Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Samankaltaiset tiedostot
Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Osa 2: Otokset, otosjakaumat ja estimointi

Sovellettu todennäköisyyslaskenta B

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1

tilastotieteen kertaus

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Estimointi. Vilkkumaa / Kuusinen 1

Tilastolliset menetelmät. Osa 1: Johdanto. Johdanto tilastotieteeseen KE (2014) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Testit laatueroasteikollisille muuttujille

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Sovellettu todennäköisyyslaskenta B

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

Tilastollinen aineisto Luottamusväli

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Väliestimointi (jatkoa) Heliövaara 1

Testejä suhdeasteikollisille muuttujille

Harjoitus 2: Matlab - Statistical Toolbox

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1

Normaalijakaumasta johdettuja jakaumia

Tilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5

Sovellettu todennäköisyyslaskenta B

Testit järjestysasteikollisille muuttujille

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Mat Tilastollisen analyysin perusteet, kevät 2007

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu

9. laskuharjoituskierros, vko 12-13, ratkaisut

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Regressioanalyysi. Kuusinen/Heliövaara 1

7.4 Normaalijakauma (kertausta ja täydennystä) Taulukosta P(Z 1,6449) = 0,05, P(Z -1,6449) = 0,05 P(Z 1,96) = 0,025, P(Z -1,96) = 0,025

Tilastollinen päättely. 5. Väliestimointi Johdanto Luottamusvälien konstruointi Luottamusvälien vertailu

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Teema 8: Parametrien estimointi ja luottamusvälit

Sovellettu todennäköisyyslaskenta B

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu

Mat Tilastollisen analyysin perusteet, kevät 2007

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

Sovellettu todennäköisyyslaskenta B

Parametrin estimointi ja bootstrap-otanta

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

OPETUSSUUNNITELMALOMAKE

Mat Tilastollisen analyysin perusteet, kevät 2007

OPETUSSUUNNITELMALOMAKE

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Sovellettu todennäköisyyslaskenta B

Tutkimustiedonhallinnan peruskurssi

Ilkka Mellin Aikasarja-analyysi Suurimman uskottavuuden menetelmä

Tilastollisen päättelyn perusteet

Tilastollisia peruskäsitteitä ja Monte Carlo

ABHELSINKI UNIVERSITY OF TECHNOLOGY

MTTTP5, luento Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta)

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Johdatus tilastotieteeseen Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen. TKK (c) Ilkka Mellin (2004) 1

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

031021P Tilastomatematiikka (5 op) viikko 4

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:

Maximum likelihood-estimointi Alkeet

Osa 2: Otokset, otosjakaumat ja estimointi

Harjoitus 7: NCSS - Tilastollinen analyysi

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

/1. MTTTP1, luento Normaalijakauma (kertausta) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Sovellettu todennäköisyyslaskenta B

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 5

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Moniulotteisia todennäköisyysjakaumia

3.6 Su-estimaattorien asymptotiikka

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

Sovellettu todennäköisyyslaskenta B

Todennäköisyyden ominaisuuksia

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1

Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2004) 1

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Transkriptio:

Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1

Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2

Estimointi: Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman ilmiöitä koskevia havaintoja. Tavoitteeseen pyritään rakentamalla tilastollinen malli sille prosessille, joka on generoinut tutkimuksen kohteena olevaa ilmiötä koskevat havainnot. Koska tilastollisissa tutkimusasetelmissa havaintoihin liittyy aina satunnaisuutta tai epävarmuutta, tilastolliset mallit ovat luonteeltaan todennäköisyysmalleja. Tilastollinen malli on täysin määrätty, jos havaintojen todennäköisyysjakauma tunnetaan. TKK (c) Ilkka Mellin (2005) 3

Estimointi: Mitä opimme? 2/4 Havaintojen todennäköisyysjakauman määräävät jakauman karakteristisia ominaisuuksia kuvaavat parametrit, joiden arvoja ei sovellustilanteessa yleensä tunneta. Jos jakauman tuntemattomille parametreille ei löydetä hyviä estimaatteja eli arvioita, jakaumaa ei voida käyttää mallina sille prosessille, joka on generoinut tutkimuksen kohteena olevaa ilmiötä koskevat havainnot. Tilastollisen tutkimuksen tärkeimpiä osatehtäviä on estimoida eli arvioida havainnot generoineen prosessin mallina käytettävän todennäköisyysjakauman tuntemattomat parametrit ilmiötä koskevien havaintojen perusteella. TKK (c) Ilkka Mellin (2005) 4

Estimointi: Mitä opimme? 3/4 Havaintojen funktiota, joka tuottaa estimaatteja eli arvioita todennäköisyysjakauman tuntemattoman parametrin todelliselle arvolle, kutsutaan parametrin estimaattoriksi. Tilastotieteen tärkeimpiä osatehtäviä on hyvien estimaattoreiden johtaminen todennäköisyysjakauman parametreille. Ks. lukua Estimointimenetelmät. Koska todennäköisyysjakauman parametreille voidaan muodostaa erilaisia estimaattoreita, estimaattoreille on esitetty erilaisia hyvyyskriteereitä, joita käytetään apuna estimaattorin valinnassa. Vaatimukset hyvälle estimaattorille: Hyvän estimaattorin on oltava harhaton, tehokas, tyhjentävä ja tarkentuva. TKK (c) Ilkka Mellin (2005) 5

Estimointi: Mitä opimme? 4/4 Todennäköisyysjakauman tuntemattomien parametrien arvojen määräämistä kutsutaan tavallisesti piste-estimoinniksi. Todennäköisyysjakauman parametrin estimaattiin on aina syytä liittää luottamusväliksi kutsuttu väli, joka sisältää parametrin todellisen arvon, tietyllä, soveltajan valittavissa olevalla todennäköisyydellä. Ks. lukua Väliestimointi. TKK (c) Ilkka Mellin (2005) 6

Estimointi: Esitiedot Esitiedot: ks. seuraavia lukuja: Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Otos ja otosjakaumat Tarvitset esitietoja myös seuraavista kalvokokoelman Johdatus todennäköisyyslaskentaan luvuista: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2005) 7

Estimointi: Lisätiedot Todennäköisyysjakaumien parametrien estimaattoreiden johtamisperiaatteita käsitellään luvussa Estimointimenetelmät Luottamusvälien määräämistä todennäköisyysjakaumien parametreille käsitellään luvussa Väliestimointi Todennäköisyysjakaumien parametreja koskevien tilastollisten hypoteesien testaamista käsitellään luvuissa Tilastolliset testit Testit suhdeasteikollisille muuttujille Jakaumaoletuksien testaamista käsitellään luvussa Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen TKK (c) Ilkka Mellin (2005) 8

Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 9

Todennäköisyysjakaumien parametrit ja niiden estimointi Avainsanat Estimaatti Estimaattori Estimointi Havainto Havaintoarvo Otosjakauma Parametri Piste-estimointi Tilastollinen aineisto Tilastollinen malli Todennäköisyysjakauma Yksinkertainen satunnaisotos Luottamusväli TKK (c) Ilkka Mellin (2005) 10

Todennäköisyysjakaumien parametrit ja niiden estimointi Todennäköisyysjakaumat tilastollisten aineistojen kuvaajina Tilastollinen aineisto koostuu tutkimuksen kohteita kuvaavien muuttujien havaituista arvoista. Tilastollisissa tutkimusasetelmissa havaintoarvoihin liittyy aina epävarmuutta ja satunnaisuutta. Tilastollisissa tutkimusasetelmissa tutkimuksen kohteita kuvaavat muuttujat tulkitaan satunnaismuuttujiksi, jotka generoivat muuttujien havaitut arvot. Tilastollisella mallilla tarkoitetaan havaintoarvot generoineiden satunnaismuuttujien todennäköisyysjakaumaa. TKK (c) Ilkka Mellin (2005) 11

Todennäköisyysjakaumien parametrit ja niiden estimointi Todennäköisyysjakaumien parametrit 1/2 Tarkastellaan jotakin tutkimuksen kaikkien mahdollisten kohteiden muodostaman perusjoukon S alkioiden ominaisuutta kuvaavaa satunnaismuuttujaa X. Oletetaan, että satunnaismuuttuja X noudattaa todennäköisyysjakaumaa, jonka pistetodennäköisyys-tai tiheysfunktio f(x ; θ) riippuu parametrista θ. Merkintä: X ~ f( x; θ ) TKK (c) Ilkka Mellin (2005) 12

Todennäköisyysjakaumien parametrit ja niiden estimointi Todennäköisyysjakaumien parametrit 2/2 Satunnaismuuttujan X pistetodennäköisyys- tai tiheysfunktio f(x ; θ) kuvaa satunnaismuuttujan X todennäköisyysjakaumaa ja parametri θ kuvaa jotakin jakauman karakteristista ominaisuutta. Koska parametrin θ arvoa ei yleensä tunneta, tilastollisen tutkimuksen tärkeimpiä osatehtäviä on estimoida eli arvioida parametrin θ tuntematon arvo jakaumasta f(x ; θ) poimitun otoksen perusteella. TKK (c) Ilkka Mellin (2005) 13

Todennäköisyysjakaumien parametrit ja niiden estimointi Yksinkertainen satunnaisotos Olkoon X 1, X 2,, X n yksinkertainen satunnaisotos jakaumasta, jonka pistetodennäköisyys- tai tiheysfunktio f(x ; θ) riippuu parametrista θ. Tällöin havainnot X 1, X 2,, X n ovat riippumattomia, identtisesti jakautuneita satunnaismuuttujia, joilla on sama pistetodennäköisyys- tai tiheysfunktio f(x ; θ): X1, X2,, Xn X ~ f( x; θ ), i = 1,2,, n i TKK (c) Ilkka Mellin (2005) 14

Todennäköisyysjakaumien parametrit ja niiden estimointi Havainnot ja havaintoarvot Oletetaan, että satunnaismuuttujat (havainnot) X 1, X 2,, X n saavat poimitussa otoksessa havaituiksi arvoikseen luvut x 1, x 2,, x n Havaintoarvot x 1, x 2,, x n vaihtelevat satunnaisesti otoksesta toiseen jakaumasta f(x ; θ) saatavin todennäköisyyksin. TKK (c) Ilkka Mellin (2005) 15

Todennäköisyysjakaumien parametrit ja niiden estimointi Estimaattorit ja estimaatit 1/2 Oletetaan, että todennäköisyysjakauman f(x ; θ) parametrin θ estimoimiseen käytetään satunnaismuuttujien X 1, X 2,, X n funktiota eli tunnuslukua T = g(x 1, X 2,, X n ) Tällöin funktiota T = g(x 1, X 2,, X n ) kutsutaan parametrin θ estimaattoriksi ja funktion g havaintoarvoista x 1, x 2,, x n laskettua arvoa t = g(x 1, x 2,, x n ) kutsutaan parametrin θ estimaatiksi. TKK (c) Ilkka Mellin (2005) 16

Todennäköisyysjakaumien parametrit ja niiden estimointi Estimaattorit ja estimaatit 2/2 Olkoon T = g(x 1, X 2,, X n ) jakauman f(x ; θ) parametrin θ estimaattori. Tällöin estimaattorin T havaintoarvoista x 1, x 2,, x n laskettu arvo eli estimaatti t = g(x 1, x 2,, x n ) on satunnaismuuttujan T arvon realisaatio otoksessa. TKK (c) Ilkka Mellin (2005) 17

Todennäköisyysjakaumien parametrit ja niiden estimointi Estimaattorit ja estimaatit: Kommentti Todennäköisyysjakauman f(x ; θ) parametrin θ estimaattorilla T = g(x 1, X 2,, X n ) tarkoitetaan siis sellaista jakaumaa f(x ; θ) noudattavien satunnaismuuttujien X 1, X 2,, X n funktiota, joka generoi muuttujien X 1, X 2,, X n havaittuihin arvoihin x 1, x 2,, x n sovellettuna estimaatteja eli arvioita t = g(x 1, x 2,, x n ) parametrille θ. TKK (c) Ilkka Mellin (2005) 18

Todennäköisyysjakaumien parametrit ja niiden estimointi Estimaattorin otosjakauma Estimaattorin T = g(x 1, X 2,, X n ) havaintoarvoista x 1, x 2,, x n lasketut arvot eli estimaatit t = g(x 1, x 2,, x n ) vaihtelevat satunnaisesti otoksesta toiseen. Estimaattorin T arvojen satunnaista vaihtelua otoksesta toiseen voidaan kuvata estimaattorin T otosjakaumalla. TKK (c) Ilkka Mellin (2005) 19

Todennäköisyysjakaumien parametrit ja niiden estimointi Estimaattoreiden johtaminen Hyvien estimaattoreiden johtaminen todennäköisyysjakaumien tuntemattomille parametreille on teoreettisen tilastotieteen keskeisiä ongelmia. Tärkeimmät estimaattoreiden johtamiseen käytettävät menetelmät: Suurimman uskottavuuden menetelmä Momenttimenetelmä Ks. lukua Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 20

Todennäköisyysjakaumien parametrit ja niiden estimointi Piste-estimointi ja väliestimointi Todennäköisyysjakauman parametrin arvon estimointia kutsutaan usein piste-estimoinniksi. Parametrin estimaattiin on aina syytä liittää luottamusväliksi kutsuttu väli, joka sisältää estimoidun parametrin todellisen, mutta tuntemattoman arvon tietyllä, soveltajan valittavissa olevalla todennäköisyydellä. Luottamusvälin määräämistä kutsutaan väliestimoinniksi. Ks. lukua Väliestimointi. TKK (c) Ilkka Mellin (2005) 21

Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi >> Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 22

Hyvän estimaattorin ominaisuudet Avainsanat Estimaattori Harha Harhattomuus Hyvyyskriteeri Keskineliövirhe Parametri Tarkentuvuus Tehokkuus Tyhjentävyys TKK (c) Ilkka Mellin (2005) 23

Hyvän estimaattorin ominaisuudet Hyvä estimaattori Todennäköisyysjakauman parametreille on tavallisesti tarjolla useita vaihtoehtoisia estimaattoreita. Estimaattorin valintaa ohjaavat hyvyyskriteerit, joilla pyritään takamaan se, että valittu estimaattori tuottaa järkeviä arvoja estimoitavalle parametrille. Estimaattoreiden hyvyyskriteereitä: Harhattomuus Tyhjentävyys Tehokkuus Tarkentuvuus TKK (c) Ilkka Mellin (2005) 24

Hyvän estimaattorin ominaisuudet Harhattomuus ja tyhjentävyys Harhattomuus: Estimaattori T on parametrin θ harhaton estimaattori, jos sen odotusarvo yhtyy parametrin θ arvoon: E(T) = θ Tyhjentävyys: Estimaattori T on tyhjentävä parametrille θ, jos se käyttää parametrin arvon estimoimiseen kaiken otoksessa olevan informaation. TKK (c) Ilkka Mellin (2005) 25

Hyvän estimaattorin ominaisuudet Tehokkuus ja tarkentuvuus Tehokkuus: Estimaattori T on parametrin θ tehokas estimaattori, jos sen varianssi on pienempi kuin minkä tahansa muun estimaattorin. Tarkentuvuus: Estimaattori T on parametrin θ tarkentuva estimaattori, jos se konvergoi melkein varmasti kohti parametrin oikeata arvoa, kun otoskoon n annetaan kasvaa rajatta: Pr(T n θ) = 1, kun n + Ks. lukua Konvergenssikäsitteet ja raja-arvolauseet. TKK (c) Ilkka Mellin (2005) 26

Hyvän estimaattorin ominaisuudet Estimaattorin harha Parametrin θ estimaattorin θˆ harha on Bias( θˆ) = θ E( θˆ) Jos θˆ on parametrin θ harhaton estimaattori eli E( θˆ ) = θ niin Bias( θ ˆ) = 0 TKK (c) Ilkka Mellin (2005) 27

Hyvän estimaattorin ominaisuudet Estimaattorin keskineliövirhe Parametrin θ estimaattorin θˆ keskineliövirhe on 2 MSE( θˆ) = E ( θˆ θ) 2 = Var( θˆ) + Bias( θˆ) Jos θˆ on parametrin θ harhaton estimaattori eli Bias( θˆ) = θ E( θˆ) = 0 niin MSE( θˆ) = Var( θˆ) Estimaattoria sanotaan tarkaksi, jos se on harhaton ja sen varianssi on pieni. TKK (c) Ilkka Mellin (2005) 28