus on span( v) = { t v t R } = { 0 + t v t R } eli origon kautta kulkeva suora. span( v) LM1, Kesä 2012 66/169

Kahden vektorin virittämä aliavaruus Oletetaan, että v, w R 3. Jos w 0 v ja w v, niin vektoreiden v ja w virittämä aliavaruus on span( v, w) = { s v + t w s, t R } = { 0 + s v + t w s, t R } eli origon kautta kulkeva taso. Huom. jos oletukset w 0 v ja w v eivät ole voimassa, niin span( v, w) on suora tai origon yksiö. LM1, Kesä 2012 67/169

Vektoreiden virittämän aliavaruuden ominaisuuksia Lause 14 Oletetaan, että v 1, v 2,..., v k R n. Tällöin (a) jos ū, w span( v 1,..., v k ), niin ū + w span( v 1,..., v k ). (b) jos w span( v 1,..., v k ) ja a R, niin a w span( v 1,..., v k ). (c) 0 span( v 1,..., v k ). LM1, Kesä 2012 68/169

Lauseen 14 perustelu: (a) Oletetaan, että ū, w span( v 1,..., v k ). Tällöin ū = a 1 v 1 + + a k v k ja w = c 1 v 1 + + c k v k joillakin reaaliluvuilla a 1,..., a k ja c 1,..., c k. Näin ū + w = (a 1 v 1 + + a k v k ) + (c 1 v 1 + + c k v k ) = (a 1 + c 1 ) v 1 + + (a k + c k ) v k, missä kertoimet a 1 + c 1,..., a k + c k R. Siis ū + w on vektoreiden v 1,..., v k lineaarikombinaatio; ts. ū + w span( v 1,..., v k ). (c) Nollavektori voidaan kirjoittaa muodossa Siis 0 span( v 1,..., v k ). 0 = 0 v 1 + 0 v 2 + + 0 v k. LM1, Kesä 2012 69/169

Vektoreiden virittämä aliavaruus Esimerkki 9 Selvitä, kuuluuko vektori w = (6, 3, 2, 1) vektoreiden v 1 = (0, 1, 2, 1), v 2 = (2, 0, 1, 1) ja v 3 = (4, 2, 2, 0) virittämään aliavaruuteen span( v 1, v 2, v 3 ). Toisin sanottuna selvitä, onko vektori w vektoreiden v 1, v 2 ja v 3 lineaarikombinaatio. Ts. selvitä, onko yhtälöllä x 1 v 1 + x 2 v 2 + x 3 v 3 = w eli yhtälöllä x 1 (0, 1, 2, 1) + x 2 (2, 0, 1, 1) + x 3 (4, 2, 2, 0) = ( 2, 3, 2, 1) ratkaisuja reaalilukujen joukossa. LM1, Kesä 2012 70/169

Päädytään lineaariseen yhtälöryhmään 2x 2 + 4x 3 = 6 x 1 + 2x 3 = 3 2x 1 + x 2 + 2x 3 = 2 x 1 x 2 = 1, joka voidaan ratkaista Gaussin-Jordanin eliminointimenetelmällä. LM1, Kesä 2012 71/169

Lineaarisen yhtälöryhmän ratkaiseminen Esimerkki 10 Muodostetaan lineaarisen yhtälöryhmän 2x 2 + 4x 3 = 6 x 1 + 2x 3 = 3 2x 1 + x 2 + 2x 3 = 2 x 1 x 2 = 1, täydennetty matriisi kokoamalla kaikki kertoimet ja vakiot taulukkoon: 0 2 4 6 1 0 2 3 2 1 2 2 1 1 0 1 LM1, Kesä 2012 72/169

Muunnetaan tämä matriisi alkeisrivitoimituksia käyttäen redusoiduksi porrasmatriisiksi. Teet alkeisrivitoimituksen, jos I. vaihdat matriisin kaksi riviä keskenään; II. kerrot rivin jollakin nollasta poikkeavalla reaaliluvulla; III. lisäät johonkin riviin jokin toisen rivin reaaliluvulla kerrottuna; 0 2 4 6 1 0 0 1/2 1 0 2 3 0 1 0 1/2 2 1 2 2 0 0 1 5/4 1 1 0 1 0 0 0 0 LM1, Kesä 2012 73/169

Redusoidusta porrasmatriisista ratkaisut on helppo lukea: matriisia 1 0 0 1/2 0 1 0 1/2 0 0 1 5/4 0 0 0 0 vastaa yhtälöryhmä x 1 = 1/2 x 2 = 1/2 x 3 = 5/4 0 = 0, jossa alin yhtälö on aina tosi. LM1, Kesä 2012 74/169

Miten tunnistan redusoidun porrasmatriisin? Ensinnäkin se on porrasmatriisi eli nollarivit ovat alimpina, jos niitä on; jokaisella rivillä ensimmäinen nollasta poikkeava alkio (eli johtava alkio) on ylemmän rivin johtavan alkion oikealla puolella. Esimerkki porrasmatriisista: 0 7 3 2 4 9 0 0 0 8 0 5 0 0 0 0 3 6 0 0 0 0 0 0 LM1, Kesä 2012 75/169

Miten tunnistan redusoidun porrasmatriisin? Se on porrasmatriisi. Jokaisen rivin johtava alkio on 1. Jokainen johtava alkio on sarakkeensa ainoa nollasta poikkeava alkio. Esimerkki redusoidusta porrasmatriisista: 0 1 3/7 0 0 63/4 0 0 0 1 0 5/8 0 0 0 0 1 2 0 0 0 0 0 0 LM1, Kesä 2012 76/169

Gaussin-Jordanin eliminointimenetelmän perusta Voidaan osoittaa, että jos lineaarisen yhtälöryhmän täydennettyä matriisia muokataan alkeisrivitoimituksilla, niin näin saatua uutta matriisia vastaavalla yhtälöryhmällä on täsmälleen samat ratkaisut kuin alkuperäisellä yhtälöryhmällä. a 11 a 12... a 1n b 1 a 21 a 22... a 2n b 2.. a m1 a m2... a mn b m alkeisrivi- toimituksia c 11 c 12... c 1n d 1 c 21 c 22... c 2n d 2.. c m1 c m2... c mn d m a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2. =.. a m1 x 1 + + a mnx n = b m samat ratkaisut c 11 x 1 + + c 1n x n = d 1 c 21 x 1 + + c 2n x n = d 2. =.. c m1 x 1 + + c mnx n = d m LM1, Kesä 2012 77/169

Gaussin-Jordanin eliminointimenetelmä Kirjoita yhtälöryhmän täydennetty matriisi. Muuta se alkeisrivitoimituksilla porrasmatriisiksi. Ohjeita: porrasmatriisia muodostetaan vasemmalta oikealle ja ylhäältä alaspäin; johtavat alkiot kannattaa useimmiten muuttaa ykkösiksi; johtavien alkioiden avulla muutetaan niiden alapuolella olevat alkiot nolliksi. Muuta porrasmatriisi redusoiduksi porrasmatriisiksi. Ohjeita: redusoitua porrasmatriisia muodostetaan oikealta vasemmalle ja alhaalta ylöspäin; johtavien alkioiden avulla muutetaan niiden yläpuolella olevat alkiot nolliksi. Lue ratkaisut redusoidusta porrasmatriisista. Tee alkeisrivitoimitukset yksi kerrallaan! LM1, Kesä 2012 78/169

Esimerkki 11 Ratkaise lineaarinen yhtälöryhmä 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3 3 4 4 4 8 32 1 3 10 0 13 26 4 8 32 r 3 4r 1 1 3 10 3 4 4 r 2 3r 1 4 8 32 1 3 10 0 13 26 r 2 /13 0 4 8 LM1, Kesä 2012 79/169

1 3 10 0 1 2 0 4 8 r 3 4r 2 1 0 4 0 1 2. 0 0 0 1 3 10 r 1 + 3r 2 0 1 2 0 0 0 Vastaava yhtälöryhmä on x = 4 y = 2 0 = 0. Alin yhtälö on aina tosi, joten yhtälöryhmän ratkaisu on x = 4 ja y = 2. LM1, Kesä 2012 80/169

Esimerkki 12 Ratkaise lineaarinen yhtälöryhmä { x + 2y + z = 8 3x 6y 3z = 21. [ ] 1 2 1 8 3 6 3 21 r 2 + 3r 1 [ 1 2 1 ] 8 0 0 0 3 Vastaava yhtälöryhmä on { x + 2y + z = 8 0 = 3. Alin yhtälö on aina epätosi, joten yhtälöryhmällä ei ole ratkaisua. LM1, Kesä 2012 81/169

Esimerkki 13 Ratkaise lineaarinen yhtälöryhmä 3x 1 + 3x 2 15x 3 = 9 x 1 2x 3 = 1 2x 1 x 2 x 3 = 0. 3 3 15 9 r 1 /3 1 0 2 1 2 1 1 0 1 1 5 3 0 1 3 2 2 1 1 0 r 3 2r 1 1 1 5 3 1 0 2 1 r 2 r 1 2 1 1 0 1 1 5 3 0 1 3 2 1 r 2 0 3 9 6 LM1, Kesä 2012 82/169

1 1 5 3 0 1 3 2 0 3 9 6 r 3 + 3r 2 1 0 2 1 0 1 1 2. 0 0 0 0 1 1 3 3 r 1 r 2 0 1 1 2 0 0 0 0 Alinta riviä vastaava yhtälö 0 = 0 on aina tosi. Tuntematonta x 3 vastaavassa sarakkeessa ei ole johtavaa alkiota, joten se on ns. vapaa muuttuja. Merkitään x 3 = t, missä t R. Ratkaistaan muut tuntemattomat: x 1 2t = 1 { x1 = 1 + 2t x 2 t = 2 t R. x 2 = 2 + t, 0 = 0 LM1, Kesä 2012 83/169

Esimerkki 14 Lineaarisen yhtälöryhmän täydennetty matriisi muutettiin alkeisrivitoimituksilla redusoiduksi porrasmatriisiksi: 1 3 0 4 0 0 0 0 0 1 2 0 0 0. 0 0 0 0 0 1 3 Mikä on yhtälöryhmän ratkaisu? Havaitaan, että johtavat alkiot (rivien ensimmäiset nollasta poikkeavat alkiot) ovat sarakkeissa 1, 3 ja 6. Muita sarakkeita vastaavat tuntemattomat x 2, x 4 ja x 5 ovat vapaita muuttujia. Merkitään x 2 = r, x 4 = s ja x 5 = t, missä r, s, t R. LM1, Kesä 2012 84/169

Yhtälöryhmä on tällöin x 1 + 3r + 4s = 0 x 3 + 2s = 0 x 6 = 3 x 1 = 3r 4s x 3 = 2s x 6 = 3. Ratkaisu on siis x 1 = 3r 4s x 2 = r x 3 = 2s x 4 = s x 5 = t x 6 = 3, r, s, t R. LM1, Kesä 2012 85/169

Esimerkki 15 Tarkastellaan yhtälöryhmää x + y + kz = 1 x + ky + z = 1 kx + y + z = 2. Määritä ne reaaliluvut k, joilla tällä yhtälöryhmällä (a) ei ole ratkaisua; (b) on tasan yksi ratkaisu; (c) on äärettömän paljon ratkaisuja. LM1, Kesä 2012 86/169

1 1 k 1 1 1 k 1 1 k 1 1 r 2 r 1 0 k 1 1 k 0 k 1 1 2 k 1 1 2 r 3 kr 1 1 1 k 1 0 k 1 1 k 0 0 1 k 1 k 2 2 k r 3 + r 2 1 1 k 1 0 k 1 1 k 0 r 2 /(k 1) 0 0 2 k k 2 2 k Oletus: k 1 0 1 1 k 1 0 1 1 0. 0 0 2 k k 2 2 k LM1, Kesä 2012 87/169

Oletus: k 1 0 eli k 1. Alimman rivin johtavassa alkiossa esiintyy k, joten tarkastellaan eri tapaukset. Jos kerroin 2 k k 2 = 0 eli k = 2 (tai k = 1) on periaatteessa kaksi mahdollisuutta: Jos myös vakio 2 k = 0 eli k = 2, niin yhtälöllä on äärettömän monta ratkaisua. Alinta riviä nimittäin vastaa yhtälö 0 = 0 ja x 3 on vapaa muuttuja. Jos vakio 2 k 0 eli k 2, ei nyt voida päätellä mitään, koska on mahdotonta, että yhtä aikaa k = 2 ja k 2. Jos kerroin 2 k k 2 0 eli k 2 ja k 1, niin saadaan ratkaistua x 3 = ( 2 k)/(2 k k 2 ) ja ylemmistä yhtälöistä saadaan muut tuntemattomat. Yhtälöryhmällä on tasan yksi ratkaisu. LM1, Kesä 2012 88/169

Tapaus k 1 = 0 eli k = 1. Yhtälöryhmä on tällöin x + y + z = 1 x + y + z = 1 x + y + z = 2. Ylin ja alin yhtälö ovat keskenään ristiriitaiset, joten yhtälöryhmällä ei ole ratkaisua. Yhteenveto: (a) ei ratkaisua, jos ja vain jos k = 1; (b) tasan yksi ratkaisu, jos ja vain jos k 2 ja k 1; (c) äärettömän monta ratkaisua, jos ja vain jos k = 2. LM1, Kesä 2012 89/169

Vektorien virittämä aliavaruus Esimerkki 16 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään aliavaruuteen span( v 1, v 2, v 3 )? Toisin sanottuna: Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w on vektoreiden v 1, v 2 ja v 3 lineaarikombinaatio? LM1, Kesä 2012 90/169

Tarkastellaan yhtälöä x 1 v 1 + x 2 v 2 + x 3 v 3 = w eli yhtälöä x 1 (3, 2, 1) + x 2 (2, 2, 6) + x 3 (3, 4, 5) = (w 1, w 2, w 3 ). Muokataan vastaavan yhtälöryhmän täydennetty matriisi porrasmatriisiksi: 3 2 3 w 1 ( 1) r 3 1 6 5 w 3 2 2 4 w 2 2 2 4 w 2 r 2 2r 1 1 6 5 w 3 3 2 3 w 1 1 6 5 w 3 0 10 6 w 2 + 2w 3 3 2 3 w 1 r 3 3r 1 1 6 5 w 3 0 10 6 w 2 + 2w 3 0 20 12 w 1 + 3w 3 r 3 2r 2 r 1 LM1, Kesä 2012 91/169

1 6 5 w 3 0 10 6 w 2 + 2w 3 r 2 /10 0 0 0 w 1 + 3w 3 2(w 2 + 2w 3 ) 1 6 5 w 3 0 1 3/5 (w 2 + 2w 3 )/10 0 0 0 w 1 2w 2 w 3 Havaitaan, että yhtälöryhmällä on ratkaisuja, jos ja vain jos w 1 2w 2 w 3 = 0. Siten span( v 1, v 2, v 3 ) = { w R 3 w 1 2w 2 w 3 = 0 } = { (x, y, z) R 3 x 2y z = 0 } eli origon kautta kulkeva taso, jonka yksi normaali on (1, 2, 1). LM1, Kesä 2012 92/169

Vektorien virittämä aliavaruus Esimerkki 17 Merkitään ī = (1, 0) ja j = (0, 1). Osoita, että span(ī, j) = R 2. Toisin sanottuna: osoita, että jokainen avaruuden R 2 vektori voidaan esittää vektoreiden ī ja j lineaarikombinaationa. j ī LM1, Kesä 2012 93/169

Oletetaan, että w R 2. Tällöin w = (w 1, w 2 ) joillakin reaaliluvuilla w 1 ja w 2. Huomataan, että w 1 ī + w 2 j = w 1 (1, 0) + w 2 (0, 1) = (w 1, 0) + (0, w 2 ) = (w 1, w 2 ) = w. Siis w voidaan kirjoittaa vektoreiden ī ja j lineaarikombinaationa eli w span(ī, j). Näin on osoitettu, että R 2 span(ī, j). Toinen suunta span(ī, j) R 2 on selvä, koska jokainen vektoreiden ī, j R 2 lineaarikombinaatio kuuluu avaruuteen R 2. LM1, Kesä 2012 94/169

Vektoreiden virittämä aliavaruus Esimerkki 18 Onko totta, että span( v 1, v 2, v 3, v 4 ) = R 3, jos (a) v 1 = (1, 1, 0), v 2 = (1, 0, 1), v 3 = (0, 1, 1) ja v 4 = ( 2, 1, 1)? (b) v 1 = (1, 1, 0), v 2 = ( 1, 0, 1), v 3 = (0, 1, 1) ja v 4 = (2, 1, 1)? Kielteisessä tapauksessa määritä span( v 1, v 2, v 3, v 4 ). Myönteisessä tapauksessa tutki, kuinka monella tavalla vektori w = (w 1, w 2, w 3 ) voidaan esittää vektoreiden v 1, v 2, v 3 ja v 4 lineaarikombinaationa. LM1, Kesä 2012 95/169

(a) Tarkastellaan yhtälöä x 1 v 1 + x 2 v 2 + x 3 v 3 + x 4 v 4 = w. Muokataan vastaavan yhtälöryhmän täydennetty matriisi joksikin porrasmatriisiksi: 1 1 0 2 w 1 1 0 1 1 w 2... 0 1 1 1 w 3 1 1 0 2 w 1 0 1 1 3 w 1 w 2. 0 0 1 2 (w 3 + w 2 w 1 )/2 Havaitaan, että yhtälöryhmällä on aina ratkaisu; itseasiassa niitä on äärettömän monta, koska x 4 on vapaa muuttuja. Siis span( v 1, v 2, v 3, v 4 ) = R 3 ja jokainen avaruuden R 3 vektori voidaan esittää äärettömän monella tavalla vektoreiden v 1, v 2, v 3 ja v 4 lineaarikombinaationa. LM1, Kesä 2012 96/169

(b) Tarkastellaan yhtälöä x 1 v 1 + x 2 v 2 + x 3 v 3 + x 4 v 4 = w. Muokataan vastaavan yhtälöryhmän täydennetty matriisi joksikin porrasmatriisiksi: 1 1 0 2 w 1 1 0 1 1 w 2... 0 1 1 1 w 3 1 1 0 2 w 1 0 1 1 1 w 1 w 2 0 0 0 0 w 1 + w 2 + w 3. Havaitaan, että yhtälöryhmällä on ratkaisu, jos ja vain jos w 1 + w 2 + w 3 = 0. Siten span( v 1, v 2, v 3, v 4 ) = { w R 3 w 1 + w 2 + w 3 = 0 } = { (x, y, z) R 3 x + y + z = 0 } eli origon kautta kulkeva taso, jonka yksi normaali on (1, 1, 1). LM1, Kesä 2012 97/169

Jos w 1 + w 2 + w 3 = 0, niin vektori w voidaan esittää vektoreiden v 1, v 2, v 3 ja v 4 lineaarikombinaationa äärettömän monella tavalla, sillä x 3 ja x 4 ovat vapaita muuttujia. Erityisesti voidaan valita x 3 = 0 ja x 4 = 0 ja saadaan esitys w = w 2 v 1 + ( w 1 w 2 ) v 2. Näin ollen span( v 1, v 2, v 3, v 4 ) = span( v 1, v 2 ). LM1, Kesä 2012 98/169

Havaintoja Edellisen esimerkin perusteella: Joskus osajono virittää saman aliavaruuden kuin alkuperäinen virittäjäjono ( v 1,..., v k ). Joskus aliavaruuden span( v 1,..., v k ) vektorit voidaan esittää usealla eri tavalla virittäjävektorien lineaarikombinaatioina. Miten löytää virittäjäjono, jossa ei ole turhia vektoreita? Miten löytää sellainen virittäjäjono, että kaikki aliavaruuden vektorit voidaan esittää tasan yhdellä tavalla virittäjävektorien lineaarikombinaatioina? LM1, Kesä 2012 99/169