Projektisuunnitelma Korrelaatioiden ja varianssin estimointi kiinteistöportfolion tuotolle
|
|
- Juho-Matti Pesonen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Mat Operaatiotutkimuksen projektityöseminaari 2007 Projektisuunnitelma Korrelaatioiden ja varianssin estimointi kiinteistöportfolion tuotolle Kohdeorganisaatio: Yhteyshenkilöt: Ryhmä: Tapiola Ville Koskinen Samu Antila Lauri Haapamäki Tapani Hyvämäki Otso Manninen Heikki Peura Mirko Ruokokoski
2 Contents Johdanto... 3 Mallit... 4 Kiinteistömarkkinoiden mallintamien... 4 Mallintamiseen käytettävä data... 4 Mahdollisia riskejä... 5 Resurssit... 6 Aikataulu
3 Johdanto Sijoituslajien tuottojen hajonnoilla, keskiarvoilla ja korrelaatioilla on sijoitussalkun hoidossa erittäin keskeinen asema. Sijoituspäätökset ovat perinteisesti perustuneent sijoituskohteen tuoton odotusarvoon ja riskiin. Näitä arvoja voidaan arvioida havaituista historiallisista tuottoaikasarjoista. Näiden lisäksi sijoitussalkun hoidossa on tärkeää huomioida eri sijoituskohteiden väliset korrelaatiot. Tilastotietoja on osake- ja joukkovelkakirjamarkkinoilla erittäin runsaasti. Tilanne on kuitenkin oleellisesti erilainen kiinteistömarkkinoiden kohdalla. Näistä ei ole saatavissa päivittäistä noteerausta (liikekiinteistöjen arvoa kuvaavia indeksejä on saatavilla yleensä vain vuosittain), eikä niillä ole selvää markkina-arvoa. Tapiola on asiakkaiden omistama yhtiöryhmä. Tapiola-ryhmä tarjoaa vakuutus-, pankki-, säästö- ja sijoittajapalveluja. Tapiola on asettanut tehtäväksi etsiä menetelmiä, joiden avulla voidaan tuottaa parempia estimaatteja eri sijoituskohteiden välisen tuoton kovarianssimatriisille silloin kun osa tarkasteltaviista sijoituskohteista noteerataan vain korkeintaan muutamia kertoja vuodessa. Tässä työssä harvoin noteerattavat sijoituskohteet ovat kiinteistöjä. Tehtävä voidaan jakaa neljään osaan Kirjallisuustutkimus: etsitään erilaisia aikasemmin tutkittuja menetelmiä ongelman ratkaisemiseksi Valitaan kirjallisuustutkimuksen perusteella muutama malli, joihin keskitytään. Mallien validointi: suoritetaan tilastollisia testejä saaduille tuloksille Optimoinnit estimoiduilla kovarianssimatriiseilla. 3
4 Mallit Kirjallisuudesta on käsitelty seuraavia malleja tämän tyyppisten ongelmien ratkaisemiseen. Näitä malleja ovat esimerkiksi: SARIMAX, ARCH, GARCH, VAR, MVAR ECM (error correction model) neuroverkot CAPM (capital asset pricing model) Näistä tarkastelemme SARIMAX, ARCH ja neuroverkko malleja. Kiinteistömarkkinoiden mallintamien Tavoitteenamme on malintaa kiinteistöjen arvoa ja tuottoa käyttämällä selittäjinä muutamia yleisiä taloudellisia indeksejä. Tällaisia ovat mm. osakkeiden keskimääräinen tuotto, joukkovelkakirjojen keskimääräinen tuotto, bruttokansantuote, yleinen korkokanta ja energian hinta. Näitä selittäjiä pyritään tarkentamaan ja ottamaan mukaan uusia selittäjiä mikäli mallia validoidessa tähän ilmenee aihetta. Lähestymistapa on ottaa ensin mahdollisimman paljon muuttujia mukaan ja sen jälkeen pudottaa tilastollisesti merkityksettömiä selittäjiä pois mallista. Mallintamiseen käytettävä data Työn tarkoituksena on mallintaa kotimaisia kiinteistömarkkinoita. Kotimaisilta kiinteistömarkkinoilta saatava historia on kuitenkin melko puutteellista, sillä kotimaiset kiinteistömarkkinat ovat olleet hyvin rajoittuneita 1990 luvulle saakka. Tästä syystä kokeilemmekin mallin sovittamista aluksi Pohjois-Amerikan kiinteistömarkkinoilta saatavaan dataa. Tämä myös siitä syystä, että täältä on saatavissa muuta oleellista dataa hyvin helposti. Pääasiallisena tietolähteenämme toimivat EPRA (European Public Real Estate Association, sekä Tapiola-ryhmän käytettävissä olevat kaupalliset tietokannat tarpeemme mukaan. 4
5 Mahdollisia riskejä Korrelaatio mittaa muuttujien linearista riippuvuutta. Yleensä taloudellisissa riippuvuussuhteissa on myös mukana epälineaarisia komponentteja. Työn suurimpana riskinä voi olla, että asuntoportfolion tuotolle ja variansille ei saada mitään järkevää matemaattista lineaarista mallia, vaan joudutaan tyytymään malliin, jonka selitysaste on alhainen tai lähes olematon. Tämän takia tarkasteltavaksi on otettu neuroverkko. Sillä voidaan approksimoida mielivaltaisen tarkasti mitä tahansa epälineaarista funktiota. Neuroverkkojen haittapuolena on se, että neuronien painokertoimilla ei ole taloudellista tulkintaa. Kirjallisuuskatsaus on jo tässä vaiheessa antanut viitteitä, ettei mitään selkeää mallia ole olemassa, eikä asiaa ole aikaisemmin lähestytty aivan samalta kannalta. Toinen malliin liittyvä riski on, että pätevä malli Pohjois-Amerikan markkinoilta ei sovellu sellaisenaan Suomen oloihin. Tästäkin olemme saaneet alustavan kirjallisuusselvityksen perusteella viitteitä - erot eri asuntomarkkinoiden välillä voivat olla hyvin suuria jopa eri Euroopan maiden kesken. Lisäksi ongelmaksi voi nousta, ettei sopivaa indeksidataa löydy, tai ainakaan halutulla tarkkuudella. Tämä nousee todennäköisemmin ongelmaksi, kun Pohjois-Amerikan mallia yritetään siirtää Suomen oloihin. Ongelmaa voidaan pyrkiä rajaamaan tarkastelemalla huolella alunperinkin mukaan otettavia parametreja, mutta tällöin on vaarana, ettei minkäänlaista mallia saada aikaiseksi. Taustadataan liittyy omia ongelmia, varsinkin kun pitää tarkastella tulevaa, jolloin merkittäväksi seikaksi nousee parametrien ennustaminen ja niiden virheet. Tähän liittyy osana indeksien määritelmien muuttuminen - monet indeksit voidaan eri vuosina laskea hieman eri tavalla, jonka takia eri vuosien luvut eivät enää ole yhteismitallisia. Valmiin mallin ongelmaksi saattaa muodosta liian suuri kompleksisuus. Jos malli osoittautuu liian kompleksiksi, eikä sen antamista tuloksista pysty sanomaan riittäviä riippuvuussuhteita tms. niin saattaa olla, että se ei ole kummempi minään muuna kuin akateemisena kuriositeettina. 5
6 Resurssit Työt pyritään jakamaan ryhmän jäsenten kesken heidän osaamisalueidensa mukaan. Tämä on järkevää, sillä ryhmässämme tuntuu olevan opinnoissaan hyvin erilaisiin asioihin perehtyneitä ihmisiä. Töitä pyritään tekemään pienemmissä osaryhmissä mieluummin kuin koko porukalla. Järkevän kokoisia ryhmiä voisi olla noin kahden hengen kokoiset ryhmät. Tällöin ryhmän toiminta ei ole riippuvaista siitä pääsevätkö kaikki viisi jäsentä paikalle yhteisiin palavereihin. Näin ollen ajankäyttö tehostuu ja tuloksia saadaan nopeammin. Projektipäällikkö pitää pääasiassa huolen työmäärän tasaisesta jakautumisesta jäsenten kesken. Aikataulu Työt tehdään kurssihenkilökunnan asettamassa aikataulussa Projektisuunnitelma valmiina Väliraportti valmiina Loppuraportti valmiina Tämän karkean aikataulun lisäksi asetamme itsellemme tiettyjä väliaikoja jolloin toivomme olevamme tietyn projektin vaiheen ylittäneitä (vrt. Johdanto). Tämän lisäksi aikataulussa pysyminen on myös kiinni projektin asettajastamme, jonka kanssa pyrimme pitämään palaverin kerran kahdessa viikossa. 6
Rahastosalkun faktorimallin rakentaminen
Teknillinen korkeakoulu Mat 2.177 Operaatiotutkimuksen projektityöseminaari Kevät 2007 Evli Pankki Oyj Väliraportti 28.3.2007 Kristian Nikinmaa Markus Ehrnrooth Matti Ollila Richard Nordström Ville Niskanen
Dynaaminen allokaatio ja riskibudjetointi sijoitusstrategioissa
Aalto yliopisto Mat 2.4177 Operaatiotutkimuksen projektityöseminaari Dynaaminen allokaatio ja riskibudjetointi sijoitusstrategioissa Väliraportti 5.4.2013 Vesa Husgafvel (projektipäällikkö) Tomi Jussila
r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P
Markkinaportfolio on koostuu kaikista markkinoilla olevista riskipitoisista sijoituskohteista siten, että sijoituskohteiden osuudet (so. painot) markkinaportfoliossa vastaavat kohteiden markkina-arvojen
Optimaalisen tarkastusvälin määrittäminen suun terveydenhuollossa
Projektin väliraportti Optimaalisen tarkastusvälin määrittäminen suun terveydenhuollossa 13.4.2012 Mat-2.4117 Operaatiotutkimuksen projektityöseminaari Toimeksiantaja: Nordic Healthcare Group Projektiryhmä:
Identifiointiprosessi
Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi
Tieverkon kunnon stokastinen ennustemalli ja sen soveltaminen riskienhallintaan
Mat-2.4177 Operaatiotutkimuksen projektityöseminaari Tieverkon kunnon stokastinen ennustemalli ja sen soveltaminen riskienhallintaan Projektisuunnitelma 11.2.2009 Toimeksiantajat: Pöyry Infra Oy (Pekka
Dynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen
Verkkopelipalvelujen reaaliaikainen hinnoittelu
Teknillinen Korkeakoulu Mat-2.177 Operaatiotutkimuksen projektityöseminaari Kevät 2006 Verkkopelipalvelujen reaaliaikainen hinnoittelu Väliraportti 29.3.2006 Kohdeorganisaatio: Clan Match Exchange Good
Tehokkaiden strategioiden identifiointi vakuutusyhtiön taseesta
MS E2177 Operaatiotutkimuksen projektityöseminaari Väliraportti Tehokkaiden strategioiden identifiointi vakuutusyhtiön taseesta 28.3.2016 Asiakas: Model IT Projektiryhmä: Niko Laakkonen (projektipäällikkö),
Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,
Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, kesä 2016 Laskuharjoitus 5, Kotitehtävien palautus laskuharjoitusten
Eläkelaitoksen Optimointimallin Rakentaminen
Teknillinen korkeakoulu Mat 2.177 Operaatiotutkimuksen projektityöseminaari Kevät 2006 Eläkelaitoksen Optimointimallin Rakentaminen Väliraportti 31.3.2006 Michael Gylling Matti Konttinen Jarno Nousiainen
Luottoluokitusten siirtymätodennäköisyyksien estimointi ja kalibrointi
Aalto-yliopisto Mat-2.4177 Operaatiotutkimuksen projektityöseminaari Kevät 2012 Luottoluokitusten siirtymätodennäköisyyksien estimointi ja kalibrointi Väliraportti 12.4.2012 Janne Kunnas (projektipäällikkö)
Bioreaktorin toiminnan optimointi Projektisuunnitelma
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.177 Operaatiotutkimuksen projektityöseminaari Bioreaktorin toiminnan optimointi Projektisuunnitelma 05.03.2007 Petri Holappa, 67793B Tuomas Kervinen,
Regressioanalyysi. Vilkkumaa / Kuusinen 1
Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen
Regressioanalyysi. Kuusinen/Heliövaara 1
Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy
Rahastosalkun faktorimallin rakentaminen
Teknillinen korkeakoulu Mat-2.177 Operaatiotutkimuksen projektityöseminaari Kevät 2007 Evli Pankki Oyj Projektisuunnitelma 28.2.2007 Kristian Nikinmaa Markus Ehrnrooth Matti Ollila Richard Nordström Ville
Tieverkon kunnon stokastinen ennustemalli ja sen soveltaminen riskienhallintaan
Mat 2.4177Operaatiotutkimuksenprojektityöseminaari Tieverkonkunnonstokastinenennustemallija sensoveltaminenriskienhallintaan Väliraportti 3/4/2009 Toimeksiantajat: PöyryInfraOy(PekkaMild) Tiehallinto(VesaMännistö)
Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio
Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Sisältö Regressioanalyysissä tavoitteena on tutkia yhden tai useamman selittävän muuttujan vaikutusta selitettävään muuttujaan. Sen avulla
Tehokkaiden strategioiden identifiointi vakuutusyhtiön taseesta
MS E2177 Operaatiotutkimuksen projektityöseminaari Projektisuunnitelma Tehokkaiden strategioiden identifiointi vakuutusyhtiön taseesta 12.3.2016 Asiakas: Model IT Projektiryhmä: Niko Laakkonen (projektipäällikkö),
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.
, tuottoprosentti r = X 1 X 0
Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen
MS-E2177 Operaatiotutkimuksen projektityöseminaari 2016
MS-E2177 Operaatiotutkimuksen projektityöseminaari 2016 Yleistä Vastuuopettaja prof. Assistentti tekn.yo. Teemu Seeve s-postit Suorittaminen ahti.salo@aalto.fi, teemu.seeve@aalto.fi 1. Projektityö muutaman
Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio
Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n
Mat Operaatiotutkimuksen projektityöseminaari. Dynaaminen kimppakyytijärjestelmä Uudellamaalla. Väliraportti
Mat-2.177 Operaatiotutkimuksen projektityöseminaari Dynaaminen kimppakyytijärjestelmä Uudellamaalla Väliraportti 28.03.06 Kohdeorganisaatio: Matrex Oy Yhteyshenkilö: Ville Koskinen Projektiryhmä: Jukka
805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet
OP-Local Emerging Market Debt -erikoissijoitusrahasto
OP-Local Emerging Market Debt -erikoissijoitusrahasto Kehittyvien maiden talouskasvu jatkuu vahvana 10 % 9 % 8 % 2007 2008 Lähde: Consensus Economics 10/2007 7 % 6 % 5 % 4 % 3 % 2 % 1 % 0 % Turkki Brasilia
1. Tilastollinen malli??
1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen
Identifiointiprosessi
Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin
Harha mallin arvioinnissa
Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö
Mat Operaatiotutkimuksen projektityöseminaari Loppuraportti Korrelaatioiden ja varianssin estimointi kiinteistöportfolion tuotolle
Mat-2.177 Operaatiotutkimuksen projektityöseminaari 2007 Loppuraportti Korrelaatioiden ja varianssin estimointi kiinteistöportfolion tuotolle 27. 4. 2007 Kohdeorganisaatio: Tapiola Yhteyshenkilöt: Ville
Korko optioiden volatiliteettirakenteen estimointi
Aalto yliopisto Mat 2.4177 Operaatiotutkimuksen projektityöseminaari Kevät 2010 Korko optioiden volatiliteettirakenteen estimointi Pohjola konserni Projektisuunnitelma Robert Huuhilo Juhana Joensuu Teppo
Lääkintähelikopterikaluston mallintaminen
Mat-2.4177 Operaatiotutkimuksen projektityöseminaari Lääkintähelikopterikaluston mallintaminen Väliraportti 19.3.2010 Pohjalainen Tapio (projektipäällikkö) (29157N) Kuikka Ilmari (58634A) Tyrväinen Tero
Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen
Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Verkkopelipalvelujen reaaliaikainen hinnoittelu
Teknillinen Korkeakoulu Mat-2.177 Operaatiotutkimuksen projektityöseminaari Kevät 2006 Verkkopelipalvelujen reaaliaikainen hinnoittelu Projektisuunnitelma 6.3.2006 Kohdeorganisaatio: Clan Match Exchange
1. Projektin status. 1.1 Tavoitteiden päivitys. 1.2 Tulokset Mallinnus
Sisällysluettelo Sisällysluettelo. Projektin status. Tavoitteiden päivitys.2 Tulokset.2. Mallinnus.2. Kirjallisuuskatsaus 2. Projektin aikataulun ja työnjaon päivitys 3. Riskien arviointi 2 . Projektin
MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA
MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA Hannu Poutiainen, FT PUHDAS VESI JA YMPÄRISTÖ TUTKIMUSAVAUKSIA MAMKISSA Mikpoli 8.12.2016 Mitä mallit ovat? Malli on arvioitu kuvaus todellisuudesta joka on rakennettu
Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003
Männyn laaturajojen integrointi runkokäyrän ennustamisessa Laura Koskela Tampereen yliopisto 9.6.2003 Johdantoa Pohjoismaisen käytännön mukaan rungot katkaistaan tukeiksi jo metsässä. Katkonnan ohjauksessa
Ito-prosessit. Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma. S ysteemianalyysin. Laboratorio
Ito-prosessit Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma Optimointiopin seminaari - Syksy 2000 / 1 Ito-prosessit Brownin liikkeen yleistys (Ito prosessi) x(t) : dx
Projektisuunnitelma: Vesipistekohtainen veden kulutuksen seuranta, syksy Mikko Kyllönen Matti Marttinen Vili Tuomisaari
Projektisuunnitelma: Vesipistekohtainen veden kulutuksen seuranta, syksy 2015 Mikko Kyllönen Matti Marttinen Vili Tuomisaari Projektin tavoite Tämän projektin tavoitteena on kehittää prototyyppi järjestelmästä,
Asiakasarvon määrittäminen päivittäistavarakaupassa
5.3.2017 MS-E2177 Operaatiotutkimuksen projektityöseminaari Projektisuunnitelma: Asiakasarvon määrittäminen päivittäistavarakaupassa Projektiryhmä Joonas Laihanen (projektipäällikkö) Aleksi Pasanen Eero
Projektisuunnitelma: Jokisysteemin vesivoimatuotannon simulointi
Mat-2.4177 Operaatiotutkimuksen projektityöseminaari Projektisuunnitelma: Jokisysteemin vesivoimatuotannon simulointi Projektipäällikkö: Vili Ojala Ryhmän jäsenet: Viivi Halla-aho Sampo Kaukonen Jukka
Mat Operaatiotutkimuksen projektityöseminaari Viestiverkon toimintaluotettavuuden arviointi Väliraportti
Mat 2.177 Operaatiotutkimuksen projektityöseminaari Viestiverkon toimintaluotettavuuden arviointi Väliraportti 31.3.2006 Kohdeorganisaatio: Yhteyshenkilö: Ryhmä: Puolustusvoimien Teknillinen Tutkimuslaitos
Tutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
Parametrin estimointi ja bootstrap-otanta
Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista
Harjoitus 9: Excel - Tilastollinen analyysi
Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin
Vastepintamenetelmä. Kuusinen/Heliövaara 1
Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,
805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) Tavoitteet (teoria): Hahmottaa aikasarjan klassiset komponentit ideaalisessa tilanteessa. Ymmärtää viivekuvauksen vaikutus trendiin. ARCH-prosessin
Vedenkulutuksen ennustaminen vuosille
VÄLIRAPORTTI Vedenkulutuksen ennustaminen vuosille 2016-2035 Mat-2.4177 Operaatiotutkimuksen projektityöseminaari Projektipäällikkö: Jori Jämsä Projektitiimi: Suvi Ahopelto Jari Hast Mariko Landtröm Helsingin
Johdatus regressioanalyysiin. Heliövaara 1
Johdatus regressioanalyysiin Heliövaara 1 Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Solvenssi II:n markkinaehtoinen vastuuvelka
Solvenssi II:n markkinaehtoinen vastuuvelka Mikä on riskitön korko ja pääoman tuottovaatimus Suomen Aktuaariyhdistys 13.10.2008 Pasi Laaksonen Yleistä Mikäli vastuuvelka on ei-suojattavissa (non-hedgeable)
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut
Muutama ajatus vahinkovakuutustuotteiden hinnoittelusta SAY-Kuukausikokous 12.9.2012. Janne Kaippio
Muutama ajatus vahinkovakuutustuotteiden hinnoittelusta SAY-Kuukausikokous 12.9.2012 Janne Kaippio Mikä ihmeen LähiTapiola? Keskinäinen vahinkovakuutusyhtiö: 19 itsenäistä alueyhtiötä + keskusyhtiö (keskusyhtiöllä
Johdatus regressioanalyysiin
Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Johdatus regressioanalyysiin TKK (c) Ilkka Mellin (2007) 1 Johdatus regressioanalyysiin >> Regressioanalyysin lähtökohdat ja tavoitteet
Dynaamisiin tapahtumapuihin perustuva todenna ko isyyspohjainen riskianalyysi ydinvoimalamallille
Dynaamisiin tapahtumapuihin perustuva todenna ko isyyspohjainen riskianalyysi ydinvoimalamallille Operaatiotutkimuksen projektityöseminaari MS -E2177, projektin väliraportti Asiakas: VTT Oy ja Riskpilot
Johdatus tilastotieteeseen Johdatus regressioanalyysiin. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Johdatus regressioanalyysiin TKK (c) Ilkka Mellin (2005) 1 Johdatus regressioanalyysiin Regressioanalyysin lähtökohdat ja tavoitteet Deterministiset mallit ja regressioanalyysi
A13-03 Kaksisuuntainen akkujen tasauskortti. Projektisuunnitelma. Automaatio- ja systeemitekniikan projektityöt AS-0.
A13-03 Kaksisuuntainen akkujen tasauskortti Projektisuunnitelma Automaatio- ja systeemitekniikan projektityöt AS-0.3200 Syksy 2013 Arto Mikola Aku Kyyhkynen 25.9.2013 Sisällysluettelo Sisällysluettelo...
Dynaaminen allokaatio ja riskibudjetointi sijoitusstrategioissa
Aalto yliopisto Mat 2.4177 Operaatiotutkimuksen projektityöseminaari Dynaaminen allokaatio ja riskibudjetointi sijoitusstrategioissa Projektisuunnitelma 20.2.2013 Vesa Husgafvel (projektipäällikkö) Tomi
Mat 2.4177 Operaatiotutkimuksen projektityöseminaari
Mat 2.4177 Operaatiotutkimuksen projektityöseminaari Kemira GrowHow: Paikallisen vaihtelun korjaaminen kasvatuskokeiden tuloksissa 21.2.2008 Ilkka Anttila Mikael Bruun Antti Ritala Olli Rusanen Timo Tervola
Kuka pelkää yksiöitä. 2. lokakuuta 2018
Kuka pelkää yksiöitä 2. lokakuuta 2018 Kojamon historia: VVO-yhtymästä Kojamoksi Nykyaikainen asuntoportfolio, jonka painopiste on siirtynyt Lumo-asuntoihin 2021 tavoite ~ 6 mrd. 4,04ṃ0brdn. 4,3 4 ṃ 3
MTTTP1, luento KERTAUSTA
25.9.2018/1 MTTTP1, luento 25.9.2018 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.
Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä
MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä Tehtävä 4.1. Ncss-ohjelmiston avulla on generoitu AR(1)-, AR(2)-, MA(1)- ja MA(2)-malleja vastaavia aikasarjoja erilaisilla parametrien arvoilla.
Harjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
Sisältö. Työn lähtökohta ja tavoitteet Lyhyt kertaus prosessista Käytetyt menetelmät Työn kulku Tulokset Ongelmat ja jatkokehitys
Loppuraportti Sisältö Työn lähtökohta ja tavoitteet Lyhyt kertaus prosessista Käytetyt menetelmät Työn kulku Tulokset Ongelmat ja jatkokehitys Työn lähtökohta ja tavoitteet Voimalaitoskattiloiden tulipesässä
Aki Taanila YHDEN SELITTÄJÄN REGRESSIO
Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...
Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)
Mat-.3 Koesuunnittelu ja tilastolliset mallit kevät Keskipisteen lisääminen k -faktorikokeeseen (ks. Montgomery 9-6) Esim (Montg. ex. 9-, 6-): Tutkitaan kemiallisen prosessin saannon Y riippuvuutta faktoreista
Osakkeiden tuottojakaumia koskevien markkinaja asiantuntijanäkemysten yhdistely copulafunktioilla
Osakkeiden tuottojakaumia koskevien markkinaja asiantuntijanäkemysten yhdistely copulafunktioilla (valmiin työn esittely) Henri Tuovila 13.01.2014 Ohjaaja: VTM Ville Hemmilä Valvoja: Prof. Ahti Salo Sisältö
Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
Dynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 6: 1 Kalmanin suodatin Aiemmin käsitellyt
3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin
3 Yleistä estimointiteoriaa Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin 3.1 Johdanto Tähän mennessä olemme tarkastelleet estimointia
Yleistetyistä lineaarisista malleista
Yleistetyistä lineaarisista malleista Tilastotiede käytännön tutkimuksessa -kurssi, kesä 2001 Reijo Sund Klassinen lineaarinen malli y = Xb + e eli E(Y) = m, jossa m = Xb Satunnaiskomponentti: Y:n komponentit
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään
Black ja Scholes ilman Gaussia
Black ja Scholes ilman Gaussia Tommi Sottinen Vaasan yliopisto SMY:n vuosikokousesitelmä 19.3.2012 1 / 21 Johdanto Tarkastelemme johdannaisten, eli kansankielellä optioiden, hinnoittelua. Kuuluisin hinnoittelumalli
Asiakasarvon määrittäminen päivittäistavarakaupassa
26.5.2017 MS-E2177 Operaatiotutkimuksen projektityöseminaari Väliraportti: Asiakasarvon määrittäminen päivittäistavarakaupassa Projektiryhmä Joonas Laihanen (projektipäällikkö) Aleksi Pasanen Eero Rantala
Eläkelaitoksen Optimointimallin Rakentaminen
Teknillinen korkeakoulu Mat-2.177 Operaatiotutkimuksen projektityöseminaari Kevät 2006 Eläkelaitoksen Optimointimallin Rakentaminen Projektisuunnitelma 22.2.2006 Michael Gylling Matti Konttinen Jarno Nousiainen
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Normaalijakaumasta johdettuja jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma
Siimasta toteutettu keinolihas
AS 0.3200 Automaatio ja systeemitekniikan projektityöt Projektisuunnitelma: Siimasta toteutettu keinolihas Laura Gröhn 224417 Mikko Kyllönen 221177 Lauri Liukko Sipi 84702A Susanna Porkka 225131 3.2.2015
Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden
1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella
MAT INVESTOINTITEORIA. (5 op) Kevät Ville Brummer / Pekka Mild / Ahti Salo
MAT - 2.114 INVESTOINTITEORIA (5 op) Kevät 2008 Ville Brummer / Pekka Mild / Ahti Salo 1 Opintojakson sisältö Taustaa Kattaa matemaattisen investointiteorian perusteet: Teemoja sivuttu osin muilla Mat-2
Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4
Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...
Tilastolliset mallit hakkuukoneen katkonnan ohjauksessa. Tapio Nummi Tampereen yliopisto
Tilastolliset mallit hakkuukoneen katkonnan ohjauksessa Tapio Nummi Tampereen yliopisto Runkokäyrän ennustaminen Jotta runko voitaisiin katkaista optimaalisesti pitäisi koko runko mitata etukäteen. Käytännössä
AS Automaatio- ja systeemitekniikan projektityöt - Projektisuunnitelma
AS-0.3200 Automaatio- ja systeemitekniikan projektityöt - Projektisuunnitelma PiccSIM - TrueTime integrointi Henri Öhman 31.1.2012 1. Projektityön tavoite PiccSIM on Aalto-yliopistolla kehitetty simulointiympäristö,
MTTTP1, luento KERTAUSTA
26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:
Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva
2 DEA sovellusta. Mat Optimointiopin seminaari kevät S ysteemianalyysin. Laboratorio Aalto-yliopisto
2 DEA sovellusta Mat-2.4142 Optimointiopin seminaari kevät 2011 Sisältö Using Data Envelopment Analysis to Evaluate Efficiency in the Economic Performance of Chinese Cities (Charnes ym. 1989) Managing
l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 018 Harjoitus B Ratkaisuehdotuksia Tehtäväsarja I 1 (Monisteen tehtävä 14) Olkoon f Y (y; θ) tilastollinen malli, jonka
Laskuharjoitus 9, tehtävä 6
Aalto-yliopiston perustieteiden korkeakoulu Jouni Pousi Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Laskuharjoitus 9, tehtävä 6 Tämä ohje sisältää vaihtoehtoisen tavan laskuharjoituksen
T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1
T-61.281 Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti 10.2.2004, 8:30-10:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
Junien peruuntumistodennäköisyyksien hyödyntäminen veturinkuljettajien työvuoroluetteloiden suunnittelussa Väliraportti
MS-E2177 Operaatiotutkimuksen projektityöseminaari Junien peruuntumistodennäköisyyksien hyödyntäminen veturinkuljettajien työvuoroluetteloiden suunnittelussa Väliraportti 19.4.2017 Tapio Hautamäki, 345312
Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot
Missä mennään systeemi mallin mallin käyttötarkoitus, reunaehdot käyttö- (fysikaalinen) mallintaminen luonnonlait yms. yms. identifiointi kokeita kokeita + päättely päättely vertailu mallikandidaatti validointi
pitkittäisaineistoissa
Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf