Geoinformation in Environmental Modelling

Samankaltaiset tiedostot
Capacity Utilization

The Viking Battle - Part Version: Finnish

Efficiency change over time

Geoinformation in Environmental Modelling

Gap-filling methods for CH 4 data

16. Allocation Models

Other approaches to restrict multipliers

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

The CCR Model and Production Correspondence

Use of spatial data in the new production environment and in a data warehouse

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

Results on the new polydrug use questions in the Finnish TDI data

7.4 Variability management

Land-Use Model for the Helsinki Metropolitan Area

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Bounds on non-surjective cellular automata

KMTK lentoestetyöpaja - Osa 2

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

I. Principles of Pointer Year Analysis

Digital Admap Native. Campaign: Kesko supermarket

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

Alternative DEA Models

Information on preparing Presentation

LYTH-CONS CONSISTENCY TRANSMITTER

Metsälamminkankaan tuulivoimapuiston osayleiskaava

Tietorakenteet ja algoritmit

C++11 seminaari, kevät Johannes Koskinen

Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus

T Statistical Natural Language Processing Answers 6 Collocations Version 1.0

Valuation of Asian Quanto- Basket Options

HARJOITUS- PAKETTI A

WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)

TM ETRS-TM35FIN-ETRS89 WTG

( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result

Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a

Increase of opioid use in Finland when is there enough key indicator data to state a trend?

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

S Sähkön jakelu ja markkinat S Electricity Distribution and Markets

( ,5 1 1,5 2 km

make and make and make ThinkMath 2017

Reliable diagnostic support Ultra-light design

anna minun kertoa let me tell you

,0 Yes ,0 120, ,8

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

Työsuojelurahaston Tutkimus tutuksi - PalveluPulssi Peter Michelsson Wallstreet Asset Management Oy

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

Network to Get Work. Tehtäviä opiskelijoille Assignments for students.

Statistical design. Tuomas Selander

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies

TM ETRS-TM35FIN-ETRS89 WTG

Basic Flute Technique

Capacity utilization

Research plan for masters thesis in forest sciences. The PELLETime 2009 Symposium Mervi Juntunen

Vaisala s New Global L ightning Lightning Dataset GLD360

Exercise 1. (session: )

Mat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Kaivostoiminnan eri vaiheiden kumulatiivisten vaikutusten huomioimisen kehittäminen suomalaisessa luonnonsuojelulainsäädännössä

TIEKE Verkottaja Service Tools for electronic data interchange utilizers. Heikki Laaksamo

Toppila/Kivistö Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä.

Rotarypiiri 1420 Piiriapurahoista myönnettävät stipendit

LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ

Rakennukset Varjostus "real case" h/a 0,5 1,5

Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland

Supplementary Table S1. Material list (a) Parameters Sal to Str

MUSEOT KULTTUURIPALVELUINA

Miksi Suomi on Suomi (Finnish Edition)

BLOCKCHAINS AND ODR: SMART CONTRACTS AS AN ALTERNATIVE TO ENFORCEMENT

Graph analyses. Kirsi Virrantaus. Maa Theories and Techniques in Geoinformatics Maa Geoinformatics for Real Estate Economics

AYYE 9/ HOUSING POLICY

Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL

4x4cup Rastikuvien tulkinta

Introduction to spatio-statistical methods

Travel Getting Around

TM ETRS-TM35FIN-ETRS89 WTG

Automaatiojärjestelmän hankinnassa huomioitavat tietoturva-asiat

Curriculum. Gym card

Tork Paperipyyhe. etu. tuotteen ominaisuudet. kuvaus. Väri: Valkoinen Malli: Vetopyyhe

SIMULINK S-funktiot. SIMULINK S-funktiot

3 9-VUOTIAIDEN LASTEN SUORIUTUMINEN BOSTONIN NIMENTÄTESTISTÄ

Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)

Salasanan vaihto uuteen / How to change password

Choose Finland-Helsinki Valitse Finland-Helsinki

Stormwater filtration unit

Green Growth Sessio - Millaisilla kansainvälistymismalleilla kasvumarkkinoille?

Tampere-Pirkkala airport Survey on noise

Co-Design Yhteissuunnittelu

Master's Programme in Life Science Technologies (LifeTech) Prof. Juho Rousu Director of the Life Science Technologies programme 3.1.

ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin. Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana

Information on Finnish Language Courses Spring Semester 2017 Jenni Laine

Olet vastuussa osaamisestasi

Transkriptio:

Geoinformation in Environmental Modelling Spatial analysis: density surface spatial interpolation network analysis ENY-C2005 Paula Ahonen-Rainio 3.2.2016

Topics today From a set of points to a surface Density surface Kernel density Spatial interpolation Thiessen polygons (cf. Voronoi diagram) IDW TIN Kriging based on spatial statistics Network analysis Typical applications Some characteristics of graphs Optimization as an approach to (network) analysis

From a set of points to a surface Density surface Interpolating a field on sample points

Case: Incidents of domestic fire in Helsinki These incidents in Helsinki are not distributed regularly nor randomly Spatenkova, 2009

Case: Incidents of domestic fire in Helsinki The distribution of incidents is different in day time (left) and in night time (right). Spatenkova, 2009

Kernel density estimation Tranformation from point objects to a density surface to visualize a point pattern to detect hot spots where the local density is extimated to be high to allow comparison of point data with a surface variable Density at any location in the study area estimated by counting the number of objects (or events) in a region (=kernel) centered at the location p where the estimate is made Simple kernel: circle centered at the location p More sophisticated: a kernel function weighting nearby events Complexity: density is scale-dependent! (cf. kernel bandwidth) Read more: O Sullivan & Unwin (2010) pp. 68-71 Longley et al (2005) pp. 337-339

Kernel density surface (tiheyspinta) Kernel function (e.g., bell shape) for the local density Each point is replaced by a kernel. Density surface is the sum of these Jokaisen pisteen kohdalle sijoitetaan funktion mukainen kernel (kuva) ja nämä lasketaan yhteen tiheyttä kuvaava pinta Krisp,2006

Kernel density surface Kernel bandwidth affects the resulting density surface Large bandwidth results to smooth variation, densities get close to the global average across the study area Small bandwidth results to surface pattern focusing strongly to individual events and zero densities between remote events Example: Density estimation using two different distance parameters in the respective kernel functions. (A) the surface shows the density of ozone-monitoring stations in California, using a kernel radius of 150 km (B) zoomed to an area of Southern California, a kernel radius of 16 km is too small for this dataset, as it leaves each kernel isolated from its neighbors Longley et al. 2011 John Wiley & Sons, Ltd

Kernel-säteen valinta Mitä suurempi säde sitä yleistetympi esitys Pieni säde näyttää enemmän yksityiskohtia, muttei ehkä pinnan luonnetta Kernel-mentelmä on yksinkertainen ja helppo käyttää, mutta vaatii menetelmän käyttäytymisen ymmärtämistä Easy-to-use method but understanding the approach is necessary when interpreting the patterns

Density surface and spatial interpolation Notice the difference! Density surface estimates the variation of the density of discrete events (events = point objects) Spatial interpolation predicts the values of a spatially continuous variable at unsampled locations from the measurements (known values) made at control points (sample points) in the same area

Spatial interpolation Values of a field measured at a number of sample points need to estimate the continuous field i.e. values at points where the field was not measured (points to be estimated) Approaches to the interpolation : global or local deterministic or stochastic smooth or abrupt changes Which method? Characteristics of the represented phenomenon Consider the uncertainty of the interpolated data!

Spatial autocorrelation and interpolation Interpolation is not possible without positive spatial autocorrelation Also take into account: Physical obstacles special features, trends unisotropy Continuos or categorized values

Continuous or categorical data R. Sunila 2009

Approches in interpolation Here the ideas demonstrated in 1D space Laurini &Thompson 1992

Methods for spatial interpolation Thiessen polygons Nearest value method TIN model Linear interpolation on the planes of triangles Local spatial average Fixed distance or fixed number of points; problems with each IDW Inverse distance weighted spatial average Kriging Based on study of spatial autocorrelation Read in O Sullivan & Unwin (2010) Ch. 9.3 pp. 250-261

Thiessen polygons Every unsampled point gets the value of its nearest control point Proximity polygon of a [control] point: that region of the space which is closer to this point than any other. Abrupt changes in adjacent polygons May suit well for some phenomena, and not at all for others The approach is quite obvious when visualized; no wrong expectations of the accuracy Useful for nominal data But may not be considered interpolation in these cases (rather a transformation) O sullivan & Unwin (2010) Fig. 9.6 (p. 254)

Thiessen polygons Thiessen polygons: a polygon network. Constructed by the perpendicular bisectors of lines joining pairs of points Thiessen polygonit eli Voronoi-diagrammi O Sullivan & Unwin (2010) Fig. 2.4, p. 51 Pistejoukon pisteiden ympärille muodostetaan polygoniverkko (lähialueet) Interpolointi: Kukin pinnan piste saa arvokseen lähimmän tunnetun pisteen arvon jyrkät muutokset polygonien rajalla (ei siten sovellu mille tahansa ilmiölle, vrt. sade-esimerkki in Longley et al.)

O Sullivan & Unwin (2010)

Thiessen polygonit Proximity polygons naapuruuspolygonit Thiessen-polygonit, Voronoi diagrammi graafinen määrittely: Piirretään naapuripisteitä yhdistävien janojen keskinormaali, polygoni syntyy näistä keskinormaaleista käytetään GIS -analyyseissä erilaisten saavutettavuuksien arvioinnissa lähimpien naapureiden hakuun tiheyden kuvaamiseen käytetään TIN -mallin luomiseen Lähinnä säännölliset kolmiot Käytetään pisteistä-alueiksi muunnokseen, esim. yksinkertaiset maaperäkartat

Notice the connection between Thiessen polygons and triangulation Thiessen polygons (Voronoi diagram) Delaunay triangulation Slight inaccuracy in the Figure Used for creating TIN; near equilateral triangles. (a circle drawn through the three nodes of a triangle will contain no other node)

TIN represents the surface per se Sample points are connected to form triangels The field inside each triangle is represents as a plane The value of the variable (i.e. the field) at any location p inside the triangle can be calculated from the values at the vertices (kärkipisteet) and the distances from the location p to the vertices Notice, not only between two vertices along the edge (as in the case of 1D space) but anywhere on the plane (that is 2D) TIN as such is an interpolation method www.geosolutions.com

Local spatial average Estimate = local spatial mean of the values of certain control points Use only the sample points within a fixed distance from the point to be estimated There may be locations that are not within the chosen distance from any sample point and therefore remain without value Use a fixed number of nearest-neighbour sample points Now all locations have nearest neighbours, but the distances to them may vary heavily (cf. extent of spatial autocorrelation) In both cases, all the sample points in question may locate in the same direction from the point to be estimated Therefore, not recommended

IDW Inverse distance weighted spatial average Nearer locations are considered more prominent the values of sample points around the point to be interpolated are weighted according to the inverse distance for example, w=1/d 2 (decreases the effect of more distance points) weights at any interpolated point shall sum to 1 Notice: Cannot predict values lower than the minimum or higher than the maximum among the sampled values a characteristic of any averaging technique

O Sullivan & Unwin (2010)

Example of IDW: undulation problem 4.5 4 3.5 3 2.5 2 1.5 This is an example in 1D space, just for easier illustration. Actual spatial interpolation is done in 2D space. 1 0.5 0 1 4 7 1 01 31 61 92 If the extreme values, the peaks and valleys, are not included in the sampled data, they cannot be produced by interpolation either. The sampled values marked by the arrows in Fig. include the minimum and maximum values, and the interpolated values will be between these. If there is a peak in the middle of Fig., it should have been measured as a sample point. 10 7 2 52 83 13 43 74 04 34 64 95 25 5 86 16 46 7 07 37 67 98 28 58 89 19 49 0

Example of IDW: undulation problem 4.5 4 3.5 3 2.5 2 1.5 Huom. Tässä 1D-kuva havainnollisuuden vuoksi. Spatiaalinen interpolointi tehdään 2D-avaruudessa. 1 0.5 0 1 4 7 1 01 31 61 92 Jos ääripisteet eli huiput ja notkot eivät ole tunnettujen pisteiden joukossa, niitä ei saada esiin interpoloimallakaan. Nuolien osoittamat tunnetut arvot (sample, control) sisältävät minimi- ja maksimiarvot, joiden välille interpolointi tuottaa arvoja. Jos kuvan keskellä on huippukohta, sen pitäisi sisältyä mitattuihin pisteisiin. 10 7 2 52 83 13 43 74 04 34 64 95 25 5 86 16 46 7 07 37 67 98 28 58 89 19 49 0

About the sample points The sample points may be Surface random Locations are chosen withour reference to the shape of the surface being sampled They may, or may not, capture significant features of the surface Surface specific Located at places that are important in defining the surface, that is where there is a major change in the shape of the surface, such as peaks, pits, passes, saddle points, along streams, ridges, and other breaks of slope Grid sampling

Example of interpolation results Heywood et al, 2003 Thiessen TIN IDW

Interpolation of values in a grid Values for unknown pixels on the basis of known pixels Problem: which pixels are used in interpolation? neighbours (4 or 8) no statistical significance More weight can be given on those pixels that are close to the pixel with unknown value (on the basis of spatial autocorrelation) Cf. focal functions in map algebra

Kriging technique firmly grounded in geostatistical theory; the interpolated surface replicates statistical properties of the semivariogram semivariogram reflects Tobler s Law: differences within a small neighborhood are likely to be small, differences rise with distance 1) Analyze observed data to estimate a semivariogram 2) Estimate values at unknown points as weighted averages, weights based on the semivariogram a mathematical model is fitted to the experimental data and it is then used for calculation the values for the unknowns

Kriging Spatio-tilastollinen menetelmäperhe Ottaa huomioon ilmiön käyttäytymisen, myös anisotropian (ilmiön käyttäytyminen on erilainen eri suunnissa) Käyttäytyminen määritellään ensin tunnettujen pisteiden avulla, sitten saatua mallia käytetään interpoloinnissa

2005 John Wiley & Sons, Ltd A semivariogram. Each cross represents a pair of points. The solid circles are obtained by averaging within the ranges or bins of the distance axis. The solid line represents the best fit to these five points, using one of a small number of standard mathematical functions.

Network analysis in outline Typical applications Some characteristics of graphs Optimization as an approach

Network analysis Many typical applications of geoinformatics are based on analysis of network data, e.g. Route optimization and navigation Shortest route from A to B Fastest, safest, cheapest route E.g. emergency medical service (ambulance), police, fire service E.g. transport of dangerous goods E.g. transport of wood Delivery and collection E.g. mail delivery, pizza taxi E.g. collection of milk from farms E.g. waste management: collection and recycling (many to many)

typical applications Intelligent traffic E.g. traffic forecasts Location based services (LBS) Management of infrastructure Planning, construction, maintenance E.g. water supply, sewers, electrical grid, other energy networks (utility management) E.g. telecommunication network Location allocation Optimal location for a service or business en.wikipedia.org

Case Seven bridges of Königsberg see in Wikipedia

Adjancy matrix of a graph Graph can be represented by a linked list or a matrix An example of an adjacency matrix of an undirected graph 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0

Undirected graph (suuntaamaton verkko) Directed graph, digraph (suunnattu verkko) Positive flow to one direction Indegree and outdegree of a vertex (lähtöaste, tuloaste) Incidence matrix Importance of graph theory: Many (non-spatial) problems can be represented as graphs

Example of graph theory in GIS Analysis of the connectivity or vulnerability of the network Zhang Zhe (Aalto ENG, geoinformatics) studies critical networks Case: where are the critical parts of the road network of Helsinki in case of flooding, taking into account the number of population dependent on various parts of the network and possible alternative routings E.g. betweenness was a central concept in this study

Analysis of network by optimization Routing (Reititys verkossa) Travelling salesman Kauppamatkustajan ongelma: kuljetaan jokaisen solmupisteen kautta minimikustannuksin (n-1)!/2 mahdollista ratkaisua heuristiikka

Analysis of network by optimization Search for a good enough solution Use of heuristics Etsitään riittävän hyvä ratkaisu: heuristiikat Sijoittelu (location-allocation) p-mediaani: minimoi etäisyyksien summan kustakin lähtöpisteestä johonkin p:stä palvelupisteestä (1-mediaani = MAT) Kattavuus: minimoi pisimmän etäisyyden mistä tahansa pisteestä johonkin palvelupisteistä

Basic graph problems For example, Draftsman s map colouring problem Shortest/cheapest/fastest route Minimum spanning tree Travelling salesman problem Maximal flow (minimum cut) problem Matching problems schedule problem