Eläkelaitoksen Optimointimallin Rakentaminen

Samankaltaiset tiedostot
Eläkelaitoksen Optimointimallin Rakentaminen

Dynaaminen allokaatio ja riskibudjetointi sijoitusstrategioissa

Rahastosalkun faktorimallin rakentaminen

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Tehokkaiden strategioiden identifiointi vakuutusyhtiön taseesta

Eläkelaitoksen optimointimallin Rakentaminen

Mat Operaatiotutkimuksen projektityöseminaari

Logistiikkajärjestelmien mallintaminen - käytännön sovelluksia

Rahastosalkun faktorimallin rakentaminen

Vapaapäivien optimointi

Tieverkon kunnon stokastinen ennustemalli ja sen soveltaminen riskienhallintaan

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

Lääkintähelikopterikaluston mallintaminen

TIEA382 Lineaarinen ja diskreetti optimointi

Osakesalkun optimointi

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Harjoitus 4: Matlab - Optimization Toolbox

Mat Operaatiotutkimuksen projektityöseminaari. Dynaaminen kimppakyytijärjestelmä Uudellamaalla. Väliraportti

TTY Porin laitoksen optimointipalvelut yrityksille

Eläkesäätiöyhdistys - ESY ry

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

AS Automaatio- ja systeemitekniikan projektityöt - Projektisuunnitelma

Dynaaminen allokaatio ja riskibudjetointi sijoitusstrategioissa

2009 Mat Operaatiotutkimuksen Projektityöseminaari L

Projektisuunnitelma: Jokisysteemin vesivoimatuotannon simulointi

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

OPINNÄYTE Keuda Tuusula Hiusalan perustutkinto Nuoriso- ja vapaa-ajanohjauksen perustutkinto Sosiaali- ja terveysalan perustutkinto

Markkinasääntöjen valmistelun organisaatio, tavoitteet, prosessi ja projektisuunnitelma. Ville Rahkonen

Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus

Tehokkaiden strategioiden identifiointi vakuutusyhtiön taseesta

Parempi suunnitelma varoillesi

OPINNÄYTE Keuda Tuusula Hiusalan perustutkinto Nuoriso- ja vapaa-ajanohjauksen perustutkinto Sosiaali- ja terveysalan perustutkinto

A14-11 Potilaan mittaustiedon siirtäminen matkapuhelimeen

Projektisuunnitelma Korrelaatioiden ja varianssin estimointi kiinteistöportfolion tuotolle

Mat Investointiteoria Laskuharjoitus 4/2008, Ratkaisut

MÄÄRÄYS SIJOITUSPALVELUYRITYKSEN RISKIENHALLINNASTA JA MUUSTA SISÄISESTÄ VALVONNASTA

EDUTOOL 2010 graduseminaari

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

Kurssin esittely (syksy 2016)

Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä

Kandiaikataulu ja -ohjeita

Harjoitus 5 ( )

Optimoinnin sovellukset

Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

MS-E2177 Operaatiotutkimuksen projektityöseminaari 2016

Stokastinen optimointi taktisessa toimitusketjujen riskienhallinnassa (valmiin työn esittely)

Ohjeet tutkimussuunnitelman kirjoittamiseen

Optimaalisen tarkastusvälin määrittäminen suun terveydenhuollossa

Harjoitus 5 ( )

OPETUSSUUNNITELMALOMAKE

Mat Operaatiotutkimuksen projektityöseminaari. Optimal Radio Scheduling - Projektisuunnitelma

Mat Operaatiotutkimuksen projektityöseminaari Viestiverkon toimintaluotettavuuden arviointi Väliraportti

Malliratkaisut Demot

Tutkimussuunnitelmamalli/ Oikeustieteiden tohtoriohjelma, UEF. Väitöskirjatutkimuksen otsikko Tutkijan nimi Päivämäärä

Verkkopelipalvelujen reaaliaikainen hinnoittelu

Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu

Harjoitus 8: Excel - Optimointi

Kimppu-suodatus-menetelmä

Luento 6: Monitavoitteinen optimointi

Lääkintähelikopterikaluston mallintaminen

A13-03 Kaksisuuntainen akkujen tasauskortti. Projektisuunnitelma. Automaatio- ja systeemitekniikan projektityöt AS-0.

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

MAT INVESTOINTITEORIA. (5 op) Kevät Ville Brummer / Pekka Mild / Ahti Salo

Hajauttamisen perusteet

Investointimahdollisuudet ja investoinnin ajoittaminen

Tieverkon kunnon stokastinen ennustemalli ja sen soveltaminen riskienhallintaan

Demo 1: Simplex-menetelmä

Verkkopelipalvelujen reaaliaikainen hinnoittelu

BLOGGER. ohjeita blogin pitämiseen Googlen Bloggerilla

Liite yv 20/1/2015. Seinäjoen koulutuskuntayhtymän ja kuntayhtymäkonsernin. Varallisuuden hoito ja sijoitustoimintaa koskevat periaatteet

Aiheesta tutkimussuunnitelmaan

PSY181 Psykologisen tutkimuksen perusteet, kirjallinen harjoitustyö ja kirjatentti

RYM-C2001 Projektityökurssi I, yhdyskuntien suunnittelu

Matemaattinen optimointi I -kurssin johdantoluento Prof. Marko M. Mäkelä Turun yliopisto Matematiikan ja tilastotieteen laitos

Kon Konepajojen tuotannonohjaus: ILOG CPLEX Studion käyttö

Hajauttamisen perusteet

Mat Operaatiotutkimuksen projektityöseminaari Viestiverkon toimintaluotettavuuden arviointi Projektisuunnitelma

Sijoitusten hoitopalvelu

Dynaaminen optimointi

Harjoitus 6 ( )

1. Projektin status. 1.1 Tavoitteiden päivitys. 1.2 Tulokset Mallinnus

Uudenlainen tapa sijoittaa kiinteistöihin verotehokkaasti. Sijoitusjohtaja Jussi Pekka Talsi Arvoasuntopäivä, Pörssitalo, Helsinki,

Optimal Harvesting of Forest Stands

Sijoituspolitiikka. Lahden Seudun Ekonomit ry Hyväksytty vaalikokouksessa

Raakapuun kaupallinen hintaindeksi

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

Moduuli 1: Opettaja verkko-opetuksen laadun kehittäjänä. Tuutoritapaaminen KIELOT 4.0

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Handelsbanken Rahastosalkku -

Hyvin suunniteltu on puoliksi tehty. Tutkimussuunnitelma. Miten se tehdään?

AS Automaatio- ja systeemitekniikan projektityöt

ENE-C2001 Käytännön energiatekniikkaa. Aloitustapaaminen Osa III: Tekninen raportointi

Matematiikan tukikurssi

SALAKIRJOITUKSEN VAIKUTUS SUORITUSKYKYYN UBUNTU käyttöjärjestelmässä -projekti

Kokonaislukuoptimointi hissiryhmän ohjauksessa

TUKIMATERIAALI: Arvosanan kahdeksan alle jäävä osaaminen

OPETUSSUUNNITELMALOMAKE

Professori Esa Saarinen & Prof. Raimo P. Hämäläinen Systeeminalyysin laboratorio

Investointimahdollisuudet ja niiden ajoitus

Vastuullinen sijoittaminen Elossa. Avara, Asumisen aamu Kirsi Keskitalo

Transkriptio:

Teknillinen korkeakoulu Mat-2.177 Operaatiotutkimuksen projektityöseminaari Kevät 2006 Eläkelaitoksen Optimointimallin Rakentaminen Projektisuunnitelma 22.2.2006 Michael Gylling Matti Konttinen Jarno Nousiainen Johanna Pynnä Timo Salminen 60309D 61128F 58524E 63906L 58100V

Sisällysluettelo: Tausta...1 Tavoitteet...1 Tutkimuskysymykset...2 Toimenpiteet...2 Menetelmät...3 Toimenpiteet vaiheittain...4 Aikataulu...4 Resurssit...5 Riskit...6

Tausta 1 Evli on Suomen suurin partnereiden omistama investointipankki, jonka asiakkaita ovat koti- ja ulkomaiset instituutiot ja yritykset sekä varakkaat yksityishenkilöt. Evlin tavoitteena on nousta yhdeksi Pohjoismaiden ja Baltian johtavista riippumattomista investointipankeista. Eläkelaitoskentän ja eläkesijoittajien tarpeiden tunteminen ovat Evlin erikoisosaamista. Evlin instituutiovarainhoidon yksikkö tarjoaa palveluitaan lukuisille eläkelaitoksille ja tämän lisäksi Evlin konserniin kuuluu oma eläkesäätiö. Eläkelaitoksen sijoitustoiminta on voimakkaasti säädeltyä. Tällöin optimaalinen sijoitusportfolio ei koostu pelkästään portfolioteorian tarjoamasta ratkaisusta, vaan joudutaan huomiomaan maakohtaisen lainsäädännön ja viranomaisvalvonnan asettamat rajoitukset. Perinteisesti eläkesijoittajan salkun optimoinnissa käytetään ainoastaan portfolioteoriaan perustuvia malleja, jotka eivät huomioi alalle ominaisia rajoituksia. Tästä johtuen saatu sijoitussuositus ei välttämättä ole optimaalinen ja portfolioteorian mukainen malli saattaa jopa johtaa sellaiseen salkkuun, johon kyseinen eläkelaitos ei saa sijoittaa. Tämän takia eläkelaitoksen sijoituspäätökset ovat monitavoitteisia, eikä pelkän portfolioteorian tuoton ja riskin tarkastelu riitä optimaalisen salkun rakentamisessa. Tavoitteet Parhaimmillaan instituutiovarainhoitajilla on käytössään malli, joka huomio viranomaissäädännön lisäksi eläkelaitoksen eri sidosryhmien asettamat rajoitteet ja tavoitteet salkkuoptimoinnissa. Yksi keskeinen kysymys eläkesäätiöiden kannalta on miten määritellään sopiva tuottotavoite vallitsevassa ympäristössä. Tällöin täytyy ottaa huomioon emoyrityksen taloudellinen tilanne, markkinoiden kehittyminen sekä viranomaisten rajoitukset. Projektityössä on tarkoitus saada rakennettua malli, joka porfolioteorian mukaisen tuoton ja riskin suhteen optimoivan mallin lisäksi huomioi lainsäädännön eläkelaitoksille asettamat kate- ja vakavaraisuussäädökset sekä eläkesäätiön sijoitusten tuottojen vaikutuksen emoyrityksen tulokseen. Toisin sanoen eläkesäätiön optimaalinen salkku on monitavoitteinen kuvan (Kuva 1) osoittamalla tavalla.

2 Kuva 1 Optimaalinen salkku on monitavoitteinen Projektityön tavoitteena on kartoittaa eläkesäätiön salkkuvalinnan teoreettinen viitekehys, määritellä salkkuvalintaa kuvaava matemaattinen malli, sekä rakentaa ja formuloida salkkuvalinta monitavoitteisena optimointiongelmana. Työn kannalta on oleellista saada ymmärrys siitä, mitkä parametrit ovat optimoinnin kannalta relevantteja ja mikä on sopiva optimointimalli. Työssä ei tulla sen tarkemmin käsittelemään modernia portfolioteoriaa, joka on yhtenä osana eläkesäätiön optimaalisessa salkussa, vaan se oletetaan kuuluvan lukijan esitietoihin. Työn tarkoituksena on myös selvittää löytyykö akateemista tai muuta tutkimusta aiheesta joko Suomesta tai muualta Euroopasta, jossa lainsäädäntö on lähimpänä Suomen lainsäädäntöä. Tutkimuskysymykset - Mikä on eläkesäätiön salkunvalinnan teoreettinen viitekehys? - Miten tätä voidaan kuvata matemaattisella mallilla? - Miten malli rakennetaan ja formuloidaan optimointiongelmana? - Löytyykö aiheesta aiempaa tutkimusta? Toimenpiteet Ongelman määrittely alkaa tutustumalla aiheeseen liittyvään kirjallisuuteen, lainsäädäntöön sekä muuhun relevanttiin materiaaliin. Tällöin tutustutaan eläkesijoittamiselle ominaisiin säädöksiin sekä niihin liittyviin viranomaisrajoitteisiin. Aiheeseen liittyvä kirjallisuus viittaa mahdollisesti aiempiin tehtyihin tutkimuksiin eläkesäätiöiden optimaalisesta sijoitusstrategiasta tai tutkimusta muista

3 samankaltaisista aiheista. Kirjallisuutta tutkimalla saadaan selville, miten aikaisemmin on lähestytty tämänkaltaista ongelmaa. Lainsäädännöstä ja muusta kirjallisuudesta saadaan identifioitua relevantit parametrit, jotka täytyy ottaa huomioon optimointimallissa. Tällöin on olennaista pohtia, mitkä tulevat olemaan optimointimallin päätösmuuttujat, mikä on kohdefunktio (ja mitä kaikkea kohdefunktio sisältää) sekä mitkä ovat tarvittavat rajoitukset. Kun kaikki tarpeelliset parametrit on identifioitu, niiden suhde koko optimointimalliin täytyy tarkentaa. Parametrit on saatava optimointimalliin mukaan lainsäädännön ja viranomaisrajoitteiden puitteessa sopivassa matemaattisessa muodossa. Muuttujat ovat joko päätösmuuttujia tai rajoituksia. Parametrien identifioinnin ja niiden matemaattisten suhteiden mallintamisen jälkeen, on mahdollista mallintaa matemaattisesti koko optimointiongelma eläkesäätiöiden parhaasta sijoitusstrategiasta kun tiedetään alkuparametrit sekä tarpeelliset vakiot ja muuttujat. Näistä saadaan rakennettua eläkesäätiön optimointimalli. Menetelmät Matemaattisesti ongelma on monikriteerinen stokastinen optimointitehtävä. Optimoitaessa on otettava tuoton ja riskin lisäksi huomioon myös eläkesäätiötä koskeva toimintapääomavaatimus. Ennen mallin rakentamista tulee selvittää tarkemmin tehtävän tavoitteet, jotta ne voidaan ottaa huomioon kohdefunktiota valittaessa. Eräs tapa on rakentaa malliin sakkofunktio, joka estää toimintapääomavaatimusta vähenemästä tai kasvamasta liikaa suhteessa todelliseen toimintapääomaan. Sopivan kohdefunktion määrittäminen tulee olemaan yksi työn keskeisistä kysymyksistä. Mallin päätösmuuttujia tulevat olemaan kunkin sijoituskohteen (noin 25 kpl) paino portfoliossa. Nämä päätösmuuttujat jakaantuvat edelleen seitsemään lainsäädännössä määriteltyyn ryhmään. Suurin osa mallin rajoituksista seuraa suoraan eläkesäätiötä koskevasta lainsäädännöstä ja sen katevaatimuksesta, jossa määritellään kuinka suuren osan eläkelupauksista voi kattaa milläkin omaisuusluokalla. Lisärajoitusehtoja voi seurata Critical probability - tai Value at Risk -tyyppisille riskimitoille asetetuista vaatimuksista. Rahoitusmarkkinat ovat erittäin likvidit, joten on syytä myös pohtia dynaamisen optimoinnin mahdollisuutta eräänä ratkaisutapana. Näin voitaisiin etsiä optimaalisia dynaamisia sijoitusstrategioita, mikä nostaisi mallin monimutkaisuutta ja laskentatehon vaadetta huomattavasti.

4 Dynaaminen malli on kuitenkin perusteltu, sillä nopeat heilahdukset ovat mahdollisia erityisesti osakemarkkinoilla. Toisaalta dynaamisessa tapauksessa on otettava myös huomioon, ettei kaikista sijoituksista pääse hetkessä eroon (esim. kiinteistöt), mikä lisää rajoitusten määrää. Erään näkökulman ongelmaan tarjoaa stokastinen optimointi, jonka kentältä löytyy tietoa optimoinnista epävarmuustekijöiden vallitessa. Myös kunkin sijoituskohteen tai ryhmän kehityksen mallintaminen omalla binomihilalla on mahdollista, mutta malli kasvaa helposti suureksi. Ennen varsinaisen työn aloittamista on tutustuttava tarkemmin aiheesta löytyvään kirjallisuuteen aiempiin tutkimuksiin. Valmista mallia tullaan todennäköisesti vielä testaamaan esimerkiksi käyttäen Monte Carlo -simulointia. Toimenpiteet vaiheittain - Kirjallisuuteen ja aiempiin tutkimuksiin tutustuminen - Tarkempi tiedonkeruu Evliltä o Tavoitteiden tarkentaminen o Projektin laajuuden kartoittaminen - Mallin rakentaminen / valitseminen o Staattinen vai dynaaminen? o Stokastinen vai Deterministinen? o Eri kohdefunktioehdokkaiden laadinta - Mallin valitseminen o Eri vaihtoehtojen simulointi o Valitaan paras - Mallin testaus o Kokeillaan mallin toimivuutta oikean datan kanssa Aikataulu Projekti etenee seuraavien vaiheiden kautta, jotka ovat esitettynä taulukossa alla. Taulukko 1 Projektin aikataulu Aktiviteetti/Viikko 5 6 7 8 9 10 11 12 13 14 15 16 Kirjallisuuteen ja aiempiin tutkimuksiin tutustuminen Projektisuunnitelman kirjoittaminen Tavoitteiden ja laajuuden varmistaminen Mallivaihtoehtojen rakentaminen Mallivaihtoehtojen simulointi Väliraportin kirjoittaminen Optimointimallin valinta Optimointimallin testaus ja viimeistely Loppuraportin kirjoittaminen Kommunikointi Evlin kanssa

5 Tehtävän luonteesta johtuen on vaikea jakaa projektia selkeästi osiin, vaan kaikki ryhmän jäsenet tulevat osallistumaan kaikkiin projektin eri osiin. Kaikki tulevat osallistumaan eri mallien rakentamiseen ja oikean mallin valitsemiseen, mutta Jarno ja Timo tulevat keskittymään muita enemmän mallien simulointiin ja testaukseen. Vastaavasti Matti ja Johanna tulevat panostamaan muita enemmän raporttien kirjoittamiseen ja Michael raporttien viimeistelyyn ja muuhun koordinointiin. Projektin aikana on tarkoitus tehdä projektisuunnitelma, väliraportti sekä loppuraportti. Alla olevassa taulukossa näkyy, milloin kutakin kirjallista osuutta on tarkoitus aloittaa, milloin ne pitäisi olla Evlillä kommentoitavana sekä milloin ne on palautettava. Sen jälkeen kuin Evliltä on saatu palautetta kustakin osasta, tarkoitus on vielä muokata tekstejä saatujen kommenttien perusteella. Taulukko 2 Tärkeät päivämäärät Resurssit Aloitus Evlille kommentoitavaksi alustavasti Palautus kurssille Projektisuunnitelma 3.2.2006 15.2.2006 22.2.2006 Väliraportti 1.3.2006 22.3.2006 31.3.2006 Loppuraportti 1.4.2006 13.4.2006 21.4.2006 Ryhmämme koostuu viidestä vähintään kolmannen vuosikurssin opiskelijasta. Kolme ryhmän jäsentä lukee systeemianalyysiä pääaineena ja kaksi sivuaineena, joten projektiin liittyvää osaamista on ryhmässä paljon. Toinen tärkeä resurssi kurssin henkilökunta, joka kykenee antamaan suuntaa projektille ja apua ongelmien sattuessa. Heidän avulla pääsemme myös käsiksi projektiin liittyvään laajaan kirjallisuuteen kuten tieteellisiin artikkeleihin ja diplomitöihin. Lisäksi ryhmällä on mahdollisuus päästä käyttämään hyvin sofistikoituja ohjelmia varsinaisen mallin implementointiin. Kolmas tärkeä resurssi on kohdeyrityksen Evlin henkilökunta, jolta saamme informaatiota, neuvoa ja ohjeistusta.

Riskit 6 Riski Vaikutus Todennäköisyys Ehkäisevät toimet Tavoitteena olevaa mallia ei kyetä luomaan Suuri 5 % Aiheeseen liittyvän kirjallisuuden kattava läpikäyminen ja vaadittaviin optimointitekniikoihin tutustuminen. Projektin tulokset eivät vastaa tavoitteita Suuri 5 % Projektin tavoitteiden tarkka määrittely. Kommunikointi kohdeyrityksen kanssa. Projektisuunnitelman hyväksyttäminen kohdeyrityksellä. Projektin aikatauluissa ei kyetä pysymään Kohtalainen 10 % Projektiaikataulun laatiminen sekä työn edistymisen tarkkailu. Aikatauluihin jätetään varaa yllättävien tapahtumien varalta. Kommunikointi ryhmän sisällä tai ryhmän ja kohdeyrityksen välillä vajavaista. Kohtalainen 20 % Kommunikointi tapahtuu säännöllisin väliajoin. Esimerkiksi ryhmän sisäinen kommunikointi vähintään viikoittaista. Kommunikointi tapojen sopiminen, matkapuhelin sekä sähköposti Projektin laajuuden karkaaminen käsistä Kohtalainen 30 % Projektin tarkka määrittely ja rajaaminen.